
All rights are reserved and copyright of this manuscript belongs to the authors.
This manuscript has been published without reviewing and editing as received
from the authors: posting the manuscript to SCIS 2006 does not prevent future
submissions to any journals or conferences with proceedings.

SCIS 2006 The 2006 Symposium on
Cryptography and Information Security
Hiroshima, Japan, Jan. 17-20, 2006

The Institute of Electronics,
Information and Communication Engineers

An Improved Certificateless Public Key Encryption

Routo Terada ∗ Denise H. Goya †

1. Introduction

The concept of Identity Based Encryption — IBE — sys-
tem was proposed by [Sh4] for which the public key can
be the identity itself. [BoFr1] presented an IBE system
based on bilinear pairing functions, that requires a Public
Key Generator — PKG. The PKG needs to be trusted in
the sense that it can generate any of the private keys, i.e.,
it can exercise the so-called key escrow, which is undesir-
able in many applications. On the other hand this system
does not require the so-called Public Key Infrastructure —
PKI — with its complex and costly management of Digi-
tal Certificates. [AlPa3] proposed a Certificateless Public
Key Encryption — CL-PKE — scheme, i.e., a cryptographic
scheme which does not require either a Digital Certificate
to certify the public key or a PKI. It is also based on bi-
linear pairing functions. In CL-PKE an adversary A may
replace the victm’s public key with another one, say X, so
thatA knows the private key corresponding toX; but still
A is not able to decrypt the message encrypted with the
original published public key. This important property is
accomplished by the fact that only the PKG can bind the
key pair for any other entity with that entity. For a secure
CL-PKE scheme the public key of an entity can be bound
to an identity of the entity without any security measure.
Furthermore, it is key escrow free, which is not achieved
in the framework proposed in [Sh4].
In this paper we construct a CL-PKE scheme based on

bilinear pairing functions which: (1) does not allow key es-
crow by the PKG; (2) does not require Digital Certificates;
(3) is more efficient on computation than previously pub-
lished IBE or CL-PKE schemes ([BoFr1], [Ge3], [AlPa3],
[AlPa5], [ChCo5], [Ga5]); (4) and is secure in the sense
that it is strong against IND-CCA2 attack 1 [Be8a], based
on the Random Oracle Model [Be8a] and the difficulty of
the BDH Problem2 [ChLe2]. For the security proof we re-
duce (in polynomial time) the problem of solving the BDH
Problem to the IND-CCA2 attack against our CL-PKE.
The BDH Problem is as follows: (1) Let G1 and G2 be
two groups of prime order q and let ê : G1 ×G1 → G2 be
a bilinear pairing function; (2) Given P ∈ G∗1, a, b, c ∈ Z∗q
∗rt@ime.usp.br, University of Sao Paulo
†University of Sao Paulo

1 Indistinguishability Adaptive Chosen-Ciphertext Attack
2 Bilinear Diffie-Hellman Problem

and P, aP, bP, cP compute ê(P,P)abc.

2. Proposed CL-PKE scheme

Our CL-PKE sheme is defined as the following set of
algorithms.
setup Given a security parameter k the Public Key
Generator - PKG: (1) generates two cyclic groups G1 and
G2 of prime order q and a bilinear pairing ê : G1 ×G1 →
G2. Choose randomly a generator P ∈ G∗1. (2) Chooses
randomly s ∈ Z∗q and compute Ppub = sP . (3) Chooses
three hash functions: (a) H1 : {0, 1}∗ → G∗1 (b) H2 :
G1×G2×G1 → {0, 1}n integer n > 0 (c) H3 : {0, 1}n−k0×
{0, 1}k0 → Z∗q , for integers n and k0, 0 < k0 < n, with k0
polynomial on n. The message space is M = {0, 1}n−k0 .
The ciphertext space is C = G∗1 × {0, 1}n. The system
master-key is s. The system parameters are params =
hq,G1, G2, ê, n, k0, P, Ppub,H1, H2,H3i
extract Given an identifier IDA ∈ {0, 1}∗, params and
a master-key s the PKG: (1) computes QA = H1(IDA).
(2) returns the partial secret key dA = sQA.
publish Given params, an entity A selects at random
a secret information tA ∈ Z∗q and computes its public key
NA = tAP . A keeps tA safely and publishes NA.
encrypt Given a plaintext m ∈M, an identity IDA,
params and a public key NA any message sender: (1)
chooses randomly σ ∈ {0, 1}k0 . (2) computes r =H3(m, σ),
QA = H1(IDA), g

