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Abstract

The central differencing grid with fully staggered velocity com-

ponents (C grid) is widely used in primitive equations oceanographic

models despite potential problems in simulating baroclinic inertia-

gravity and Rossby waves that can arise due to the averaging of ve-

locity components in the Coriolis terms. This note proposes a new av-

eraging of the velocity components in order to calculate the Coriolis

terms on the C grid. The averaging weights are calculated from the

minimum of a suitably defined cost function which optimally min-

imizes the error in the inertial part of frequencies of inertia-gravity

waves and maintains the second order accuracy of the computations.

The theoretical analysis of wave frequency diagrams shows that the

new scheme results in more accurate frequencies of long inertia-gravity

and Rossby waves, especially when the Rossby radius of deformation

is not resolved well by the grid resolution.
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1. Introduction

The central differencing grid with fully staggered velocity components (C grid)

is widely used in primitive equations oceanographic models (e.g. Haidvogel and

Beckmann 1999). Arakawa and Lamb (1977) computed the frequencies of inertia-

gravity waves for different finite differencing grids and found that C and B grids

with the staggered height and velocity vectors components were giving satisfac-

tory results for the geostrophic adjustment. The C grid was superior in simulating

the gravity waves frequency, but it was less accurate in simulating the frequency

of inertial waves, because the fully staggered position of velocity points (Figure

1) requires the averaging in order to compute the Coriolis term.

On the C grid the frequency of inertial waves, which in the analytical solution

should be constant for all wavelengths, is correct only for the longest wave and

monotonically decreases becoming equal to zero for the shortest wave. For a rela-

tively large Rossby radius of deformation this problem is practically insignificant,

because the frequency of gravity waves dominates the solution. However, in the

ocean the first baroclinic Rossby radius of deformation is of order of only 10km

in mid-latitudes, and becomes proportionally smaller for higher order baroclinic

modes. When the Rossby radius of deformation is relatively small, the accuracy

of the simulation of inertia-gravity waves may become sensitive to the accuracy of
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the calculation of their inertial parts (e.g. Mesinger and Arakawa 1976). Further-

more, Wajsowicz (1986) showed that in this case the C grid also does not simulate

accurately the frequency of Rossby waves.

Several methods were proposed to reduce or remove the effects of the C grid

error in the calculation of the Coriolis terms in oceanographic models. Smith et al.

(1990) applied the ”divergence damping” in the velocity field, but thea posteriori

filtering of the small scales only reduces the effects of the error and can also re-

move an important part of the correct solution. Alternatively, Adcroft et al. (1999)

combined C and D grids and calculated the Coriolis terms without the averaging,

but the introduction of the D grid points required the use of 5 prognostic equa-

tions. The solution contained computational frequencies which were attenuated

with a filter dependent on the time integration scheme and the time step length.

Nechaev and Yaremchuk (2004) calculated Coriolis terms on the C grid without

averaging using 4 independent prognostic equations for each velocity component.

However, the use of 9 prognostic equations resulted in significantly longer com-

putations and gives computational modes. Nechaev and Yaremchuk (2004) also

proposed a computationally more efficient application of the same method with 3

prognostic equations. The resulting scheme does not change inertial frequencies

on the C grid, but when used with the implicit time differencing, it selectively
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damps short wave frequencies with the efficiency which depends on the length of

the model time step.

In this note we will keep the standard distribution of the points on the C grid

and will not try to reduce the effects of the averaging on the short scale noise.

Instead, we will construct the averaging of the velocity components in the Coriolis

terms in a way to optimally minimize the error in the frequency of the inertial

oscillations. Section 2 will present the method to determine the optimal averaging.

The theoretical improvements in the simulation of frequencies of inertia-gravity

and Rossby waves will be shown in Section 3. In Section 4 a numerical experiment

will demonstrate the impact of the improved averaging, and Section 5 will give

conclusions.

