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Abstract This paper describes new improvements for BB-MaxClique (San Segundo 
et al. in Comput Oper Resour 38(2):571-581, 2011), a leading máximum clique algo
rithm which uses bit strings to efficiently compute basic operations during search by 
bit masking. Improvements include a recently described recoloring strategy in Tomita 
et al. (Proceedings of the 4th International Workshop on Algorithms and Computation. 
Lecture Notes in Computer Science, vol 5942. Springer, Berlin, pp 191-203, 2010), 
which is now integrated in the bit string framework, as well as different optimization 
strategies for fast bit scanning. Reported results o ver DIMACS and random graphs 
show that the new variants improve over previous BB-MaxClique for a vast majority 
of cases. It is also established that recoloring is mainly useful for graphs with high 
densities. 
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1 Introduction 

A complete graph, or clique, is a graph such that all its vértices are pairwise adjacent. 
Finding a clique of a fixed size k is a well known and deeply studied NP-complete 
problem known as k-clique [1]. The corresponding optimization problem is known as 
the máximum clique problem (MCP), i.e. to find largest possible complete subgraph. 
MCP finds applications in many fields: bioinformatics and computational biology 
[2,3], computer visión [4], robotics [5] etc (cf. also chapter 7 of [6]). 

Since MCP is NP-hard no efficient exact polynomial time algorithms are expected 
to be found. However, many efforts have been made at implementing fast algorithms in 
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practice. One of the most successful paradigms for fast MCP algorithms is branch-and-
bound, where a systematic enumeration of maximal diques is pruned by bounding the 
size of the largest possible clique in the remaining subproblem. A good compromise 
between computational overhead and tight bounding is obtained through approximate 
sequential vertex-coloring (usually referred to as SEQ), as in [7-11], and two recent 
leading algorithms MCS [12] and BB-MaxClique [13]. 

BB-MaxClique is our previous effective branch and bound algorithm, reported to 
be the fastest, at the time of writing, for a large number of graphs. Its distinguishing 
feature is that it combines efflcient bit string operations with the algorithmic improve-
ment of keeping an initial non increasing degree ordering constant throughout the 
search. BB-MaxClique is a bit-parallel algorithm, which uses the ability of modern 
CPUs to compute bit masking operations in parallel the size of the ALU registers 
(typically 64). It performs well even for large sparse instances where the overhead 
introduced by bit scanning and bit masking operations reaches its peak. 

Recently (and independently) a very fast new algorithm MCS has been described 
in [12], which combines the algorithmic improvements proposed in [13] (using con-
ventional data structures) together with a new recoloring strategy (or renumbering as 
denoted by the authors). Reported tests clearly validate the combined improvements 
w.r.t. a previous algorithm MCQ [10] (and other state of the art algorithms) but the 
concrete contribution of recoloring is unfortunately not made explicit. 

The remaining part of the paper is structured as follows: Sects. 2 and 3 deal with def-
initions and related work in the fleld. Sections 4 and 5 present the new improvements. 
Section 6 reports experiments and flnally Sect. 7 summarizes the contribution. 

2 Definitions and notation 

A simple undirected graph G = (V, E) consists of a flnite set of vértices V = 
[vi, V2, ...,vn} and a flnite set of edges E madeup ofpairs of distinct vértices (E c 
VxV). Two vértices are said to be adjacent (alias neighbors) if they are connected 
by an edge. For any vértex v e V, N(v)(or NG(V) when the graph needs to be made 
explicit) denotes the neighbor set of v in G, i.e. the set of all vértices which are adja
cent to v. NQ(V) refers to the set of non adjacent vértices to v, the neighbors in the 
complement graph. For any U c V, G(U) = (U, £(í/))isthesubgraphmí/«ceí/over 
G by vértices in U. 