r = ê(Ppub, QA)
r, f = rNA. (3) returns

the ciphertext C = hrP, (m||σ)⊕H2(rP, gr, f)i.
decrypt Given C = hU,V i ∈ C and the secret values
dA and tA, the entity A: (1) computes g0 = ê(U, dA),
f 0 = tAU,V ⊕H2(U, g0, f 0) = (m||σ) (2) splits (m||σ) and
computes r = H3(m, σ) (3) if U = rP , returns the plain-
text m, else return ⊥.
2.1. Decryption of the proposed CL-PKE

To prove the decryption is correct, it is enough to re-
member the pairing ê() is bilinear, as shown next: g0 =
ê(U, dA) = ê(rP, sQA) = ê(P,QA)

rs = ê(sP,QA)
r =

ê(Ppub, QA)
r = gr, f 0 = tAU = tArP = rNA = f .

Hence H2(U, g
0, f 0) = H2(rP, gr, f). Since V = (m||σ)⊕

H2(rP, g
r , f), V ⊕H2(rP, gr , f) = (m||σ). Therefore

decrypt recovers correctly the plaintext from the cipher-
text by applying encrypt.

In summary, our CL-PKEmay be described as a compo-
sition of previous works, as follows. The usage of rP in H2
was suggested by [CrSh4]. The usage of rNA and a com-
plete formulation of H2 was found in [ChCo5], where they
try to optimize the CL-PKE in [AlPa5] and [AlPa3]. The
choices of the message and ciphertext spaces, besides H3,
was inspired by [Ga5], which in turn adopted the tranfor-
mation in [FuOk0] to strengthen the public key encryption
scheme using fewer hash functions. [Ga5] involved three
elliptic groups, it is not CL-PKE (but is IBE), and pre-
sented an improvement on the work in [BoFr1], which in
turn allowed the realization of CL-PKE.
We briefly show previous PKE schemes based on bilin-

ear pairing below:
Scheme Ciphertext C
[BoFr1] hrP,σ ⊕H2(gr), m⊕H4(σ)i
[AlPa3] hrP,σ ⊕H2(gr(NA)

), m⊕H4(σ)i
[AlPa5] hrP,σ ⊕H2(gr)⊕H5(rNA),

m⊕H4(σ)i
[ChCo5] hrP,σ ⊕H2(rP, gr, rNA),

m⊕H4(σ)i
[Ga5] htP, (m||σ)⊕H2(gt)i
Our CL-PKE htP, (m||σ)⊕H2(tP, gt, tNA)i
Regarding this table, we observe that: (1) In [FuOk9]

r = H3(m,σ) where m, σ ∈ {0, 1}n . (2) In [FuOk0] t =
H3(m,σ) where m ∈ {0, 1}n−k0 , σ ∈ {0, 1}k0 .

3. Complexity of the proposed CL-PKE

Let the basic operations be denoted as follows: P for
bilinear pairing, M for scalar multiplication, E for expo-
nentiation, and H for hash function.
Then we have the following tables with the number of

computations in each of the published similar schemes of
public key encryption based on bilinear pairing (where g
is the number of bits to represent one point in G1):

crypt decrypt
PKE Scheme P M E H P M E H
[AlPa3] 3 1 1 4 1 1 0 3
[AlPa5] 1 2 1 5 1 2 0 4
[ChCo5] 1 2 1 4 1 2 0 3
Our CL-PKE 1 2 1 3 1 2 0 2

size (bits)
PKE Scheme pub.k. msg ciph.
[AlPa3] 2g n g + n+ n
[AlPa5] g n g + n+ n
[ChCo5] g n g + n+ n
Our CL-PKE g m0 − k0 g +m0

For some choices of m0 and k0, k0 being of polynomial
size on m0, our CL-PKE computes smaller ciphertexts, as
shown below, for the case n = m0−k0: (1) for k0 > n,m0 >
2n, the ciphertext size is greater than in previous schemes;
for k0 = n,m

0 = 2n it is equal; and for k0 < n,m0 < 2n,
it is smaller. The case k0 < n is the best choice, as long
as k0(n) = O(n

1/c), where c > 1 is a constant.

