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Abstract. We prove that the maximum number of k-setsin aset S of n pointsin R is
O(nk¥?). This improves substantially the previous best known upper bound of O(nk%3)
(see[7] and [1]).

1. Introduction

Let Sheaset of n pointsin RY. A k-set of Sisasubset S ¢ Ssuchthat S = SN H
for some halfspace H and |S| = k. The problem of determining tight asymptotic
bounds on the maximum number of k-setsis one of the most intriguing open problems
in combinatorial geometry. Due to its importance in analyzing geometric algorithms
[5], [9], the problem has caught the attention of computational geometers as well [3],
[7], [8], [14], [16]. A close to optimal solution for the problem remains elusive even
in the plane. The best asymptotic upper and lower bounds in the plane are O(nk/3)
(see[6]) and n - 22/199K) (see[15]), respectively. In this paper we obtain the following
result:

Theorem 1.1. The number of k-setsin a set of n pointsin R3 is O(nk¥?).

* Work by Micha Sharir has been supported by NSF Grant CCR-97-32101, by agrant from the U.S.—Israeli
Binational Science Foundation, by a grant from the Israeli Academy of Sciences for a Center of Excellence
in Geometric Computing at Tel Aviv University, by the ESPRIT IV LTR Project No. 21957 (CGAL), and by
the Hermann Minkowski-MINERVA Center for Geometry at Tel Aviv University. The research by Shakhar
Smorodinsky was done while he was a Ph.D. student under the supervision of Micha Sharir.
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This result improves the previous best known asymptotic upper bound of O(nk®?) (see
[7] and [1]). The best known asymptotic lower bound for the number of k-setsin three

dimensionsisnk - 22(v'990 (see[15]).

2. An Overview of our Technique

(8) The paper by Agarwal et al. [1] presents a general technique, based on random
sampling, for transforming an upper bound on the number of k-sets that is independent
of k to a bound that does depend on k. Our main thrust thus is to establish the upper
bound O(n%?) for the number of k-sets. This, combined with the technique of [1], will
imply Theorem 1.1.

(b) We assume that the set Sisin general position, meaning that no four pointsin S
liein acommon plane. Applying asmall perturbation to the points of any set Syieldsa
set of pointsin general position and the number of k-sets does not decrease.

(c) We consider the set T of halving triangles spanned by S: A triangle A = abc,
with verticesa, b, ¢ € S, isahalving triangle if the plane containing A has the same
number of points of S on either side. (Note that n has to be odd for halving triangles
to exist, and we indeed assume, without loss of generality, that n is odd.) We show that
|T| = O(n*?). Thisimplies that the number of k-triangles, for any k, is also bounded
by O(n%?), where ak-triangleisatriangle A spanned by three pointsin Swith exactly
k points of S on one side of the plane containing A. Indeed, choose a direction d
not contained in the plane of any k-triangle and add |n — 3 — 2k| extra pointsto S far
enough in the direction d or —d. Each k-triangle in S turns into a halving triangle in
one of the two resulting configurations. It is well known [2] that the O(n®?2) bound on
the number of k-triangles for any k carries over to the same bound on the number of
k-sets.

(d) All the previous approaches are based on (the three-dimensional extension of)
Lovasz' lemma [4]: Any line crosses (the relative interiors of) at most O(n?) halving
triangles. The preceding techniquesaimed to deriveageneral lower bound for the number
of such crossings. Specifically, they showed that for any collection of t triangles spanned
by the points of S there exists aline that crosses many triangles, where the best lower
bound for this number of crossings is 2(t3/n®) [7]. Combining this lower bound with
the upper bound provided by Lovasz' lemma, one obtains an upper bound of O(n&?3)
for the number of k-sets.

(e) In contrast, our technique focuses on the specific set T of halving triangles, and
exploits the structure of this set. The main property of this set, which is also used in
deriving Lovasz' lemma, is the antipodality property, which we re-establish rigorously
inLemma3.4 below. Informally, it assertsthat the halving triangles with acommon edge
pq aternate sides, as we rotate a plane containing pg. See Fig. 1 for an illustration of
this property. Thisisthe only property of the set T that is needed in the proof.