A clique in G is any induced subgraph U with all its vértices pairwise adjacent. 
The largest clique in a graph is called the máximum clique. &>(G) and co(U) refer to 
the sizes of the máximum clique in G or in an induced graph U respectively. UBV (or 
simply UB when graph U is clear from the context) refers to any upper bound on the 
máximum clique size in U(UBu >co(U)). 

deg(u) is the degree of vértex v, i.e. the number of neighbor vértices. A(G) 
denotes the degree of the graph, the máximum degree of any of its vértices. C(G) = 
[C\, C2 , . . . , Cm} is a feasible vértex m-coloring in G, made up of m independent 
color sets d;C(U c V) refers to a coloring of the graph induced by vértex set U, 
a partial coloring in G. c(v) denotes the color label of vértex v, so that for a given 
coloring c(v) = k <^ v e C*. 



3 Related work 

This section briefly summarizes related state of the art algorithms for exact máximum 
clique search. 

3.1 Enumeration of maximal diques 

The general outline of branch and bound máximum clique exact search is a construc-
tive enumeration of all maximal diques, starting from a single vértex at the root node 
and gradually building larger and larger diques until a leaf node is reached. Procedure 
RMCP illustrates the overarching idea and is based on [8] and [10]. 

Input: U:=G, C(G) = {c(Vl),..., c(vn)}/c(Vi) = mm{i, AG], S = 0, Sm¡a = 0 
Procedure RMCP (U, C(U), S, Smax) 
Output: A máximum clique of G in 5max 

Step 1: Select a vértex v with máximum color in U 
Step 2: U «- U/{v} 
Step 3: ií(\S\ + c(v) < |Smax|) return to previous level of recursion 
Step4: S «- SU{v},Uv ^U n Nu(v) 
Step 5: if (Uv = <f>) then /*maximal clique*/ 

if(|S| > |Smax|)then \Smax\ «- \S\ and goto step 8 
endif 

Step 6: C(UV) <- COLOR(G(Uv)) 
Step 7: RMCP (Uv, C(UV), S, Smax) 
Step 8:S^S/ {v} 
Step 9: Repeat all steps from 1 to 9 until U = 4> 

Search takes place in a graph space. RMCP uses two global variables S and 5max, 
where S is the currently growing clique and Smax the largest clique found so far. It 
starts with empty set S and recursively adds vértices until it verifles that it is no longer 
possible to improve the current best solution in Smax • 

U is the set of candidate vértices in a given step, initially the set of input vértices to 
the algorithm. At each step, a vértex v e U is selected (step 1) producing a new bigger 
clique Sv = S U {v}, with new candidate set Uv = U n Nu(v), i.e. the remaining 
vértices adjacent to every vértex in S (step 4). The process is repeated until a leaf node 
is reached (Uv = <f>), when S is a maximal clique in G. For every maximal clique, 
RMCP computes \S\ > |Smax | and the current best solution is updated accordingly if 
the premise holds. On backtracking, the algorithm iteratively picks remaining vértices 
in U until all possible maximal diques have been enumerated. 

3.2 Branch and bound approximate coloring 

A good compromise between a tight upper bound for co(U) and extra overhead is 
achieved by applying SEQ to U (COLOR in step 6). The coloring obtained prunes 
the child subproblem if c(v) + \S\ < \Smax\ holds (step 3), since the current 
champion cannot be unseated by any maximal clique containing vértices in SU {v}. 



We note that initial color labels use simple graph degree information rather than SEQ 
(i.e. C(G) = {c(vi),..., c(v„)}/C(VÍ) = min{i, AGj), so C(G) might actually be 
infeasible for vértices Vj such that AG > ;'. The algorithm remains complete anyhow 
becausec(u7)isalwaysanupperboundforanycliquewithvérticesin{i;i, V2,..., Vj). 

Moreover, COLOR arranges the list of vértices by non increasing color on output, 
so that step 1 in the child subproblem can be computed in constant time. In practice, 
highest colored vértices are placed last in the list (and selected from last to flrst) so 
that the new candidate set in the child subproblem is Uv = {C\ U C2 U • • • U C*}. 