4. Type-I IND-CCA2 adversary

This Section defines a type of adversary that will be
used in Section 7.

The Type-I adversary against CL-PKE does not know
the master-key and plays the Game 1 against a chal-
lenger, as follows:
Setup The challenger uses a security parameter k and
executes the algorithm setup. It gives the adversary the
system parameters params and keeps master-key safely.
Phase 1 The adversary issues queries q1, ..., qn of one
of follows, to the challenger: (1) Extract the partial
secret key PrivKeyL of IDi. The challenger answers
executing the algorithm extract and gives the result dIDi

to the adversary. (2) Publish the public key of IDi.
The challenger answers executing the algorithm publish
and provides NIDi to the adversary, but it keeps a list of
key pairs (NIDi , tIDi) already generated. (3) Replace.
Replace the public key of IDi by a new value N

0
IDi
. The

challenger records the new valueN 0
IDi

for IDi. (4) Extract
the secret key PrivKeyR of IDi. If the public key of
IDi has not been replaced, the challenger answers return-
ing the corresponding value tIDi ; otherwise, the game is
aborted. (5) Decrypt < IDi, Ci, Ni >. The challenger de-
crypts the ciphertext, after getting the secret values dIDi

(by executing extract, if necessary) and tIDi
(by look-

ing up the list of key pairs, whose size is bounded by a
polynomial on the amount of publications). If tIDi is not
found, the challenger returns ⊥.
Challenge Once the adversary decides the Phase 1 is
finished, it returns to the challenger two equal length mes-
sagesm0, m1 ∈M, an identity IDch and a public key Nch
upon which the challenge is to be applied. The challenger
randomly chooses b ∈ {0, 1} and returns to the adversary
the ciphertext C∗ =encrypt(params, IDch,mb,Nch) as
the challenge, under the condition that IDch was not used
in any previous extraction of the secret key PrivKeyL, in
Phase 1 (so, Nch could be replaced, if the PrivKeyR is
not asked).
Phase 2 The adversary issues new queries qn+1, ..., ql
of one of follows, to the challenger: (1) Extract the
partial secret key of IDi, such that IDi 6= IDch. The
challenger answers as in Phase 1. (2) Publish the public
key IDi. The challenger answers as in Phase 1. (3)
Replace the public key of IDi by a new public key
value N 0

IDi
. The challenger answers as in Phase 1. (4)

Extract the secret key PrivKeyR of IDi. The chal-
lenger answers as in Phase 1. (5) Decrypt < IDi, Ci, Ni >
6=< IDch, C∗, Nch >. The challenger answers as in Phase
1.
Guess The adversary generates a guess b0 ∈ {0, 1} and
wins the game if b0 = b
In summary, a Type-I adversary A against CL-PKE

does not know the master-key, but can replace public key
values and extract secret keys PrivKeyL and PrivKeyR,
ask public keys and decryptions, for chosen identities, un-
der the following restrictions: (1) A cannot extract the
secret key PrivKeyL for IDch. (2) A cannot extract
the secret key PrivKeyR for identifiers whose public keys
were replaced. (3) In Phase 2, A cannot issue decryption
queries on the challenge ciphertext C∗, for the correspond-
ing IDch and Nch, which were used to encrypt mb.
Such an adversary is called Type-I IND-CCA2. We say

the advantage of an adversary A of Type-I IND-CCA2

against a scheme S is a function of the security parameter
k, defined by: AdvIS,A(k) = |Pr[b = b0]− 1/2|