2. Optimal averaging in Coriolis terms

The frequency of inertia-gravity waves follows from the solution of the linearized

shallow water equations (e.g. Arakawa and Lamb 1977):

∂u

∂t
− fv + g

∂h

∂x
= 0 (1)

∂v

∂t
+ fu + g

∂h

∂y
= 0 (2)
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∂h

∂t
+ H

(
∂u

∂x
+

∂v

∂x

)
= 0 (3)

whereu andv are velocity components, h is the surface elevation displacement,

g is the gravity acceleration, H the water depth (or the equivalent depth for baro-

clinic modes), and f is the Coriolis parameter which will be assumed constant in

the derivation of inertia-gravity waves. The substitution of solutions in the form

of waves 


u

v

h




=




u0

v0

h0




ei(kx+ly−νt),

in addition to the geostrophic mode, gives the frequency of inertia-gravity waves:

(
ν

f

)2

= 1 + λ2(k2 + l2), (4)

whereλ =
√

gH/f is the Rossby radius of deformation.

[Figure 1 about here.]

On the C grid the finite differencing approximation of equations (1-2) (Arakawa

and Lamb 1977) gives:

∂u

∂t
− fvxy + gδxh = 0 (5)
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∂v

∂t
+ fuxy + gδyh = 0 (6)

∂h

∂t
+ H

(
δxu + δyv

)
= 0 (7)

Only the spatial differencing is substituted by the finite differencing, because the

temporal differencing is not relevant for the optimal averaging. The substitution of

wave solutions like (4) gives the approximation of the frequency of inertia-gravity

waves on the C grid:

(
ν

f

)2

= cos2X

2
cos2Y

2
+ 4

λ2

d2

(
sin2X

2
+ sin2Y

2

)
, (8)

whereX = kd, Y = ld, andd is the grid resolution assumed to be equal inx

andy directions in order to simplify the presentation. In the analytical solution

the first term on the right side of equation (4) is equal to 1 for all frequencies,

while on the C grid (equation 8) it iscos2(X/2)cos2(Y/2). Figure 2 shows that it

is equal to 1 only for the longest wavelength and monotonically decreases to zero

with the increasing wave number.

Now we will try to construct the averaging of the velocity in the Coriolis terms

in equations (5) and (6) in a way to improve the simulated frequency. For sim-

plicity we can first evaluate only the averaging in thei direction for the velocity
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componentv (see Figure 1). In the point corresponding to thei, with the standard

averaging on the C grid in the directioni, v∗i is calculated from nearestv points:

v∗i =
vi−1/2 + vi+1/2

2
. (9)

The Taylor expansion gives the truncation error of the averaging:

ε∗ =
1

8

∂2v

∂x2
d2 + O(d4). (10)

The approximation has second other accuracy. However, there exists other second

order accurate approximations. For example, if instead of the two nearestv points

we average from the next pair of nearestv points along thei direction we get:

v∗∗i =
vi−3/2 + vi+3/2

2
. (11)

The Taylor expansion gives:

ε∗∗ =
9

8

∂2v

∂x2
d2 + O(d4). (12)
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The approximation still has second order accuracy, but now the error is 9 times

larger. It is well known (e.g. Mesinger and Arakawa 1976) that equations (9) and

(11) can be combined in a way to cancel the first terms on the right sides of (10)

and (12) forming a fourth order accurate approximation. It can be easily verified

that a fourth order averaging approximation from equations (9) and (11) is:

v4th
i =

9

8
v∗i −

1

8
v∗∗i . (13)

[Figure 2 about here.]

However, instead of searching for a scheme with a smaller truncation error,

we could look for an optimal solution that minimizes the error in the frequency of

inertial oscillations without the condition for the improvement of the second order

of accuracy. The general form of the solution will be:

vo
i = αv∗i + (1− α)v∗∗i , (14)

The coefficientα will be determined from the minimum of the following cost

functionJ :

J =
∫ π

0

∫ π

0
w(µ− 1)2dXdY, (15)
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wherew = w(X, Y ) is a suitably defined weighting function and

µ =
[
αcos

X

2
+ (1− α)cos

3X

2

][
αcos

Y

2
+ (1− α)cos

3Y

2

]
. (16)

The functionµ is the form of inertial part of the frequencies of inertia-gravity

waves when the averaging from equation (14) is applied in directionsx andy.

