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Abstract. We prove that the maximum number of k-sets in a set S of n points in R
3 is

O(nk3/2). This improves substantially the previous best known upper bound of O(nk5/3)

(see [7] and [1]).

1. Introduction

Let S be a set of n points in R
d . A k-set of S is a subset S′ ⊂ S such that S′ = S ∩ H

for some halfspace H and |S′| = k. The problem of determining tight asymptotic
bounds on the maximum number of k-sets is one of the most intriguing open problems
in combinatorial geometry. Due to its importance in analyzing geometric algorithms
[5], [9], the problem has caught the attention of computational geometers as well [3],
[7], [8], [14], [16]. A close to optimal solution for the problem remains elusive even
in the plane. The best asymptotic upper and lower bounds in the plane are O(nk1/3)

(see [6]) and n · 2�(
√

log k) (see [15]), respectively. In this paper we obtain the following
result:

Theorem 1.1. The number of k-sets in a set of n points in R
3 is O(nk3/2).
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This result improves the previous best known asymptotic upper bound of O(nk5/3) (see
[7] and [1]). The best known asymptotic lower bound for the number of k-sets in three

dimensions is nk · 2�(
√

log k) (see [15]).

2. An Overview of our Technique

(a) The paper by Agarwal et al. [1] presents a general technique, based on random
sampling, for transforming an upper bound on the number of k-sets that is independent
of k to a bound that does depend on k. Our main thrust thus is to establish the upper
bound O(n5/2) for the number of k-sets. This, combined with the technique of [1], will
imply Theorem 1.1.

(b) We assume that the set S is in general position, meaning that no four points in S
lie in a common plane. Applying a small perturbation to the points of any set S yields a
set of points in general position and the number of k-sets does not decrease.

(c) We consider the set T of halving triangles spanned by S: A triangle � = abc,
with vertices a, b, c ∈ S, is a halving triangle if the plane containing � has the same
number of points of S on either side. (Note that n has to be odd for halving triangles
to exist, and we indeed assume, without loss of generality, that n is odd.) We show that
|T | = O(n5/2). This implies that the number of k-triangles, for any k, is also bounded
by O(n5/2), where a k-triangle is a triangle � spanned by three points in S with exactly
k points of S on one side of the plane containing �. Indeed, choose a direction d
not contained in the plane of any k-triangle and add |n − 3 − 2k| extra points to S far
enough in the direction d or −d. Each k-triangle in S turns into a halving triangle in
one of the two resulting configurations. It is well known [2] that the O(n5/2) bound on
the number of k-triangles for any k carries over to the same bound on the number of
k-sets.

(d) All the previous approaches are based on (the three-dimensional extension of)
Lovász’ lemma [4]: Any line crosses (the relative interiors of) at most O(n2) halving
triangles. The preceding techniques aimed to derive a general lower bound for the number
of such crossings. Specifically, they showed that for any collection of t triangles spanned
by the points of S there exists a line that crosses many triangles, where the best lower
bound for this number of crossings is �(t3/n6) [7]. Combining this lower bound with
the upper bound provided by Lovász’ lemma, one obtains an upper bound of O(n8/3)

for the number of k-sets.
(e) In contrast, our technique focuses on the specific set T of halving triangles, and

exploits the structure of this set. The main property of this set, which is also used in
deriving Lovász’ lemma, is the antipodality property, which we re-establish rigorously
in Lemma 3.4 below. Informally, it asserts that the halving triangles with a common edge
pq alternate sides, as we rotate a plane containing pq. See Fig. 1 for an illustration of
this property. This is the only property of the set T that is needed in the proof.

(f) Our technique only considers interaction between pairs of triangles of T with
a common vertex. Specifically, we consider crossings between such pairs of tri-
angles, where two triangles pab and pcd cross each other if their relative inte-
riors have a nonempty intersection (in this case p is the only common vertex of these
triangles).
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Fig. 1. The antipodality property of halving triangles: the common edge pq is shown head-on, as a point; as
we rotate a plane containing pq we encounter the other endpoints of these triangles in the order shown.