3.3 Vértex ordering of approximate coloring 

The bound obtained by COLOR strongly depends on the way vértices are ordered on 
input; in particular the bound improves on average if vértices are fed to COLOR by 
non increasing degree. Unfortunately, this is incompatible with the sorting by color 
required to select vértices in step 1 of RMCP. 

In [11] the effect of arranging vértices by degree at each step prior to COLOR was 
analysed. It was concluded that the reduction of the search space was only effective 
when restricted to the shallowest levéis of the search tree. 

Ref. [13] reports BB-MaxClique, which flxes the initial non increasing degree 
order of vértices throughout the whole search. Underlying this key idea was the use 
of bit strings to encode G (its adjacency matrix) as well as the list of vértices in U 
at every step. With the help of bit-parallelism, the switch from color ordering (output 
of COLOR) to degree order (input to COLOR in the child subproblem) was achieved 
in constant time. Reported results showed that BB-MaxClique outperformed other 
leading algorithms for a large number of graphs. 

Independently, a similar idea was described in algorithm MCS [12] and imple-
mented with conventional data structures. The paper also proposed a new approximate 
coloring strategy (Re-NUMBER), which will be referred to as recoloring. Reported 
results for MCS include times for the combined two strategies, so the effect of recol
oring cannot clearly be established. 

3.4 Recoloring 

Recoloring in [12] is based on the following property. For a given admissible 
m-coloring of a given graph C{G) = {C\, C2, • • •, Cm), it is possible to reassign 
a vértex v e Ck to a different independent set Cj, j < k, iff the following properties 
hold: 

(1) There exists a vértex w e Cj such that N(v) n Cj = {w}, i.e. w is the only 
member of the neighbor set of v in Cj. 

(2) There exists a color class C¡ such that \N(w) n C¡\ = <f>, i.e. does not contain 
any neighbor of w. 

If this is the case, it is possible to produce a new admissible coloring by relabeling v 
and w so that c(v) = j and c(w) = l. 

When embedded in a máximum clique algorithm, recoloring is reported to be use-
ful only if j < l < k [12]. Moreover it introduces linear overhead on the size of U 



and should only be applied selectively. A reasonable threshold for this is k = £min = 
Smax\-\S\, where£m¡n is the color label below which all vértices will be pruned in the 

derived child subproblem [11]. In steps where j < l both swapped vértices 
will end up with a lower label than kmin and therefore the subproblem hanging from 
v will be pruned. MCS [12] reported best performance when recoloring was applied 
dynamically during COLOR and restricted only to local máximum color vértices with 
a label higher or equal to kmin. 

4 Recoloring in the bit parallel framework 

In the paper, algorithms named starting by "BB_" refer to the use of bit string data 
structures which beneflt from bit-parallelism. The concrete bit strings will be denoted 
by sufflx BB when required in the context. Notation is taken from [13]. 

We have integrated (and enriched) recoloring as in [12] into BB-MaxClique by 
means of a new COLOR procedure BB-ColorR, based on previous BB_Color in [13]. 
BB_Color procedure in BB-MaxClique deviates from typical SEQ by obtaining a full 
color class at each iteration instead of labelling each vértex in turn. This presents 
a number of advantages related to the bit string framework which were described 
in [13] and still outputs the same coloring. A detailed description can be found 
there. 

The computation of each color independent set in turn influences the outline of new 
BB_ColorR (described in detail at the end of the section), which runs as follows: 

Step 1: For every uncolored vértex and threshold £m¡n, determine color classes using 
previous BB_Color. 

Step 2: Determine each new color class Cnew{kmia < new) iteratively by the fol-
lowing operations: 

Step 2.1: For each uncolored vértex v attempt to recolor (using new BB_ReCol). 
Step 2.2: If successful, swap vértices and go back to step 2.1; Else label v with new. 
Step 2.3: Remove all adjacent vértices to v from the remaining uncolored vértices. 
Step 2.4: Go back to step 2.1 

By flrst computing an initial set of color classes below £m¡n, every additional candi-
date vértex, unless swapped, will be a local máximum color vértex in the new partial 
coloring, so all of fhem have potential to prune the search space if recolored success-
fully. Figure 1 describes the recoloring algorithm BB_ReCol in pseudocode. 