The solution will depend on the definition ofw. We will show solutions cor-

responding to 3 definitions:

1) Constantw with equal weights for all waves.

2) Constantw for X, Y < π/2, and zero elsewhere. This form ofw finds

α which optimally minimizes the frequency error only for longer waves (with

wavelengths greater than 4d).

3) Infinitely largew whenµ > 1, and constantw elsewhere. This solution

requires that the optimal frequency of inertial waves is never larger than the ana-

lytical one.

The numerically found minimum of J corresponds to: 1)α = 1.33, 2) α =

1.17 and 3)α = 1.125. It is interesting that the solution 3 is identical to the

fourth order accurate averaging. It should be noticed that with some definitions

of w it is also possible to find the minimum ofJ analytically, but we prefer the
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numerical solution, because it can be easily recalculated for anyw. Figure 2

shows the frequency of inertial waves corresponding to these values ofα when

Y = 0 andY = π/2. All three solutions give significantly more accurate inertial

waves frequencies than the standard second order accurate solution. However,

the frequency simulated by the solution 1 overshoots the analytical solution in a

broad part of the spectrum, and although it improves the solution for short waves

more than any other scheme, its frequency is not improved for long waves. On the

other hand, the frequency obtained by the solution 2 only slightly overshoots the

analytical solution (the maximum is 1.033) and it is always closer to the analytical

solution than the solution 3.

After also considering frequency solutions for many other definitions ofw (not

shown), we have decided to subjectively choose the solution 2 (α = 1.17) as the

most optimal one. The major reason for this choice is that it most accurately sim-

ulates the frequencies of long waves (waves longer than 4d). We can assume that

long waves are the most important for the simulation of the geostrophic adjust-

ment, and in numerical models short waves are anyway strongly damped by the

horizontal viscosity. It gives the optimal averaging in the directioni:

vo
i = 1.17v∗i .− 0.17v∗∗i , (17)
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with the truncation error:

εo = −0.36

8

∂2v

∂x2
d2 + O(d4). (18)

It is still second order accurate and its truncation error is slightly lower than in the

standard averaging scheme.

In order to test the sensitivity of the result to the formulation of the function

which has to be minimized within the cost function, another set of sensitivity

calculations was performed with the definitionw(µ2 − 1)2. This could be a more

natural choice because it better corresponds to the quadratic form of the equation

(2). The results corresponding to the 3 formulations ofw were: 1)α = 1.265,

2) α = 1.17 and 3)α = 1.125. Therefore, for long waves it appears that this

definition gives the same optimal solutionα = 1.17. In the appendix it is shown

that the optimal averaging conserves the energy when calculated in the following

flux form:

∂u

∂t
=

1

∆x
fV

oxoy
+ . . . , (19)

∂v

∂t
= − 1

∆y
fU

oyox
+ . . . , (20)
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whereU = u∆y andV = v∆x, and∆x and∆y are variable distances between

grid points.

[Figure 3 about here.]

3. Properties of simulated inertia-gravity and Rossby

waves

3a. Inertia-gravity waves

The use of the optimal averaging in equations (5-7) results in the approximation

of the frequency of inertia-gravity waves in the form:

(
ν

f

)2

= µ2 + 4
λ2

d2

(
sin2X

2
+ sin2Y

2

)
, (21)

When the Rossby radius of deformation is well resolved by the grid resolution

the C grid simulates well inertia-gravity waves. The optimal averaging of ve-

locity components in the calculation of the Coriolis terms can only improve this

result in comparison to that with the standard averaging scheme, because it should

improve the simulated frequency of inertial oscillations without changing the sim-

ulated frequency of gravity waves. However, in this case the improvement will be
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modest, because the result will be determined practically only by the simulated

frequency of gravity waves. Therefore, we will not compare the result for the well

resolved Rossby radius of deformation.