(g) Our proof proceeds by deriving both an upper bound and a lower bound on the
number of triangle crossings (of the above special type) in T . The upper bound is O(n4)

and it is an easy consequence of Lovász’ lemma in 3-space. The lower bound is �(t2/n),
and is proven using arguments that extend those that were used in [6] for the analysis of
k-sets in the plane. These upper and lower bounds immediately yield the desired bound
on the number of k-sets.

3. Proof of the Theorem

Let n be odd, let S be a set of n points in R
3 in general position, and let T be the set of

all halving triangles of S. Put t = |T |.

Definition 3.1. We say that two triangles �1, �2 ∈ T cross if �1 and �2 share exactly
one vertex, say p, and the edge opposite to p in one of the triangles crosses the other
triangle (this is equivalent to the definition given in Section 2). Let X denote the number
of crossing pairs of triangles in T .

The following extension of the two-dimensional Lovász’ lemma [10] has been derived
in [4] and used in [3] and [4]. We say that a line crosses a triangle if it intersects the
triangle but not any of its edges. One can prove this lemma using the Antipodality Lemma
below by translating a line from infinity to the given location, and by observing how the
number of triangles crossed by the line changes as it moves—this number changes only
when the line crosses a segment connecting two points and then it changes by ±1.

Lemma 3.2 [4], [11]. Any line crosses fewer than n2/4 halving triangles.

As a consequence we obtain:

Lemma 3.3. The number X of crossing pairs of halving triangles for a set S as above
is less than 3n4/8.
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Proof. Fix an edge e = pq with endpoints in S. This edge crosses fewer than n2/4
triangles. For each triangle � = abc that it crosses, e can contribute at most three
crossings to X , namely, a crossing between abc and apq , between abc and bpq, and
between abc and cpq . Since there are only

(n
2

)
edges, we have in total fewer than 3n4/8

crossings.

The following well-known lemma, which is the basis for the three-dimensional version
of Lovász’ lemma (see, e.g., [3] and [4]), is crucial for our analysis. We include a proof
for the sake of completeness.

Lemma 3.4 (Antipodality Lemma). Let p, q ∈ S and let Tpq denote the subset of all
triangles in T incident to both p and q . Rotate a halfplane h, bounded by the line �

passing through p and q , about �; h meets the triangles in Tpq in a cyclic order. Let �

and �′ be two consecutive elements of Tpq in this cyclic order, let W be the wedge swept
by h as it rotates from � to �′, and let W ′ denote the antipodal wedge, emanating from
� and bounded by the same pair of planes. Then there is a unique “antipodal” triangle
�′′ ∈ Tpq contained in W ′.

Proof. Consider the halfplane h rotating about pq. If during the rotation h contains
a halving triangle pqr and the next such triangle is pqr ′, then as h leaves r the plane
containing h has one more point of S on its side containing r than on the opposite side.
Just before reaching r ′ the plane containing h has one more point on its side containing
r ′ than on the opposite side containing r . Since the difference between the number of
points of S contained in the two sides changes by one each time the plane reaches or
leaves a point of S, there must be a position in between when the difference is zero. At
that point the plane containing h contains a halving triangle from Tpq , but since � and �′

are consecutive, this halving triangle is not contained in h but in the opposite halfplane
and therefore in W ′.

The uniqueness of this antipodal triangle is a consequence of the existence proof: if
there were two or more antipodal triangles in Tpq for � and �′, then one could choose
two consecutive ones and this pair of two consecutive elements of Tpq would have no
antipodal triangle.

Remarks. (a) Note that |Tpq | must be odd to satisfy the assertion of the lemma, unless
Tpq is empty. It is easy to show that Tpq is not empty for any edge pq. If Tpq has a single
element the assertion of the lemma holds automatically. In all other cases the lemma
implies that any halfspace with p and q on its boundary contains at least one element
of Tpq .