BB_Recol receives as input an initial set C\, C2, • • •, Q ^ - i of independent sets. 
These color classes can change throughout the search but are not subject to recol
oring between themselves. BB_Recol also receives the remaining set of uncolored 
vértices which can still make part of the current color class (referred to as Cnew) 
and the candidate vértex submitted to recoloring (v e Cnew). Step 2 evaluates the 
only-one-neighbor condition required in a color class febelow £m¡n - 1, while step 4 
determines the swap if w can be upgraded to a neighborless color class fe such that 
ki < fe < £min-

Step 10 captures a further twist not mentioned in [12]. In SEQ admissible color-
ings, any vértex in a color class k must have at least one adjacent vértex in every 
lower color class (else it would have been labeled with that color in the flrst place); 
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Bit-paralell procedure BB_ReCol (v, km 

Output: Recolors ve Cntwif possible 
;Q.C 2 J ^ RgH" J 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

for ki:=l to ki:= kmm-2 

if \Ck r\N(v)\ = 1 then w:= vértex in 

for k2:= ki+1 to k2:= kmin-1 

if Ct nN(w)=0 

CtnN(v) 

then lldouble swap 

c„ 
endif 

endfor 

elseif CknN(v) = 0 then //single swap 

c 
new 

endif 

= Cmw\{v] 
:Qu{v} 

endfor 

Fig. 1 New BB_ReCol algorithm based on [12]. Inside boxes are computations which benefit from bit 
parallelism 

as a consequence, condition Qj n N(v) = <() in step 10 should, in theory, never hold. 
However, this is not so if a previous color swap has occurred, because the absence of 
the upgraded vértex from C^can now make the condition hold. This new possibility 
determines the single-swap condition of vértex v. 

We note that this idea can also be extended to the swap movement of vértex w. 
Apparently w can only goforward to a higher color set (fe > k\), but after the flrst 
swap it can also flnd a destination backwards (fe < fe); the explanation is similar to 
single-swap. At present however, tests carried out extending iterations in step 3 below 
fehave not improved overall performance so they have not been reported. 

The new COLOR algorithm BB_ColorR is shown in Fig. 2. The algorithm receives 
the bit string of vértices to be colored (SBB) and returns them in a conventional list 
(SL) ordered by increasing color labels (C(SBB))- Auxiliary bit string data structures 
are UBB, the remaining uncolored vértices, and QBB, the candidate set of vértices 
which can still make part of the current color set C*. 

The rough versión described at the beginning of the section attempts to recolor 
every vértex which is not in the initial color classes C\, C2, • • •, Q ^ - i . Since the 
overhead introduced by BB_ReCol is high w.r.t. its pruning ability, we tried a num-
ber of variants looking for the best compromise. The strategy which performed best 
on average selectively applies recoloring to vértices which can still improve pruning 
globally, i.e. produce an empty color class C* and therefore lower the labels of all 
remaining uncolored vértices. This can only be achieved at steps where the current 
QBB is a singleton (evaluated in step 5). 



Procedure BB_ColorR (SBB, km , SL C(SBB» 

Input: SBB (a bit string of vértices preserving initial degree ordering), km. 