On the other hand, a number of studies (e.g. Wajsowicz 1986) showed that

when the Rossby radius of deformation is not resolved well by the grid reso-

lution the C grid inaccurately resolves the frequency of inertia-gravity waves.

Figure 3 compares frequencies of inertia-gravity waves for a case whenr =

(fd)2/(4gH) = 2. It also shows the B grid solution (e.g. Arakawa and Lamb

1977):
(

ν

f

)2

= 1 + 4
λ2

d2

(
sin2X

2
cos2Y

2
+ sin2Y

2
cos2X

2

)
. (22)

[Figure 4 about here.]

Figure 3 shows that the inertia-gravity waves frequencies on the C grid with

the standard averaging are always less thanf , except for the longest wave, while

in the analytical solution they are always grater thanf . They are also descending

with the increase of the wavenumber, for all wavelengths, while in the analytical

solution they always increase. On the other hand, the optimal averaging in the

Coriolis terms gives frequencies which for the long waves (waves longer than4d)

are greater thanf and monotonically grow with the increasing wavenumber. They
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start to descend with the increasing wavenumber only for waves which are shorter

than approximately4d and become lower thanf only for the shortest waves. It is

important to notice that qualitatively the same improvement can be obtained also

for larger values ofr, because the choice of the optimization criteria results in the

frequencies of inertial oscillations which are very close to the analytical solution

for wavelengths greater or equal to4d independently ofr. We can also see that

now for the long waves the result on the C grid is qualitatively similar to that

obtained on the B grid.

A potential problem with the improved averaging on the C grid could be that,

when the Rossby radius of deformation is not resolved well by the grid resolu-

tion, the group velocity is zero at the local maximum in inertia-gravity frequen-

cies close to the point(π/2, π/2) and at two saddle points close to(π/2, 0) and

(0, π/2) (Figure 3). In the absence of the horizontal mixing and advection, it could

happen that the energy at these particular wavenumbers wrongly accumulates.

However, Figure 3 also shows that a similar problem exists on standard C and B

grids, which have saddle points and zero group velocities at(π/2, π/2). There-

fore, we can assume that the energy accumulation problem should not significantly

differ from that on the standard C grid. Numerical experiments in Section 4 will

confirm this assumption. Another potential problem is that the averaging from
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16 points requires additional boundary conditions for velocity components. The

numerical experiment in Section 4 will also demonstrate that additional boundary

conditions do not generate reflections.

3b. Rossby waves

Rossby waves can be isolated from the vorticity-divergence form of equations

(1-2) in which we apply theβ plane approximation (β = ∂f/∂y = const):

∂ζ

∂t
+ fD + βv = 0 (23)

∂D

∂t
− fζ + βu + g∇2h = 0, (24)

whereζ is the vorticity andD is the divergence of the velocity. After combining

equations (23-24) with equation (3) and neglecting small terms, we get:

∂h

∂t
− λ2∇2

(
∂h

∂t

)
− βλ2∂h

∂x
= 0. (25)

The substitution of solutions in the form like (2) gives the frequency of Rossby

waves:

ω =
−kβ

k2 + l2 + λ−2
. (26)
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In order to obtain the finite difference approximation of equation (26) on the C

grid with the optimized averaging in the Coriolis terms we will strictly follow the

mathematical procedure from Wajsowicz (1986). The finite difference approxi-

mation of equations (1-2) will be:

∂u

∂t
− f

oy
voxy + gδxh = 0 (27)

∂v

∂t
+ fuoxy + gδyh = 0. (28)

The vorticity-divergence form of equations (23-24) in finite differences is:

∂ζ

∂t
+ fD

oxy
+ βvoxyy

= 0 (29)

∂D

∂t
− f

oy
ζ

oxy
+ βuoxyy

+ g∇2h = 0. (30)

The elimination ofζ and D from equations (29), (30) and (3), the neglecting

of small terms, and noting that on heβ planef
oy

= f
y

= f , gives the finite

difference approximation of equation (25):

