An Improved Bound for \boldsymbol{k}-Sets in Three Dimensions*

M. Sharir, ${ }^{1,2}$ S. Smorodinsky, ${ }^{1}$ and G. Tardos ${ }^{3}$
${ }^{1}$ School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
\{sharir, shakhar\}@math.tau.ac.il
${ }^{2}$ Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
${ }^{3}$ Rényi Institute of the Hungarian Academy of Sciences, POB 127, H-1364 Budapest, Hungary
tardos@renyi.hu

Abstract

We prove that the maximum number of k-sets in a set S of n points in \mathbb{R}^{3} is $O\left(n k^{3 / 2}\right)$. This improves substantially the previous best known upper bound of $O\left(n k^{5 / 3}\right)$ (see [7] and [1]).

1. Introduction

Let S be a set of n points in \mathbb{R}^{d}. A k-set of S is a subset $S^{\prime} \subset S$ such that $S^{\prime}=S \cap H$ for some halfspace H and $\left|S^{\prime}\right|=k$. The problem of determining tight asymptotic bounds on the maximum number of k-sets is one of the most intriguing open problems in combinatorial geometry. Due to its importance in analyzing geometric algorithms [5], [9], the problem has caught the attention of computational geometers as well [3], [7], [8], [14], [16]. A close to optimal solution for the problem remains elusive even in the plane. The best asymptotic upper and lower bounds in the plane are $O\left(n k^{1 / 3}\right)$ (see [6]) and $n \cdot 2^{\Omega(\sqrt{\log k})}$ (see [15]), respectively. In this paper we obtain the following result:

Theorem 1.1. The number of k-sets in a set of n points in \mathbb{R}^{3} is $O\left(n k^{3 / 2}\right)$.

[^0]This result improves the previous best known asymptotic upper bound of $O\left(n k^{5 / 3}\right.$) (see [7] and [1]). The best known asymptotic lower bound for the number of k-sets in three dimensions is $n k \cdot 2^{\Omega(\sqrt{\log k})}$ (see [15]).

2. An Overview of our Technique

(a) The paper by Agarwal et al. [1] presents a general technique, based on random sampling, for transforming an upper bound on the number of k-sets that is independent of k to a bound that does depend on k. Our main thrust thus is to establish the upper bound $O\left(n^{5 / 2}\right)$ for the number of k-sets. This, combined with the technique of [1], will imply Theorem 1.1.
(b) We assume that the set S is in general position, meaning that no four points in S lie in a common plane. Applying a small perturbation to the points of any set S yields a set of points in general position and the number of k-sets does not decrease.
(c) We consider the set T of halving triangles spanned by S : A triangle $\Delta=a b c$, with vertices $a, b, c \in S$, is a halving triangle if the plane containing Δ has the same number of points of S on either side. (Note that n has to be odd for halving triangles to exist, and we indeed assume, without loss of generality, that n is odd.) We show that $|T|=O\left(n^{5 / 2}\right)$. This implies that the number of k-triangles, for any k, is also bounded by $O\left(n^{5 / 2}\right)$, where a k-triangle is a triangle Δ spanned by three points in S with exactly k points of S on one side of the plane containing Δ. Indeed, choose a direction d not contained in the plane of any k-triangle and add $|n-3-2 k|$ extra points to S far enough in the direction d or $-d$. Each k-triangle in S turns into a halving triangle in one of the two resulting configurations. It is well known [2] that the $O\left(n^{5 / 2}\right)$ bound on the number of k-triangles for any k carries over to the same bound on the number of k-sets.
(d) All the previous approaches are based on (the three-dimensional extension of) Lovász' lemma [4]: Any line crosses (the relative interiors of) at most $O\left(n^{2}\right)$ halving triangles. The preceding techniques aimed to derive a general lower bound for the number of such crossings. Specifically, they showed that for any collection of t triangles spanned by the points of S there exists a line that crosses many triangles, where the best lower bound for this number of crossings is $\Omega\left(t^{3} / n^{6}\right)$ [7]. Combining this lower bound with the upper bound provided by Lovász' lemma, one obtains an upper bound of $O\left(n^{8 / 3}\right)$ for the number of k-sets.
(e) In contrast, our technique focuses on the specific set T of halving triangles, and exploits the structure of this set. The main property of this set, which is also used in deriving Lovász' lemma, is the antipodality property, which we re-establish rigorously in Lemma 3.4 below. Informally, it asserts that the halving triangles with a common edge $p q$ alternate sides, as we rotate a plane containing $p q$. See Fig. 1 for an illustration of this property. This is the only property of the set T that is needed in the proof.
(f) Our technique only considers interaction between pairs of triangles of T with a common vertex. Specifically, we consider crossings between such pairs of triangles, where two triangles $p a b$ and $p c d$ cross each other if their relative interiors have a nonempty intersection (in this case p is the only common vertex of these triangles).