Outputs: SL a list of vértices ordered by SEQ coloring C(Sm ) 

0. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

*¿BB' "BB> ^ BB- $B1 ; k = 1; //initialization 

while UBB t- (/> 

endwhi 

ck-=<i>; 
while QBB * <j> 

select the first possible vértex v e QBB 

i f k^K,n and2B B={v} then 
BB-/teCo/(v,C1,C2,-,C^_1,e i lB) 

else Ck:=Cku{v] 
endif 
if v has not been recolored then 

endif 

QBB-=QBB^N-(V) 
'•• 

endwhile 

UBB--^ BB 

*¿BB • — 'JBB 

i f * > * ™ 1 

\ Ck; //k color set computed 

'• 

,hen 
store Ck in 5L in the same order 

endif 
if Ck^<¡> 

k: = k +1; //next color 

endif 
le 

Fig. 2 New BB_ColorR algorithm. Inside boxes are operations which benefit from bit parallelism 

5 Bit string framework enhancements 

The bit string framework allows for a number of optimizations. We mention two 
important changes that have been implemented w.r.t. BB-MaxClique. The flrst one is 
improved bit scanning during approximate coloring, unfortunately incompatible with 
current recoloring. The second one is the use of compiler intrinsics to compute basic 
bit string operations, also included in BB_ColorR. 

5.1 Improved bit scanning during approximate coloring 

Previous BB_Color [13] selected the next candidate vértex by bit scanning QBB, the 
bit string which encodes remaining uncolored vértices that could still make part of 
the current color set C*. In practice, the algorithm did not explicitly use storage Ck, 
but dynamically used bit string QBB instead; i.e. at each iteration QBB stores vértices 
belonging to Ck and uncolored vértices non adjacent to all of fhem. 



Fig. 3 First steps of the new i while U ^ 
formulation of BB_Color 

2 while QBB * <p 

select thefirst vértex ve QB 

UBB--=UBB\{V} 

endwhile 

>¿BB- ~UBB-

II... 

The flrst steps of the actual implementation were: 

while UBB 7̂  • 

while QBB ^ <p 
select next vértex v in QBB 
QBB '•= QBB\NQBB(V) ; 

endwhile 
UBB'- = UBB\QBB\ 

QBB'- = UBB-

II... 

However, this approach has the disadvantage that bit scanning for a new vértex 
(step 4 in Fig. 2) requires extra overhead since it is not the flrst (least significant) bit 
in the bit string. 

We have improved BB_Color by making bit scanning QBB a least significant bit 
procedure, as in the original description of BB_Color, but without requiring extra 
overhead and space for C*(Fig. 3). This can be achieved by deleting from UBB each 
selected vértex (step 5, Fig. 3) after computing the remaining possible candidates in 
step 4 (note that after step 4, v £ QBB)-

5.2 Intrinsics 

Two basic instrinsic functions for 64 bit string operations are available for the Micro
soft C++ compiler: population count ( popcnt64) and bit scanning (_BitScanFor-
ward64). Specifically, the latter has substituted previous DeBruijn magic number 
hashing implementation used in BB-MaxClique (cf. section 2.2 in [13]). 

6 Experiments 

This section reports a number of computational experiments in order to evalúate the 
bit string framework optimizations and the new recoloring strategy. We will refer to 
the former algorithm as BBMCI and BBMCR the latter. 

Both algorithms have been implemented in C++. The computer employed for the 
report is an Intel(R) Core(TM) i7 CPU 950 @ 3.07GHz with a 64-bit Windows O.S. 
Tests were carried out over random graphs of varying sizes and densities as well as a 
subset of DIMACS benchmark graphs [14]. 



We also report calibrated comparison times with the two clearly leading algorithms 
at present: our previous BB-MaxClique [12] (which, for convenience, will be referred 
to as BBMC) and MCS [13]. Calibration times are established based on DIMACS 
benchmark program dfmax [14], see appendix. 

Reported user times in tables are measured in seconds with a precisión up to mil-
liseconds. In all cases time was flxed to 3,600 s. Boldface times in bofh tables show 
the best time in each row. 

6.1 Initialization 

New BBMCI and BBMCR use the same initialization as BB-MaxClique. Vértices in 
V are initially ordered by non increasing degree and ties are broken randomly; the 
initial labelling described for RMCP ensures that they will be picked from last to flrst 
at the root node (for speciflc details, cf. [13]). MCS uses a more sophisticated tie-
break strategy inherited from previous versions, but we have not found it significantly 
effective neither here ñor in [13], so it has not been applied. 