∂

∂t
h

oxyoxy − λ2∇2
(

∂h

∂t

)
− βλ2δxh

oxyy
= 0. (31)
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The substitution of wave like solutions in the form like (2) into equation (31) gives

the approximation of the frequency of Rossby waves in the form:

ω =
−β sin(X/2)cos(Y/2)

(d/2)
µ

sin2(X/2)
(d/2)2

+ sin2(Y/2)
(d/2)2

+ λ−2µ2
. (32)

Now we will compare the properties of this approximation with the analytical

solution of the Rossby wave frequencies given by equation (26), for 3 different

values ofr = 0.1, 1, 10. They correspond to grid resolutions which are finer,

similar and coarser than the Rossby radius of deformation. We will also compare

our solution with the approximations on the C grid with the standard averaging in

the Coriolis terms and on the B grid computed by Wajsowicz (1986). The standard

form on the C grid is:

ω =
−β sin(X)cos2(Y/2)

d
sin2(X/2)

(d/2)2
+ sin2(Y/2)

(d/2)2
+ λ−2cos2 X

2
cos2 Y

2

, (33)

and the form on the B grid is:

ω =
−β sin(X)

d
sin2(X/2)cos2(X/2)

(d/2)2
+ sin2(Y/2)cos2(Y/2)

(d/2)2
+ λ−2

. (34)

Figure 4 shows the analytical solution and finite differences approximations of

18



Rossby wave frequencies forY = 0. We can see that the optimal averaging in the

Coriolis terms on the C grid results in improved Rossby wave frequencies for long

wavelengths. Whenr = 0.1, i.e. the when the grid resolution is much finer than

the Rossby radius of deformation, it is generally accepted (e.g. Wajsowicz 1986;

Neta and Williams 1989) that standard C and B grids simulate long Rossby waves

in a satisfactory way and that the C grid is slightly more accurate for long waves.

We can see in Figure 4 that the C grid with the optimal computation of the Coriolis

term gives even more accurate frequencies for long waves. Whenr = 10, with the

grid resolution coarser than the Rossby radius of deformation, the B grid is less

accurate than the standard C grid, and the optimized averaging solution on the C

grid again gives the most accurate solution for long wavelengths. However, unlike

the analytical solution, all finite difference solutions give zero frequency for the

shortest wavelength. A similar improvement for the simulation of frequencies of

long waves was observed in they direction in the two-dimensional graphs, but

again the frequency of the shortest wave in they direction was zero on all grids

(not shown).
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4. Numerical experiment

In order to demonstrate the improvement by the optimized averaging this section

will present results of numerical experiments with the linear shallow water model

defined on the C grid. Model equations are identical to those applied in Adcroft

et al. (1999) and Nechaev and Yaremchuk (2004):

1

∆t
δtu− fvxy

+
g′

d
δxh =

τx

ρ0H0

− εu (35)

1

∆t
δtv + fuyx

+
g′

d
δyh = −εv (36)

1

∆t
δth +

H0

d

(
δxu + δyv

)
= 0. (37)

Also, most parameters of the model set-up are the same as in Adcroft et al. (1999).

The model domain is defined on a flat bottom, square basin with depthH0 =

400m and lengthL = 4000km. The Coriolis parameter isf = f0 + β(y −

L/2), wheref0 = 10−4s−1 andβ = 10−11m−1s−1. The reduced gravity is set to

g′ = 10−2m2s−1 giving the Rossby radius of deformationR = 20km. The wind

stress is specified in the formτx = τ0sin[π(y − L/2)/L]. Coriolis and pressure

gradient terms are solved using the leap-frog scheme, and the bottom friction is

solved using the Euler forward scheme. Time levels are filtered using the Asselin
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time filter (Asselin 1972) with the filter parametercA = 0.05. The time step

is ∆t = 1728s. The averaging from 16 points in the Coriolis terms requires a

boundary condition also for the velocity component parallel to the coast. It was

set to zero on ”land” points in order to ensure that boundary values do not change

the energy.