(b) We say that a collection T of triangles that is spanned by S is antipodal if it satisfies
the property in Lemma 3.4. Inspecting the foregoing proof, it is easily verified that it
also applies to any antipodal collection T . Hence any such collection can have at most
O(n5/2) triangles. As a matter of fact, this also holds for weakly antipodal collections
T , meaning that, for each edge pq, the antipodality property holds for all but a constant
number of consecutive pairs of triangles in Tpq .
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We fix a coordinate frame and assume that no horizontal plane (i.e., one parallel to
the xy plane) contains more than one point of S. We further assume that the plane of no
triangle in T is parallel to the y-axis. This can be achieved by a suitable rotation.

Fix a point p ∈ S, and let Tp denote the set of triangles in T that are incident to
p. Let hp be the horizontal plane passing through p. Let πp be any horizontal plane
above p. Clip each triangle in Tp to the halfspace above hp, and project each (nonempty)
clipped triangle centrally from p onto πp. The resulting set of projected triangles has the
following structure. Each point u ∈ S that lies above hp is mapped to a point u∗ ∈ πp.
Each triangle puv in Tp for which both u and v lie above hp is mapped to the segment
u∗v∗, and each triangle puv in Tp for which u lies above hp but v lies below hp is
mapped to a ray emanating from u∗. Triangles puv in Tp for which both of u and v lie
below hp are excluded from the analysis. Let G p denote this geometric graph drawn on
πp (strictly speaking, G p is not a geometric graph in the sense of [12], because of the
infinite rays that it contains), and let S∗

p be its set of vertices, the projected images of
points of S above hp. We refer to both the bounded edges and the rays as edges of G p.

Notice that a crossing pair of edges in G p corresponds to a crossing pair of triangles
in Tp. We do not necessarily get all crossing pairs of triangles in Tp this way, nevertheless
Lemma 3.3 bounds the total number of edge crossings in the graphs G p.

Let ep and rp be the number of (bounded or unbounded) edges and the number of
rays in G p, respectively. In the following lemma we find the average of these numbers.

Lemma 3.5.

(a)
∑

p∈S ep = 2t ;
(b)

∑
p∈S rp = t .

Proof. Consider any triangle � in T and let the vertices of � in ascending order of
their z-coordinates be p, q , and r . The triangle � contributes a bounded edge to G p

since q and r are both above hp. � contributes a ray to Gq since r is above hq but p is
below it. Finally, � does not contribute to Gr since both p and q are below hr . Each
triangle in T contributes two to the sum in (a) and one to the sum in (b), thus proving the
lemma.

We next observe that G p has the following antipodality property, which is immediate
from the antipodality property of Lemma 3.4.

Lemma 3.6. Let u∗ ∈ S∗
p and sort the edges of G p incident to u∗ in the angular order

around u∗. For any two consecutive elements e1 and e2 of this cyclic order there is a
unique “antipodal” edge e3 in G p incident to u∗, namely, one that extends from u∗ into
the wedge that is antipodal to the wedge formed between e1 and e2.

Proof. The edges e in G p incident to u∗ are in 1–1 correspondence with the triangles in
T that are incident to both p and u. (Here u∗ is the projected image of the point u ∈ S.)
Our lemma follows from Lemma 3.4 since the cyclic ordering of these edges coincides
with the cyclic ordering of the triangles around the line pu and antipodality for edges
corresponds to antipodality of triangles.
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We use the antipodality established above to decompose the edges of each G p into a
collection of x-monotone convex chains, in a manner similar to that in [6]. We include
a description of this construction so as to make our paper self-contained and to handle
properly the presence of infinite rays in our graphs.