Initial valúes of U, C, S, and Smax are the same as for the reference procedure 
RMCP. 

6.2 Results for random instances 

Each row in Table 1 compares running times for uniform random graphs with different 
sizes (column n) and densities (column p). In these graphs there exists an edge with 
probability p for every pair of vértices. Each row reports performances of reference 
BB-MaxClique [13] (BBMC) and MCS [12], as well as new BBMCI, and BBMCR. 
Times are averaged over 10 instances for each pair (n, p). 

In general, BBMCI outperforms previous BBMC for the majority of instances, the 
ratio of improvement increasing for the more difflcult graphs (large and/or dense), 
where the number of bit masking and bit scanning operations is greater. For the easier 
graphs the effect is much less acute. Best ratio is achieved for the larger sparse graphs 
(n > 5,000), where BBMCI is fastest by a factor of more than 2. 

Recoloring in BBMCR outperforms BBMCI only for high densities (n > 0.8) 
where phase transition does not make the instance trivial (as in (100, 0.95) or (200, 
0.95-0.98)), but the improvement ratio is never more than double. For small to médium 
size graphs and lower densities there is no advantage w.r.t. BBMCR. Moreover, per
formance degrades with large graphs (n > 5,000). This might be explained partly 
because of the useless overhead during recoloring of bit masking and bit scanning 
operations over almost long empty bit strings. At the moment we are currently work-
ing on a new improvement for bit scanning and empty detection of sparse bit strings 
based on the two-watched-literals strategy used in SAT solvers [15]. 

With respect to MCS, either BBMCI or BBMCR are fastest, if only by a small 
margin, except in 4 cases. BBMCR is the fastest in graphs up to médium size and 
high densities, which make the most of recoloring in the bit string framework. In 
particular it is nearly twice as fast in (150, 0.95) and (200, 0.95). However, it is 
gradually outperformed by MCR as density decreases in the largest instances for 



Table 1 User times over a set of random graphs 

n 

100 

100 

100 

100 

100 

100 

150 

150 

150 

150 

150 

150 

200 

200 

200 

200 

200 

200 

300 

300 

300 

500 

500 

500 

1,000 

1,000 

1,000 

1,000 

1,000 

5,000 

5,000 

10,000 

15,000 

P 

0.60 

0.70 

0.80 

0.90 

0.95 

0.98 

0.60 

0.70 

0.80 

0.90 

0.95 

0.98 

0.60 

0.70 

0.80 

0.90 

0.95 

0.98 

0.60 

0.70 

0.80 

0.50 

0.60 

0.70 

0.10 

0.20 

0.30 

0.40 

0.50 

0.10 

0.20 

0.10 

0.10 

co 

11-12 

14-15 

19-21 

29-32 

39—48 

55-67 

12-13 

16-17 

23 

35-38 

50-54 

74-86 

13-14 

17-18 

25-26 

40^12 

60-64 

90-100 

15-16 

20-21 

28-29 

13 

17 

22-23 

5-6 

7-8 

9-10 

12 

15 

7 

9-10 

7-8 

8 

BBMC [13] 