This model set-up was chosen in order to make as similar as possible ex-

periments to those in Adcroft et al. (1999). However, initial experiments with

the same experimental set-up could not demonstrate the impact of the optimized

averaging, because after initial time steps the relatively high bottom friction (ε =

10−6s−1) damped all differences between low resolution experiments (not shown).

Therefore, in order to demonstrate the impact of the improved averaging the bot-

tom drag is set toε = 10−8s−1. This value significantly reduces the damping effect

of the bottom friction and gives different experimental results at the low resolu-

tion. The model was integrated withτ0 = 0.1Nm−2. Coarse resolution experi-

ments were performed with the horizontal resolutiond = 100km (r = 6.25), and

high resolution experiments with the horizontal resolutiond = 20km (r = 0.25).

[Figure 5 about here.]

Figure 5 shows surface height outputs for coarse and high resolution experi-

ments after 3000 days of integration. The disturbance in the surface height field

21



propagates in the form of Rossby waves in the westward direction. With the high

resolution (Figure 5d and 5e) the result is practically independent ofα and is as-

sumed to be the reference for low resolution experiments. At the low resolution

the optimized averaging experiment (Figure 5b) gives a more accurate output than

the standard averaging experiment (Figure 5a). In order to demonstrate that the

higher accuracy of the output is due to the improved simulation of frequencies

and not due to the slightly higher formal accuracy of the scheme, the same ex-

periment is repeated withα = 1.08. With this choice ofα the absolute value of

the truncation error is the same as with the optimal averaging, but the theoretical

frequencies of long inertia-gravity and Rossby waves are more accurate than for

the standard averaging (α = 1) and less accurate than forα = 1.17 (not shown).

As a confirmation of the hypothesis that the accuracy of the simulated frequency

creates the difference between low resolution experiments, Figure 5c shows that

with α = 1.08 the low resolution output has the intermediate accuracy.

In comparison to standard C grid outputs, and in agreement with the theo-

retical analysis from the previous section, optimized averaging outputs did not

show any reflections at boundaries or the wrong energy accumulation. All exper-

imental outputs had a relatively high level of small scale noise and were filtered

for the presentation in Figure 5. However, optimized averaging outputs seemed
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to produce more small scale noise at initial steps of the simulation (not shown).

This experimental result is obtained with a linear model. We can expect that in a

more realistic model, which includes the non-linear horizontal advection and the

horizontal viscosity, the small scale noise will be attenuated.

5. Conclusions

We have theoretically demonstrated that the improved calculation of the Coriolis

terms, by averaging from 16 surrounding points with optimally chosen weights,

improves the simulation of long inertia-gravity and Rossby waves on the C grid,

especially when the Rossby radius of deformation is not resolved well by the grid

resolution. These theoretical findings were confirmed in numerical experiments

with a linear shallow water model defined on the C grid. On the other hand,

the theoretical analyses show that frequencies of the shortest waves remain poorly

resolved, meaning that there remains the problem of the small scale noise when the

grid resolution is much coarser than the Rossby radius of deformation. However,

in realistic applications the shortest waves are anyway strongly dissipated by the

scale selective horizontal viscosity commonly used in numerical models, and can

be further attenuated by specially designed filters like those in Smith et al. (1990)
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and Nechaev and Yaremchuk (2004). The optimized averaging facilitates the use

of the scale selective filtering, because in comparison to the standard averaging its

errors are more concentrated in short wavelengths.

We may expect that the optimized averaging could improve the simulation of

long inertia-gravity and Rossby waves in the oceanographic models, when baro-

clinic Rossby radii of deformation are small in relation to the grid resolution. It

can be easily incorporated into existing oceanographic models defined on the C

grid, because it does not require any special time differencing scheme. Its compu-

tational requirement is practically negligible in comparison to the computational

requirement of the whole model even with explicit methods for the temporal in-

tegration and small time steps. Therefore, the optimal averaging in the Coriolis

terms could provide a computationally efficient alternative to the standard C grid

averaging resulting in a more accurate simulation of long internal inertia-gravity

and Rossby waves under a relatively large range of physical conditions.