(f) Our technique only considers interaction between pairs of triangles of T with
a common vertex. Specifically, we consider crossings between such pairs of tri-
angles, where two triangles pab and pcd cross each other if their relative inte-
riors have a nonempty intersection (in this case p is the only common vertex of these
triangles).
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Fig. 1. Theantipodality property of halving triangles: the common edge pq is shown head-on, asapoint; as
we rotate a plane containing pg we encounter the other endpoints of these triangles in the order shown.

(9) Our proof proceeds by deriving both an upper bound and a lower bound on the
number of triangle crossings (of the above special type) in T. The upper bound is O(n*)
anditisan easy consequence of Lovasz' lemmain 3-space. Thelower boundisQ(t2/n),
and is proven using arguments that extend those that were used in [6] for the analysis of
k-setsin the plane. These upper and lower bounds immediately yield the desired bound
on the number of k-sets.

3. Proof of the Theorem

Let n be odd, let Sbe aset of n pointsin R3 in general position, and let T be the set of
al halving trianglesof S. Putt = |T|.

Definition 3.1. Wesay that twotriangles A1, A, € T crossif A; and A, shareexactly
one vertex, say p, and the edge opposite to p in one of the triangles crosses the other
triangle (thisis equivalent to the definition given in Section 2). Let X denote the number
of crossing pairs of trianglesin T.

Thefollowing extension of thetwo-dimensional Lovasz' lemma[10] hasbeen derived
in [4] and used in [3] and [4]. We say that aline crosses atriangle if it intersects the
trianglebut not any of itsedges. One can provethislemmausing the Antipodality Lemma
below by trandating aline from infinity to the given location, and by observing how the
number of triangles crossed by the line changes as it moves—this number changes only
when the line crosses a segment connecting two points and then it changes by +1.

Lemma3.2[4],[11]. Any line crosses fewer than n?/4 halving triangles.
As a consequence we obtain:

Lemma3.3. Thenumber X of crossing pairs of halving triangles for a set S as above
islessthan 3n*/8.
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Proof. Fix an edge e = pq with endpointsin S. This edge crosses fewer than n?/4
triangles. For each triangle A = abc that it crosses, e can contribute at most three
crossings to X, namely, a crossing between abc and apq, between abc and bpq, and
between abc and cpq. Since there are only (2) edges, we have in total fewer than 3n*/8
crossings. O

Thefollowing well-knownlemma, whichisthebasisfor thethree-dimensional version
of Lovasz' lemma (seeg, e.g., [3] and [4]), iscrucial for our analysis. We include a proof
for the sake of completeness.

Lemma 3.4 (Antipodality Lemma). Let p,q € Sand let T,q denote the subset of all
triangles in T incident to both p and q. Rotate a halfplane h, bounded by the line ¢
passing through p and g, about £; h meets the triangles in Tyq in a cyclic order. Let A
and A’ be two consecutive elements of Ty inthiscyclic order, let W be the wedge swept
by h asit rotatesfrom A to A’, and let W’ denote the antipodal wedge, emanating from
¢ and bounded by the same pair of planes. Then thereisa unique “ antipodal” triangle
A" e Tpq contained in W'.

Proof. Consider the halfplane h rotating about pg. If during the rotation h contains
a halving triangle pgr and the next such triangle is pqr’, then as h leavesr the plane
containing h has one more point of Son itsside containing r than on the opposite side.
Just before reaching r’ the plane containing h has one more point on its side containing
r’ than on the opposite side containing r. Since the difference between the number of
points of S contained in the two sides changes by one each time the plane reaches or
leaves a point of S, there must be a position in between when the difference is zero. At
that point the plane containing h containsahalving triangle from Tyq, but since A and A’
are consecutive, this halving triangle is not contained in h but in the opposite halfplane
and thereforein W',

The uniqueness of this antipodal triangle is a consequence of the existence proof: if
there were two or more antipodal trianglesin Tyq for A and A’, then one could choose
two consecutive ones and this pair of two consecutive elements of Tpq would have no
antipodal triangle. O

Remarks. (&) Notethat | Tpq| must be odd to satisfy the assertion of the lemma, unless
Tpq isempty. It iseasy to show that Ty isnot empty for any edge pg. If Tpq hasasingle
element the assertion of the lemma holds automatically. In all other cases the lemma
implies that any halfspace with p and g on its boundary contains at least one element
of Tpq.