Notice that our assumption on the coordinate system implies that no edge of G p is
parallel to the y-axis, and thus we can distinguish between left and right endpoints of
edges. For defining the chains we describe how to continue a chain to the right past an
edge e of G p. We extend e to the right past its right endpoint q∗ and turn the extended
segment about q∗ counterclockwise (looking from above) until we encounter the first
edge e′ in G p incident to q∗ and extending from it to the right. The chain containing e
continues through e′. If e is a ray having no right endpoint or if there is no such e′ as
required, then e is the rightmost edge in its chain. A chain is extended to the left in a fully
symmetric manner, replacing “right” by “left” and “counterclockwise” by “clockwise.”
The proof of Lemma 3.7 below implies that these right-extension and left-extension rules
are consistent with each other. See Fig. 2 for an illustration of the decomposition of G p

into chains.

Lemma 3.7.

(a) Each edge of G p appears in a unique chain.
(b) A single chain terminates at any given vertex of S∗

p (either on its right side or on
its left side).

(c) The number of chains cp is at least rp/2.

Fig. 2. An illustration of the graph G p . One convex chain is drawn as dashed and one as dotted. The remaining
chains are: (−∞, a, c, +∞), (c, g, +∞), (d, e), (a, b, g), (−∞, b). Here −∞/ + ∞ means that the chain
starts/stops on a ray. The (−∞, a, c, +∞) chain contains the lower ray ending at a.
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Proof. For (a) it suffices to show that no two different edges of G p with a common
right endpoint can have the same right neighbor in their respective chains. Consider a
vertex q∗ ∈ S∗

p and let the edges in G p extending from q∗ to the left in counterclockwise
angular order be e1, . . . , ek . Using Lemma 3.6 we find a unique edge fi incident to q∗

in the wedge antipodal to ei ei+1 for each of the values i = 1, . . . , k − 1. Note that since
the wedges are pairwise openly disjoint, the edges fi are distinct, and extend from q∗

to the right. Our construction guarantees that the chain containing ei continues through
fi for i = 1, . . . , k − 1 and the chain through ek does not continue through any of the
edges fi .

For (b), notice that if there are no edges incident to q∗ other than the edges ei and fi ,
then the chain containing ek terminates at q∗ (and this is the only chain terminating there).
If, however, there are more edges of G p incident to q∗, then (again by Lemma 3.6) there
are exactly two more edges, both extending from q∗ to the right, and the chain containing
ek extends through one of them, while the other edge represents a chain that terminates
(on its left) at q∗.

We remark here that the above arguments also prove that the dual definition (of
continuing chains to the left) results in the same set of convex chains.

For (c) notice that each chain contains at most two rays.

The following lemma implies that for typical values of ep and rp (which are both
�(t/n)) and for t ≥ 100n2, a positive fraction of all pairs of edges in G p are crossing.
This is a substantial improvement over the �(|Tp|3/n2) bound on the crossing number
of the graph obtained by projecting Tp centrally from p to a sphere around p (see, e.g.,
Theorem 14.12 of [13]). (Notice that G p is the central projection from p onto πp of
the portion of this spherical graph that lies in the upper hemisphere.) Using this weaker
bound instead (and comparing it with the upper bound of Lemma 3.3), would yield a
simple proof of the known result [7] that a set of n points in 3-space has O(n8/3) k-sets,
for any fixed k.

Lemma 3.8. The number of edge-crossings in G p is at least r2
p/8 − 3epn.

Proof. We call a pair of chains C1, C2 crossing if there exist edges e1 ∈ C1, e2 ∈ C2

that cross each other (in their relative interiors). That is, pairs of chains “crossing” at a
vertex do not count. In view of Lemma 3.7(a), it suffices to obtain a lower bound for the
number of pairs of chains that cross each other. Instead, we derive an upper bound for
the number of noncrossing pairs of chains. Let C1, C2 be a noncrossing pair of chains.
Then either (a) C1 and C2 are disjoint, or (b) C1 and C2 meet at a vertex. We assume
that both C1 and C2 start and end on rays of G p. The total number of pairs of chains that
violate this assumption is at most cpn, as follows from Lemma 3.7(b).