0.005 

0.002 

0.008 

0.013 

0.013 

0.005 

0.023 

0.144 

0.798 

0.172 

<0.001 

0.038 

0.203 

2.914 

45.9 

48.331 

0.398 

6.20 

206.5 

1.545 

22.43 

0.013 

0.074 

0.755 

9.181 

216.7 

3.574 

202.7 

75.43 

394.6 

BBMCI 

<0.001 

0.002 

0.005 

0.003 

0.002 

<0.001 

0.008 

0.015 

0.091 

0.510 

0.129 

0.005 

0.022 

0.155 

1.66 

33.40 

29.00 

0.292 

0.32 

4.27 

205 

1.24 

17.9 

956 

0.006 

0.062 

0.627 

7.33 

174.1 

1.580 

70.35 

27.50 

148.0 

BBMCR 

<0.001 

0.0032 

0.002 

0.003 

<0.001 

<0.001 

<0.001 

0.016 

0.081 

0.429 

0.091 

<0.001 

0.025 

0.155 

1.58 

27.10 

18.70 

0.232 

0.351 

4.66 

196 

1.29 

19.9 

919 

0.006 

0.070 

0.735 

8.4 

200.0 

4.58 

260 

87.9 

507 

MCS [ 

0.004 

0.001 

0.126 

0.548 

0.192 

0.003 

2.47 

40.55 

32.33 

0.110 

0.548 

6.58 

215.91 

1.534 

21.92 

7.234 

158.9 

1.808 

75.62 

32.89 

179.2 

Times are measured in seconds and averaged for 10 instances in each row. In boldface the best times in 
each row. Reported times for MCS [ 12] are based on a different set of random instances than the other three 
algorithms 

the reasons previously explained. In general, recoloring is useless in the large sparse 
graphs altogether. 

MCS is fastest for very dense graphs which have not reached phase transition to 
triviality, (i.e. (200, 0.98)) because recoloring in BBMCR is more selective than the 
one proposed in MCS. Also MCS is preferable, if only by a slight margin, in middle 



sized graphs (i.e. n = 1,000) with relatively low density (not low enough for BBMCI, 
ñor high enough for BBMCR). 

6.3 Results for a subset of DIMACS graphs 

Table 2 reports CPU user times required for the same 4 algorithms to solve a subset 
of the DIMACS benchmark graphs. 

Table 2 User times over a set of DIMACS benchmark graphs 

Ñame 

brock200_l 

brock200_2 

brock200_3 

brock200_4 

brock400_l 

brock400_2 

brock400_3 

brock400_4 

phat300-2 

phat300-3 

phat500-l 

phat500-2 

phat500-3 

phat700-l 

phat700-2 

phat700-3 

phatl000-l 

phatl000-2 

phatl500-l 

hamming8-4 

hamminglO-2 

johnsonl6-2-4 

keller4 

Mann_a27 

Mann_a45 

san200_0.9_l 

san200_0.9_2 

san200_0.9_3 

san400_0.5_l 

san400_0.7_l 

san400_0.7_2 

san400 0.7 3 

n 

200 

200 

200 

200 

400 

400 

400 

400 

300 

300 

500 

500 

500 

700 

700 

700 

1,000 

1,000 

1,500 

256 

1,024 

120 

171 

378 

1,035 

200 

200 

200 

400 

400 

400 

400 

P 

0.745 

0.496 

0.605 

0.658 

0.75 

0.75 

0.75 

0.75 

0.489 

0.744 

0.253 

0.505 

0.752 

0.249 

0.498 

0.748 

0.245 

0.49 

0.253 

0.639 

0.99 

0.765 

0.649 

0.990 

0.996 

0.900 

0.900 

0.900 

0.500 

0.700 

0.700 

0.700 

co 

21 

12 

15 

17 

27 

29 

31 

33 

25 

36 

9 

36 

50 

11 

44 

62 

10 

46 

12 

16 

512 

8 

11 

126 

345 

70 

60 

44 

13 

40 

30 

22 

BBMC [13] 

0.405 

<0.001 

0.012 

0.063 

407.6 

171.2 

272.5 

162.3 

0.025 

1.558 

0.026 

0.494 

103.3 

0.063 

4.433 

2,204 

0.367 

221.0 

3.584 

0.025 

0.152 

0.089 

0.013 

0.443 

196.7 

0.240 

0.152 

0.038 

0.013 

0.291 

0.114 

0.621 

BBMCI 

0.327 

<0.001 

<0.001 

0.062 

341.0 

144.0 

229.0 

133.4 

0.015 

1.25 

<0.001 

0.39 

73.90 

0.047 

3.51 

1,720 

0.328 

187.0 

3.23 

0.032 

0.031 

0.078 

0.016 

0.312 

144.0 

0.156 

0.109 

0.015 

0.016 

0.234 

0.078 

0.514 

BBMCR 

0.312 

<0.001 

<0.001 

0.063 

348.0 

140.0 

240.0 

143.0 

<0.001 

1.31 

<0.001 

0.39 

76.10 

0.047 

3.79 

1,640 

0.421 

193.0 

3.92 

0.015 

0.063 

0.062 

<0.001 

0.187 

42.40 

0.094 

0.062 

0.015 

0.016 

0.125 

0.063 

0.437 

MCS [12] 