Fig. 1. The antipodality property of halving triangles: the common edge $p q$ is shown head-on, as a point; as we rotate a plane containing $p q$ we encounter the other endpoints of these triangles in the order shown.
(g) Our proof proceeds by deriving both an upper bound and a lower bound on the number of triangle crossings (of the above special type) in T. The upper bound is $O\left(n^{4}\right)$ and it is an easy consequence of Lovász' lemma in 3-space. The lower bound is $\Omega\left(t^{2} / n\right)$, and is proven using arguments that extend those that were used in [6] for the analysis of k-sets in the plane. These upper and lower bounds immediately yield the desired bound on the number of k-sets.

3. Proof of the Theorem

Let n be odd, let S be a set of n points in \mathbb{R}^{3} in general position, and let T be the set of all halving triangles of S. Put $t=|T|$.

Definition 3.1. We say that two triangles $\Delta_{1}, \Delta_{2} \in T$ cross if Δ_{1} and Δ_{2} share exactly one vertex, say p, and the edge opposite to p in one of the triangles crosses the other triangle (this is equivalent to the definition given in Section 2). Let X denote the number of crossing pairs of triangles in T.

The following extension of the two-dimensional Lovász' lemma [10] has been derived in [4] and used in [3] and [4]. We say that a line crosses a triangle if it intersects the triangle but not any of its edges. One can prove this lemma using the Antipodality Lemma below by translating a line from infinity to the given location, and by observing how the number of triangles crossed by the line changes as it moves-this number changes only when the line crosses a segment connecting two points and then it changes by ± 1.

Lemma 3.2 [4], [11]. Any line crosses fewer than $n^{2} / 4$ halving triangles.
As a consequence we obtain:
Lemma 3.3. The number X of crossing pairs of halving triangles for a set S as above is less than $3 n^{4} / 8$.

Proof. Fix an edge $e=p q$ with endpoints in S. This edge crosses fewer than $n^{2} / 4$ triangles. For each triangle $\Delta=a b c$ that it crosses, e can contribute at most three crossings to X, namely, a crossing between $a b c$ and $a p q$, between $a b c$ and $b p q$, and between $a b c$ and $c p q$. Since there are only $\binom{n}{2}$ edges, we have in total fewer than $3 n^{4} / 8$ crossings.

The following well-known lemma, which is the basis for the three-dimensional version of Lovász' lemma (see, e.g., [3] and [4]), is crucial for our analysis. We include a proof for the sake of completeness.

Lemma 3.4 (Antipodality Lemma). Let $p, q \in S$ and let $T_{p q}$ denote the subset of all triangles in T incident to both p and q. Rotate a halfplane h, bounded by the line ℓ passing through p and q, about $\ell ; h$ meets the triangles in $T_{p q}$ in a cyclic order. Let Δ and Δ^{\prime} be two consecutive elements of $T_{p q}$ in this cyclic order, let W be the wedge swept by h as it rotates from Δ to Δ^{\prime}, and let W^{\prime} denote the antipodal wedge, emanating from ℓ and bounded by the same pair of planes. Then there is a unique "antipodal" triangle $\Delta^{\prime \prime} \in T_{p q}$ contained in W^{\prime}.

Proof. Consider the halfplane h rotating about $p q$. If during the rotation h contains a halving triangle $p q r$ and the next such triangle is $p q r^{\prime}$, then as h leaves r the plane containing h has one more point of S on its side containing r than on the opposite side. Just before reaching r^{\prime} the plane containing h has one more point on its side containing r^{\prime} than on the opposite side containing r. Since the difference between the number of points of S contained in the two sides changes by one each time the plane reaches or leaves a point of S, there must be a position in between when the difference is zero. At that point the plane containing h contains a halving triangle from $T_{p q}$, but since Δ and Δ^{\prime} are consecutive, this halving triangle is not contained in h but in the opposite halfplane and therefore in W^{\prime}.