AcknowledgmentsI would like to thank two unknown reviewers for their very

helpful comments and suggestions. Financial support for my work was provided

by EU projects MFSTEP (Mediterranean Forecasting System: Toward Environ-

mental Prediction, Contract number: EVK3-CT-2002-00075) and MERSEA (Ma-

24



rine Environment and Security for the European Area, Contract number: SIP3-

CT-2003-502885).

Appendix: Energy conserving form of the averaging from 16

points

The kinetic energy equation is formed by adding (19) multiplied byu to (20)

multiplied byv. The energy conserving form of the optimized averaging requires

that terms originating from Coriolis terms in (19) and (20) cancel when the energy

equation is integrated horizontally. In order to demonstrate it we can use the

property that the central averaging is the symmetric linear operator, which can be

shown by integration by parts:

∑

i

aib
i∗

=
∑

i

ai+ 1
2

∗
bi+1/2, (38)

and

∑

i

aib
i∗∗

=
∑

i

ai+ 1
2

∗∗
bi+1/2, (39)

where the indexing corresponds to Figure 1. Therefore, the horizontal integration
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of Coriolis terms in the kinetic energy equation gives:

∑

i,j

(
u

∆x
fVi+ 1

2
,j

oxoy − v

∆y
fUi,j+ 1

2

oyox
)
∆x∆y =

=
∑

i,j

f
(
Vi+ 1

2
,j+ 1

2

ox
Ui+ 1

2
,j+ 1

2

oy − Ui+ 1
2
,j+ 1

2

oy
Vi+ 1

2
,j+ 1

2

ox
)

= 0. (40)
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Figure 1: Distribution of computational points on the C grid.
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Figure 2: Frequencies of inertial oscillations scaled byf obtained for different
values of the parameterα. The upper panel is forY = 0, the lower panel is for
Y = π/2, and thex axis isx = X/π. The continuous line (S) shows the standard
averaging solution on the C grid (α = 1). The long dashed line (1) shows the
solution corresponding toα = 1.33, the dotted line (2) the solution corresponding
to α = 1.17, and the long-short dashed line (3) the solution corresponding to
α = 1.125.
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Figure 3: Frequencies of inertia-gravity waves scaled byf whenr = 2. Thex axis
is x = X/π, and they axis isy = Y/π. Long-dashed isolines are used for values
less than 1. Due to the symmetry, the figure shows only the first quadrant. Panel
a) shows analytical frequencies, panel b) the C grid frequencies with the standard
averaging in the Coriolis terms, panel c) the C grid frequencies with the optimized
averaging, and panel d) the B grid frequencies. Panels e), f) and g) correspond
to frequencies in b), c) and d). They show relative errors of frequencies, i.e.
(νc − νa)/νa, whereνc is the finite difference andνa the analytical frequency.
Short-dashed lines are used for negative values.
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Figure 4: Frequencies of Rossby waves forY = 0 in units ofβλ (left column) and
their relative errors(ωc − ωa)/ωa (right column), whereωc is the finite difference
and ωa the analytical solution. Panels correspond to values ofr = 0.1, 1, 10,
and thex axis isx = X/π. The continuous line is the analytical solution, the
dotted line is the standard C grid solution, the short-long dashed line is the B grid
solution and the dashed line is the C grid solution with the optimal averaging in
the Coriolis terms.
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Figure 5: Surface height fields (m) after 3000 days of integration of the linear
shallow water model. In order to present important features more clearly all fields
are filtered with the 9 points filter. Panel a) represents result with the low res-
olution standard averaging (α = 1), panel b) with the low resolution optimized
averaging (α = 1.17), and panel c) with the low resolution andα = 1.08. Panels
d), e) and f) are the same as a), b) and c), except for the high model resolution.
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