(b) Wesay that acollection T of trianglesthat isspanned by Sisantipodal if it satisfies
the property in Lemma 3.4. Inspecting the foregoing proof, it is easily verified that it
also applies to any antipodal collection T. Hence any such collection can have at most
O(n%?) triangles. As a matter of fact, this also holds for weakly antipodal collections
T, meaning that, for each edge pq, the antipodality property holds for all but aconstant
number of consecutive pairs of trianglesin Tpg.
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We fix a coordinate frame and assume that no horizontal plane (i.e., one parallel to
the xy plane) contains more than one point of S. We further assume that the plane of no
trianglein T isparallel to the y-axis. This can be achieved by a suitable rotation.

Fix apoint p € S, and let T, denote the set of triangles in T that are incident to
p. Let hy, be the horizontal plane passing through p. Let , be any horizontal plane
above p. Clip eachtrianglein T, to the halfspace above h,, and project each (nonempty)
clipped triangle centrally from p onto .. Theresulting set of projected triangles hasthe
following structure. Each point u € Sthat lies above h,, is mapped to a point u* € my.
Each triangle puv in T, for which both u and v lie above h, is mapped to the segment
u*v*, and each triangle puv in T, for which u lies above h,, but v lies below hy, is
mapped to aray emanating from u*. Triangles puv in Ty, for which both of u and v lie
below h,, are excluded from the analysis. Let G, denote this geometric graph drawn on
mp (strictly speaking, G, is not a geometric graph in the sense of [12], because of the
infinite rays that it contains), and let S be its set of vertices, the projected images of
points of Sabove h,. We refer to both the bounded edges and the rays as edges of Gp,.

Notice that a crossing pair of edgesin G, corresponds to a crossing pair of triangles
in T,. Wedo not necesserily get all crossing pairs of trianglesin Ty, thisway, nevertheless
Lemma 3.3 bounds the total number of edge crossings in the graphs G,.

Let e, and r, be the number of (bounded or unbounded) edges and the number of
raysin Gy, respectively. In the following lemmawe find the average of these numbers.

Lemma 3.5.

(a) Zpesep =2t
(b) D pestp =t.

Proof. Consider any triangle A in T and let the vertices of A in ascending order of
their z-coordinates be p, g, and r. The triangle A contributes a bounded edge to G,
since g and r are both above hy,. A contributes aray to G4 sincer is above hg but p is
below it. Finally, A does not contribute to G, since both p and g are below h,. Each
trianglein T contributestwo to the sumin (&) and oneto the sum in (b), thus proving the
lemma. O

We next observethat G, has the following antipodality property, which isimmediate
from the antipodality property of Lemma 3.4.

Lemma36. Letu* € S and sort the edges of Gy incident to u* in the angular order
around u*. For any two consecutive elements e; and e, of this cyclic order there is a
unique “ antipodal” edge ez in G, incident to u*, namely, one that extends from u* into
the wedge that is antipodal to the wedge formed between e; and e,.

Proof. Theedgesein G, incident to u* arein 1-1 correspondence with thetrianglesin
T that areincident to both p and u. (Here u* isthe projected image of thepointu € S.)
Our lemma follows from Lemma 3.4 since the cyclic ordering of these edges coincides
with the cyclic ordering of the triangles around the line pu and antipodality for edges
corresponds to antipodality of triangles. |
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We use the antipodality established above to decompose the edges of each G, into a
collection of x-monotone convex chains, in a manner similar to that in [6]. We include
adescription of this construction so as to make our paper self-contained and to handle
properly the presence of infinite raysin our graphs.