The uniqueness of this antipodal triangle is a consequence of the existence proof: if there were two or more antipodal triangles in $T_{p q}$ for Δ and Δ^{\prime}, then one could choose two consecutive ones and this pair of two consecutive elements of $T_{p q}$ would have no antipodal triangle.

Remarks. (a) Note that $\left|T_{p q}\right|$ must be odd to satisfy the assertion of the lemma, unless $T_{p q}$ is empty. It is easy to show that $T_{p q}$ is not empty for any edge $p q$. If $T_{p q}$ has a single element the assertion of the lemma holds automatically. In all other cases the lemma implies that any halfspace with p and q on its boundary contains at least one element of $T_{p q}$.
(b) We say that a collection T of triangles that is spanned by S is antipodal if it satisfies the property in Lemma 3.4. Inspecting the foregoing proof, it is easily verified that it also applies to any antipodal collection T. Hence any such collection can have at most $O\left(n^{5 / 2}\right)$ triangles. As a matter of fact, this also holds for weakly antipodal collections T, meaning that, for each edge $p q$, the antipodality property holds for all but a constant number of consecutive pairs of triangles in $T_{p q}$.

We fix a coordinate frame and assume that no horizontal plane (i.e., one parallel to the $x y$ plane) contains more than one point of S. We further assume that the plane of no triangle in T is parallel to the y-axis. This can be achieved by a suitable rotation.

Fix a point $p \in S$, and let T_{p} denote the set of triangles in T that are incident to p. Let h_{p} be the horizontal plane passing through p. Let π_{p} be any horizontal plane above p. Clip each triangle in T_{p} to the halfspace above h_{p}, and project each (nonempty) clipped triangle centrally from p onto π_{p}. The resulting set of projected triangles has the following structure. Each point $u \in S$ that lies above h_{p} is mapped to a point $u^{*} \in \pi_{p}$. Each triangle $p u v$ in T_{p} for which both u and v lie above h_{p} is mapped to the segment $u^{*} v^{*}$, and each triangle puv in T_{p} for which u lies above h_{p} but v lies below h_{p} is mapped to a ray emanating from u^{*}. Triangles $p u v$ in T_{p} for which both of u and v lie below h_{p} are excluded from the analysis. Let G_{p} denote this geometric graph drawn on π_{p} (strictly speaking, G_{p} is not a geometric graph in the sense of [12], because of the infinite rays that it contains), and let S_{p}^{*} be its set of vertices, the projected images of points of S above h_{p}. We refer to both the bounded edges and the rays as edges of G_{p}.

Notice that a crossing pair of edges in G_{p} corresponds to a crossing pair of triangles in T_{p}. We do not necessarily get all crossing pairs of triangles in T_{p} this way, nevertheless Lemma 3.3 bounds the total number of edge crossings in the graphs G_{p}.

Let e_{p} and r_{p} be the number of (bounded or unbounded) edges and the number of rays in G_{p}, respectively. In the following lemma we find the average of these numbers.

Lemma 3.5.

(a) $\sum_{p \in S} e_{p}=2 t$;
(b) $\sum_{p \in S} r_{p}=t$.

Proof. Consider any triangle Δ in T and let the vertices of Δ in ascending order of their z-coordinates be p, q, and r. The triangle Δ contributes a bounded edge to G_{p} since q and r are both above $h_{p} . \Delta$ contributes a ray to G_{q} since r is above h_{q} but p is below it. Finally, Δ does not contribute to G_{r} since both p and q are below h_{r}. Each triangle in T contributes two to the sum in (a) and one to the sum in (b), thus proving the lemma.

We next observe that G_{p} has the following antipodality property, which is immediate from the antipodality property of Lemma 3.4.

Lemma 3.6. Let $u^{*} \in S_{p}^{*}$ and sort the edges of G_{p} incident to u^{*} in the angular order around u^{*}. For any two consecutive elements e_{1} and e_{2} of this cyclic order there is a unique "antipodal" edge e e_{3} in G_{p} incident to u^{*}, namely, one that extends from u^{*} into the wedge that is antipodal to the wedge formed between e_{1} and e_{2}.

Proof. The edges e in G_{p} incident to u^{*} are in 1-1 correspondence with the triangles in T that are incident to both p and u. (Here u^{*} is the projected image of the point $u \in S$.) Our lemma follows from Lemma 3.4 since the cyclic ordering of these edges coincides with the cyclic ordering of the triangles around the line $p u$ and antipodality for edges corresponds to antipodality of triangles.