Suppose that C1 and C2 are disjoint, in which case one of the chains, say C1, lies fully
above C2 (in the y-direction). Take any edge e2 of C2, and let �1 be the line tangent to
C1 and parallel to e2. (The line �1 exists because C1 lies above C2 and C2 lies above the
line containing e2.) Let p1 be a vertex of C1 incident to �1; see Fig. 3. The pair (p1, e2)

determines the pair (C1, C2). Indeed, the edge e2 identifies the chain C2 uniquely, by
Lemma 3.7(a). The pair (e2, p1) determine the tangent line �1, and the construction of
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Fig. 3. A pair of noncrossing chains.

the chains is easily seen to imply that p1 and �1 uniquely identify C1. Hence, the number
of disjoint pairs of chains is at most epn.

Suppose next that C1 and C2 meet at a vertex. Let e1 ∈ C1 and e2 ∈ C2 be edges of
the chains with a common right endpoint. Clearly, e1 and e2 determine C1 and C2. Here
e1 is one of the ep edges of G p and e2 is one of the at most n edges in G p incident to the
right endpoint of e1. (Here we use the fact that the maximum degree of G p is bounded
by n, since at most n triangles in T are incident to a fixed pair of points of S.) Hence,
the number of pairs of chains having a common vertex is at most epn.

We thus have at least
(cp

2

) − cpn − 2epn crossing pairs of edges in G p which is, by
Lemma 3.7(c), at least the claimed number r2

p/8 − 3epn.

We finish the proof by comparing the upper bound in Lemma 3.3 and the lower bound
in Lemma 3.8 for the number X of crossing pairs of triangles in T with a common vertex.
We have

3n4/8 ≥ X ≥
∑

p∈S

(r2
p/8 − 3epn) ≥ t2/(8n) − 6tn,

where the last inequality follows from Lemma 3.5. We thus have t2 ≤ 3n5 + 48tn2,
which implies that t = O(n5/2).

This, and the observations in paragraphs (a) and (c) of Section 2, complete the proof
of Theorem 1.1.

4. Open Problems

(a) Our analysis is based on the upper bound O(n4) on the number of crossings derived in
Lemma 3.3. However, this bound seems to be weak, because, for an edge ab connecting
two points a, b of S, we want to count the number of halving triangles pcd that it crosses,
with the additional constraint that pab is also a halving triangle. In our derivation we do
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not exploit this constraint at all, so the first open problem is whether this bound can be
improved, taking into account this constraint.

(b) We conjecture that the following holds: given a set S of n points in 3-space in
general position and an arbitrary set T of t triangles spanned by S, there exists a line
that crosses �(t2/n3) triangles of T . This bound is significantly larger than the bound
�(t3/n6) of [7] and it would yield a trivial proof of Theorem 1.1 (using Lovász’ lemma).
We are not aware of any construction that contradicts this conjectured bound. This bound
is best possible, for t = �(n2), which can be shown by a simple construction.

(c) An even stronger conjecture is the following: given a set S of n points in the plane
in general position and an arbitrary set T of t triangles spanned by S, there exists a
point that lies in �(t2/n3) triangles of T . The best known lower bound, due to [3], is
�(t3/(n6 log5 n)). Again, the conjectured bound is best possible for t = �(n2). (Note
that if (c) is true, then the following strengthening of (b) also holds: given S and T as
in (b), then for any direction u there exists a line parallel to u that crosses �(t2/n3)

triangles of T .)
(d) Finally, can the technique used in this paper be extended to higher dimensions?

A main difficulty in such an extension is that, already in four dimensions, the fact that
two halving simplices (even with some common vertices) cross each other does not
necessarily imply that an edge of one of them crosses the relative interior of the other.
This precludes an immediate extension of Lemma 3.3 to four dimensions.
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