Notice that our assumption on the coordinate system implies that no edge of G, is
parallel to the y-axis, and thus we can distinguish between left and right endpoints of
edges. For defining the chains we describe how to continue a chain to the right past an
edge e of G,. We extend e to the right past its right endpoint g* and turn the extended
segment about g* counterclockwise (looking from above) until we encounter the first
edge € in G, incident to g* and extending from it to the right. The chain containing e
continues through €. If e is aray having no right endpoint or if thereis no such € as
required, then eistherightmost edgeinitschain. A chainisextended to theleftinafully
symmetric manner, replacing “right” by “left” and “ counterclockwise” by “clockwise.”
The proof of Lemma3.7 below impliesthat theseright-extension and | eft-extension rules
are consistent with each other. See Fig. 2 for an illustration of the decomposition of G,
into chains.

Lemma 3.7.

() Each edge of G, appearsin a unique chain.

(b) Asingle chain terminates at any given vertex of S; (either onitsright side or on
its | eft side).

(c) The number of chainsc, isat leastry/2.

Fig.2. Anillustration of thegraph G . Oneconvex chainisdrawn asdashed and one asdotted. Theremaining
chains are: (—o0, a, ¢, +00), (C, g, +00), (d, e), (a, b, g), (—oo, b). Here —oco/ + oo means that the chain
starts/stops on aray. The (—oo, a, ¢, +00) chain contains the lower ray ending at a.
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Proof. For (a) it suffices to show that no two different edges of G, with a common
right endpoint can have the same right neighbor in their respective chains. Consider a
vertex q* € §; and let the edgesin G extending from g* to the left in counterclockwise
angular order be ey, ..., &. Using Lemma 3.6 we find a unique edge f; incident to g*
in the wedge antipodal to e g1 for each of thevaluesi =1, ..., k — 1. Notethat since
the wedges are pairwise openly digoint, the edges f; are distinct, and extend from g*
to the right. Our construction guarantees that the chain containing € continues through
fi fori =1, ...,k — 1and the chain through e does not continue through any of the
edges fj.

For (b), notice that if there are no edges incident to g* other than the edges g and fj,
then the chain containing & terminatesat g* (and thisistheonly chain terminating there).
If, however, there are more edges of G, incident to g*, then (again by Lemma 3.6) there
are exactly two more edges, both extending from g* to the right, and the chain containing
& extends through one of them, while the other edge represents a chain that terminates
(onitsleft) at g*.

We remark here that the above arguments also prove that the dual definition (of
continuing chains to the left) results in the same set of convex chains.

For (c) notice that each chain contains at most two rays. O

The following lemma implies that for typical values of e, and r, (which are both
@(t/n)) and for t > 100n?, a positive fraction of all pairs of edgesin G, are crossing.
Thisis a substantial improvement over the Q (|Tp|3 /n?) bound on the crossing number
of the graph obtained by projecting T, centrally from p to a sphere around p (see, e.g.,
Theorem 14.12 of [13]). (Notice that Gy, is the central projection from p onto 7, of
the portion of this spherical graph that liesin the upper hemisphere.) Using this weaker
bound instead (and comparing it with the upper bound of Lemma 3.3), would yield a
simple proof of the known result [7] that a set of n pointsin 3-space has O(n®/3) k-sets,
for any fixed k.

Lemma3.8. The number of edge-crossingsin G, isat least r§/8 — 3epN.

Proof. We call apair of chains C;, C, crossing if there exist edgese; € Cy, & € C,
that cross each other (in their relative interiors). That is, pairs of chains “crossing” at a
vertex do not count. In view of Lemma 3.7(a), it sufficesto obtain alower bound for the
number of pairs of chains that cross each other. Instead, we derive an upper bound for
the number of noncrossing pairs of chains. Let C;, C, be anoncrossing pair of chains.
Then either (a) C; and C, are digoint, or (b) C; and C, meet at a vertex. We assume
that both C; and C; start and end on rays of G,. The total number of pairs of chains that
violate this assumption is at most c,n, as follows from Lemma 3.7(b).