We use the antipodality established above to decompose the edges of each G_{p} into a collection of x-monotone convex chains, in a manner similar to that in [6]. We include a description of this construction so as to make our paper self-contained and to handle properly the presence of infinite rays in our graphs.

Notice that our assumption on the coordinate system implies that no edge of G_{p} is parallel to the y-axis, and thus we can distinguish between left and right endpoints of edges. For defining the chains we describe how to continue a chain to the right past an edge e of G_{p}. We extend e to the right past its right endpoint q^{*} and turn the extended segment about q^{*} counterclockwise (looking from above) until we encounter the first edge e^{\prime} in G_{p} incident to q^{*} and extending from it to the right. The chain containing e continues through e^{\prime}. If e is a ray having no right endpoint or if there is no such e^{\prime} as required, then e is the rightmost edge in its chain. A chain is extended to the left in a fully symmetric manner, replacing "right" by "left" and "counterclockwise" by "clockwise." The proof of Lemma 3.7 below implies that these right-extension and left-extension rules are consistent with each other. See Fig. 2 for an illustration of the decomposition of G_{p} into chains.

Lemma 3.7.

(a) Each edge of G_{p} appears in a unique chain.
(b) A single chain terminates at any given vertex of S_{p}^{*} (either on its right side or on its left side).
(c) The number of chains c_{p} is at least $r_{p} / 2$.

Fig. 2. An illustration of the graph G_{p}. One convex chain is drawn as dashed and one as dotted. The remaining chains are: $(-\infty, a, c,+\infty),(c, g,+\infty),(d, e),(a, b, g),(-\infty, b)$. Here $-\infty /+\infty$ means that the chain starts/stops on a ray. The $(-\infty, a, c,+\infty)$ chain contains the lower ray ending at a.

Proof. For (a) it suffices to show that no two different edges of G_{p} with a common right endpoint can have the same right neighbor in their respective chains. Consider a vertex $q^{*} \in S_{p}^{*}$ and let the edges in G_{p} extending from q^{*} to the left in counterclockwise angular order be e_{1}, \ldots, e_{k}. Using Lemma 3.6 we find a unique edge f_{i} incident to q^{*} in the wedge antipodal to $e_{i} e_{i+1}$ for each of the values $i=1, \ldots, k-1$. Note that since the wedges are pairwise openly disjoint, the edges f_{i} are distinct, and extend from q^{*} to the right. Our construction guarantees that the chain containing e_{i} continues through f_{i} for $i=1, \ldots, k-1$ and the chain through e_{k} does not continue through any of the edges f_{i}.

For (b), notice that if there are no edges incident to q^{*} other than the edges e_{i} and f_{i}, then the chain containing e_{k} terminates at q^{*} (and this is the only chain terminating there). If, however, there are more edges of G_{p} incident to q^{*}, then (again by Lemma 3.6) there are exactly two more edges, both extending from q^{*} to the right, and the chain containing e_{k} extends through one of them, while the other edge represents a chain that terminates (on its left) at q^{*}.

We remark here that the above arguments also prove that the dual definition (of continuing chains to the left) results in the same set of convex chains.

For (c) notice that each chain contains at most two rays.

The following lemma implies that for typical values of e_{p} and r_{p} (which are both $\Theta(t / n)$) and for $t \geq 100 n^{2}$, a positive fraction of all pairs of edges in G_{p} are crossing. This is a substantial improvement over the $\Omega\left(\left|T_{p}\right|^{3} / n^{2}\right)$ bound on the crossing number of the graph obtained by projecting T_{p} centrally from p to a sphere around p (see, e.g., Theorem 14.12 of [13]). (Notice that G_{p} is the central projection from p onto π_{p} of the portion of this spherical graph that lies in the upper hemisphere.) Using this weaker bound instead (and comparing it with the upper bound of Lemma 3.3), would yield a simple proof of the known result [7] that a set of n points in 3-space has $O\left(n^{8 / 3}\right) k$-sets, for any fixed k.

Lemma 3.8. The number of edge-crossings in G_{p} is at least $r_{p}^{2} / 8-3 e_{p} n$.