379.5 

162.6 

256.3 

135.8 

1.369 

0.383 

82.10 

3.07 

1,309 

121.0 

0.438 

153.9 

0.120 

0.219 

0.296 

0.071 

0.767 



Table 2 Continued 

Ñame 

san400_0.9_l 

sanlOOO 

sanr200_0.7 

sanr200_0.9 

sanr400_0.5 

sanr400_0.7 

gen200_p0.9_ 

gen200_p0.9_ 

C125.9 

C250.9 

44 

.55 

n 

400 

1,000 

200 

200 

400 

400 

200 

200 

125 

250 

P 

0.900 

0.502 

0.702 

0.898 

0.501 

0.700 

0.900 

0.900 

0.900 

0.899 

co 

100 

15 

18 

42 

13 

21 

44 

55 

34 

44 

BBMC [13] 

0.190 

0.709 

0.152 

22.53 

0.354 

108.3 

BBMCI 

0.141 

0.686 

0.125 

18.20 

0.297 

91.00 

0.328 

0.546 

0.031 

1,650 

BBMCR 

0.031 

0.375 

0.125 

13.90 

0.327 

102.0 

0.187 

0.437 

0.016 

1,290 

MCS [12] 

0.055 

1.150 

0.186 

22.45 

99.12 

0.257 

0.657 

1,784 

Times are measured in seconds with precisión up to milliseconds. In boldface the best times in each row 

Compared to random graphs, BBMCR is now fastest in more instances because 
many of the DIMACS graphs have high density (i.e san, sanr, gen, C etc.). Best times 
are obtained in the denser instances such as Mann_a45, which is the fastest by a factor 
of more than 3. 

MCS is fastest (although not by more than 25% in the worst case) in the phat family 
as density and size rises. This is consistent with the behaviour reported for random 
graphs, since the phat family is built using a generalisation of the classical uniform 
random graph generator. Finally, here BBMCI outperforms BBMC in all cases, except 
for the easy brock200_2 instance. This validates the bit string framework improve-
ments and encourages research for further optimizations along this line. 

7 Conclusions 

This paper improves our previous leading bit string máximum clique algorithm BB-
MaxClique [13]. New BBMCI uses intrinsic functions for basic 64 bit population 
count and bit scanning operations, as well as reformulates approximate coloring for 
more efflcient bit scanning of the list of vértices. BBMCR implements bit string recol-
oring based on [12] and introduces a new variant to improve the compromise between 
pruning and the extra overhead in the bit parallel framework. 

Reported experiments show that recoloring improves performance only for high 
density graphs, an analysis that was lacking in [12], and also that BBMCI clearly 
improves over its predecessor on average. We also note that either BBMCR or 
BBMCI are fastest w.r.t. leading reference algorithm MCS in a large number of 
instances. 

Besides the obvious practical importance of fast NP-hard algorithms, we believe 
this research is interesting also from a theoretical point of view, since we are not aware 
oífully encoded bit parallel algorithms for NP-hard problems that scale well with size, 
and this seems to be the case here. 



Appendix 

Calibration is established based on DIMACS benchmark program dfmax [14] and 
averaged over running times for random instances rl00.5, r200.5, r300.5, r400.5 and 
r500.5. These were, for the computer used in the experiments, <0.001, 0.003, 0.203, 
1.186 and 4.587 s respectively, 1.66 times faster than the computer used in [13], and 
1.83 times faster than the one used in [12]. 
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