Supposethat C, and C, aredigjoint, in which case one of the chains, say C,, liesfully
above C; (in the y-direction). Take any edge e, of C,, and let ¢, be the line tangent to
C; and paralld to &. (Theline £; exists because C; lies above C, and C; lies above the
line containing ,.) Let p; be avertex of C; incident to ¢;; see Fig. 3. The pair (p1, €)
determines the pair (C1, C,). Indeed, the edge e, identifies the chain C, uniquely, by
Lemma 3.7(a). The pair (e, p1) determine the tangent line £, and the construction of
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Fig. 3. A pair of noncrossing chains.

thechainsiseasily seentoimply that p; and €1 uniquely identify C;. Hence, the number
of digioint pairs of chainsis at most e,n.

Suppose next that C; and C, meet at avertex. Let e; € C; and e, € C, be edges of
the chains with acommon right endpoint. Clearly, e; and e, determine C; and C,. Here
e, isoneof the e, edges of G, and &, is one of the at most n edgesin G, incident to the
right endpoint of ;. (Here we use the fact that the maximum degree of G, is bounded
by n, since at most n trianglesin T are incident to a fixed pair of points of S.) Hence,
the number of pairs of chains having acommon vertex is at most e,n.

We thus have at least (%) — c,n — 2e,n crossing pairs of edgesin G, which is, by
Lemma 3.7(c), at |east the claimed number /8 — 3epn. O

Wefinish the proof by comparing the upper bound in Lemma 3.3 and the lower bound
in Lemma3.8 for the number X of crossing pairsof trianglesin T with acommon vertex.
We have

3n*/8> X > Z(rg/s — 3epn) > t2/(8n) — 6tn,
peS

where the last inequality follows from Lemma 3.5. We thus have t? < 3n® 4 48tn?,
which impliesthat t = O(n%?).

This, and the observations in paragraphs (a) and (c) of Section 2, complete the proof
of Theorem 1.1.

4. Open Problems

(a) Our analysisis based on the upper bound O (n*) on the number of crossingsderivedin
Lemma 3.3. However, this bound seemsto be weak, because, for an edge ab connecting
two pointsa, b of S, wewant to count the number of halving triangles pcd that it crosses,
with the additional constraint that pab isalso ahalving triangle. In our derivation we do
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not exploit this constraint at al, so the first open problem is whether this bound can be
improved, taking into account this constraint.

(b) We conjecture that the following holds: given a set S of n points in 3-space in
genera position and an arbitrary set T of t triangles spanned by S, there exists a line
that crosses Q (t2/n?) triangles of T. This bound is significantly larger than the bound
Q(t3/nb) of [7] andit would yield atrivial proof of Theorem 1.1 (using Lovasz' lemma).
We are not aware of any construction that contradi ctsthis conjectured bound. Thisbound
isbest possible, for t = € (n?), which can be shown by a simple construction.

(c) An even stronger conjectureisthefollowing: given aset Sof n pointsin the plane
in general position and an arbitrary set T of t triangles spanned by S, there exists a
point that liesin Q(t?/n®) triangles of T. The best known lower bound, due to [3], is
Q(t3/(n®log® n)). Again, the conjectured bound is best possible for t = €(n?). (Note
that if (c) is true, then the following strengthening of (b) also holds. given Sand T as
in (b), then for any direction u there exists a line parallel to u that crosses Q(t?/n%)
trianglesof T.)

(d) Finaly, can the technique used in this paper be extended to higher dimensions?
A main difficulty in such an extension is that, already in four dimensions, the fact that
two halving simplices (even with some common vertices) cross each other does not
necessarily imply that an edge of one of them crosses the relative interior of the other.
This precludes an immediate extension of Lemma 3.3 to four dimensions.
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