Proof. We call a pair of chains C_{1}, C_{2} crossing if there exist edges $e_{1} \in C_{1}, e_{2} \in C_{2}$ that cross each other (in their relative interiors). That is, pairs of chains "crossing" at a vertex do not count. In view of Lemma 3.7(a), it suffices to obtain a lower bound for the number of pairs of chains that cross each other. Instead, we derive an upper bound for the number of noncrossing pairs of chains. Let C_{1}, C_{2} be a noncrossing pair of chains. Then either (a) C_{1} and C_{2} are disjoint, or (b) C_{1} and C_{2} meet at a vertex. We assume that both C_{1} and C_{2} start and end on rays of G_{p}. The total number of pairs of chains that violate this assumption is at most $c_{p} n$, as follows from Lemma 3.7(b).

Suppose that C_{1} and C_{2} are disjoint, in which case one of the chains, say C_{1}, lies fully above C_{2} (in the y-direction). Take any edge e_{2} of C_{2}, and let ℓ_{1} be the line tangent to C_{1} and parallel to e_{2}. (The line ℓ_{1} exists because C_{1} lies above C_{2} and C_{2} lies above the line containing e_{2}.) Let p_{1} be a vertex of C_{1} incident to ℓ_{1}; see Fig. 3. The pair (p_{1}, e_{2}) determines the pair (C_{1}, C_{2}). Indeed, the edge e_{2} identifies the chain C_{2} uniquely, by Lemma 3.7(a). The pair (e_{2}, p_{1}) determine the tangent line ℓ_{1}, and the construction of

Fig. 3. A pair of noncrossing chains.
the chains is easily seen to imply that p_{1} and ℓ_{1} uniquely identify C_{1}. Hence, the number of disjoint pairs of chains is at most $e_{p} n$.

Suppose next that C_{1} and C_{2} meet at a vertex. Let $e_{1} \in C_{1}$ and $e_{2} \in C_{2}$ be edges of the chains with a common right endpoint. Clearly, e_{1} and e_{2} determine C_{1} and C_{2}. Here e_{1} is one of the e_{p} edges of G_{p} and e_{2} is one of the at most n edges in G_{p} incident to the right endpoint of e_{1}. (Here we use the fact that the maximum degree of G_{p} is bounded by n, since at most n triangles in T are incident to a fixed pair of points of S.) Hence, the number of pairs of chains having a common vertex is at most $e_{p} n$.

We thus have at least $\binom{c_{p}}{2}-c_{p} n-2 e_{p} n$ crossing pairs of edges in G_{p} which is, by Lemma 3.7(c), at least the claimed number $r_{p}^{2} / 8-3 e_{p} n$.

We finish the proof by comparing the upper bound in Lemma 3.3 and the lower bound in Lemma 3.8 for the number X of crossing pairs of triangles in T with a common vertex. We have

$$
3 n^{4} / 8 \geq X \geq \sum_{p \in S}\left(r_{p}^{2} / 8-3 e_{p} n\right) \geq t^{2} /(8 n)-6 t n
$$

where the last inequality follows from Lemma 3.5. We thus have $t^{2} \leq 3 n^{5}+48 t n^{2}$, which implies that $t=O\left(n^{5 / 2}\right)$.

This, and the observations in paragraphs (a) and (c) of Section 2, complete the proof of Theorem 1.1.

4. Open Problems

(a) Our analysis is based on the upper bound $O\left(n^{4}\right)$ on the number of crossings derived in Lemma 3.3. However, this bound seems to be weak, because, for an edge $a b$ connecting two points a, b of S, we want to count the number of halving triangles $p c d$ that it crosses, with the additional constraint that $p a b$ is also a halving triangle. In our derivation we do
not exploit this constraint at all, so the first open problem is whether this bound can be improved, taking into account this constraint.
(b) We conjecture that the following holds: given a set S of n points in 3-space in general position and an arbitrary set T of t triangles spanned by S, there exists a line that crosses $\Omega\left(t^{2} / n^{3}\right)$ triangles of T. This bound is significantly larger than the bound $\Omega\left(t^{3} / n^{6}\right)$ of [7] and it would yield a trivial proof of Theorem 1.1 (using Lovász' lemma). We are not aware of any construction that contradicts this conjectured bound. This bound is best possible, for $t=\Omega\left(n^{2}\right)$, which can be shown by a simple construction.
(c) An even stronger conjecture is the following: given a set S of n points in the plane in general position and an arbitrary set T of t triangles spanned by S, there exists a point that lies in $\Omega\left(t^{2} / n^{3}\right)$ triangles of T. The best known lower bound, due to [3], is $\Omega\left(t^{3} /\left(n^{6} \log ^{5} n\right)\right)$. Again, the conjectured bound is best possible for $t=\Omega\left(n^{2}\right)$. (Note that if (c) is true, then the following strengthening of (b) also holds: given S and T as in (b), then for any direction u there exists a line parallel to u that crosses $\Omega\left(t^{2} / n^{3}\right)$ triangles of T.)
(d) Finally, can the technique used in this paper be extended to higher dimensions? A main difficulty in such an extension is that, already in four dimensions, the fact that two halving simplices (even with some common vertices) cross each other does not necessarily imply that an edge of one of them crosses the relative interior of the other. This precludes an immediate extension of Lemma 3.3 to four dimensions.

Acknowledgments

The authors thank Boris Aronov and János Pach for several helpful discussions concerning this problem. In particular, János Pach has been very helpful in the simplification of the proof from an earlier more involved version. Thanks are also extended to Sariel Har-Peled for helpful comments on the manuscript.

References

1. P. K. Agarwal, B. Aronov, T. M. Chan, and M. Sharir, On levels in arrangements of lines, segments, planes, and triangles, Discrete Comput. Geom., 19 (1998), 315-331.
2. A. Andrzejak, B. Aronov, S. Har-Peled, R. Seidel, and E. Welzl, Results on k-sets and j-facets via continuous motion arguments, Proceedings of the 14th Annual ACM Symposium on Computational Geometry, 1998, pp. 192-199.
3. B. Aronov, B. Chazelle, H. Edelsbrunner, L. J. Guibas, M. Sharir, and R. Wenger, Points and triangles in the plane and halving planes in space, Discrete Comput. Geom., 6 (1991), 435-442.
4. I. Bárány, Z. Füredi, and L. Lovász, On the number of halving planes, Combinatorica, 10 (1990), 175-183.
5. R. Cole, M. Sharir, and C. K. Yap, On k-hulls and related problems, SIAM J. Comput., 16 (1987), 61-77.
6. T. K. Dey, Improved bounds on planar k-sets and related problems, Discrete Comput. Geom., 19 (1998), 373-382.
7. T. K. Dey and H. Edelsbrunner, Counting triangle crossings and halving planes, Discrete Comput. Geom., 12 (1994), 281-289.
8. H. Edelsbrunner, P. Valtr, and E. Welzl, Cutting dense point sets in half, Discrete Comput. Geom., 17 (1997), 243-255.
9. H. Edelsbrunner and E. Welzl, On the number of line separations of a finite set in the plane, J. Combin. Theory Ser. A, 40 (1985), 15-29.
10. P. Erdős, L. Lovász, A. Simmons, and E. Straus, Dissection graphs of planar point sets, in A Survey of Combinatorial Theory, J. N. Srivastava, ed., North-Holland, Amsterdam, 1973, pp. 139-154.
11. L. Lovász, On the number of halving lines, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 14 (1971), 107-108.
12. J. Pach, Notes on geometric graph theory, in Discrete and Computational Geometry: Papers from the DIMACS Special Year, Dimacs Series in Discrete Mathematics and Theoretical Computer Science, Vol. 6, American Mathematical Society, Providence, RI, 1991, pp. 273-285.
13. J. Pach and P.K. Agarwal, Combinatorial Geometry, Wiley-Interscience, New York, 1995.
14. M. Sharir, On k-sets in arrangements of curves and surfaces, Discrete Comput. Geom., 6 (1991), 593-613.
15. G. Tóth, On sets with many k-sets, Proceedings of the 16 th Annual ACM Symposium on Computational Geometry, 2000, pp. 37-42.
16. E. Welzl, More on k-sets of finite sets in the plane, Discrete Comput. Geom., 1 (1986), 95-100.

Received November 30, 1999, and in revised form July 24, 2000. Online publication February 26, 2001.

[^0]: * Work by Micha Sharir has been supported by NSF Grant CCR-97-32101, by a grant from the U.S.-Israeli Binational Science Foundation, by a grant from the Israeli Academy of Sciences for a Center of Excellence in Geometric Computing at Tel Aviv University, by the ESPRIT IV LTR Project No. 21957 (CGAL), and by the Hermann Minkowski-MINERVA Center for Geometry at Tel Aviv University. The research by Shakhar Smorodinsky was done while he was a Ph.D. student under the supervision of Micha Sharir.