5. Type-II IND-CCA2 adversary

The Type-II adversary against CL-PKE knows the mas-
ter-key (and thus it knows PrivKeyL for any entity) and
plays Game 2 against a challenger, as follows:
Setup The challenger uses a security parameter k and
executes the algorithm setup. It gives to the adversary
the system parameters params and the master-key. The
adversary chooses a victim with identity IDch.
Phase 1 The adversary issues queries q1, ..., qn of one
of follows, to the challenger: (1) Publish the public
key of IDi. As in Phase 1 of Game 1, the challenger an-
swers executing the algorithm publish and returns NIDi

to the adversary, but it keeps a list of key pairs < NIDi
,

tIDi
> previously generated. (2) Decrypt < IDch, Ci,

Nch >. The challenger answers with a decryption, as in
Phase 1 of Game 1.
Challenge Once the adversary decides Phase 1 is fin-
ished, it gives the challenger two equal length messages
m0,m1 ∈ M, over which the challenge is to be applied.
The challenger randomly chooses a challenge b ∈ {0, 1}
and returns to the adversary, as a challenge, the cipher-
text C∗ = encrypt(params, IDch, mb,Nch)
Phase 2 The adversary issues new queries qn+1, ..., ql
of one of follows, to the challenger: (1) Publish the
public key of IDi. The challenger answers as in Phase
1. (2) Decrypt < IDch, C∗,Nch > where Ci 6= C∗. The
challenger answers as in Phase 1.
Guess The adversary generates a b0 ∈ {0, 1} and wins
the game if b0 = b
In summary, an adversary A of Type-II against CL-

PKE knows the master-key, and consequently it can com-
pute the secret partial key PrivKeyL. Furthermore, it
may ask for public keys and for decryptions, for an iden-
tity of its choice, under the following restrictions: (1) A
cannot replace the public key values. (2) A cannot ex-
tract secret keys PrivKeyR. (3) In Phase 2, A cannot
issue decryption queries on the challenge ciphertext C∗,
for the corresponding IDch and Nch, which were used to
encrypt mb.
Such an adversary is called Type-II IND-CCA2. We say

the advantage of an adversary A of Type-II IND-CCA2
against a scheme S is a function of the security parameter
k, defined by: AdvIIS,A(k) = |Pr[b = b0]− 1/2|
Given the descriptions of adversaries against CL-PKE,

we define the security notions as follows.

Definition 1. A CL-PKE scheme S satisfies the IND-
CCA2 notion of security for any Type-I and Type-II IND-
CCA2 adversary A, in polynomial time on k, if the follow-
ing advantages are negligible AdvIS,A(k) and Adv

II
S,A(k)

6. Auxiliary Schemes

In this Section we define the set of algorithms Basic
and Basic Hyb, which constitute Public Key Encryption
schemes, to be used in the proofs in Section 7 as chal-
lengers.

For Type I adversaries we will have a sequence of reduc-
tions envolving Basic and Basic Hyb such that if there
is a non-negligible advantage for an adversary against our
CL-PKE then there is a polynomial time algorithm to
solve the BDH (Bilinear Diffie-Hellman) Problem. Simi-
larly for Type II adversaries the GDH (Gap Diffie-Hellman)
Problem is reduced to a polynomial time attack of our CL-
PKE.

6.1. Basic

Basic is defined by three algorithms as follows:
generatekeysb Given a security parameter k: (1) Gen-
erate two cyclic groups G1 and G2 of prime order q and
a bilinear pairing ê : G1 × G1 → G2. Choose randomly
a generator P ∈ G∗1. (2) Choose randomly s ∈ Z∗q and
compute Ppub = sP . (3) Choose randomly QA ∈ G∗1 and
tA ∈ Z∗q and compute NA = tAP . (4) Choose hash func-
tion H2 : G1 ×G2 ×G1 → {0, 1}n for integer n > 0. The
message space is M = {0, 1}n. The ciphertext space is
C = G∗1×{0, 1}n. The secret key isKsec = dA. The public
key is Kpub =< q,G1,G2, ê, n, P,Ppub, H2,QA,NA >=<
paramsb, QA, NA >.
encryptb Given a message m ∈ M and a public key
Kpub: (1) choose randomly r ∈ Z∗q . (2) compute gr =
ê(Ppub, QA)

r. (3) return the ciphertext C =< rP,m ⊕
H2(rP, gr , rNA) >
decryptb Given C =< U, V >∈ C, paramsb, The secret
key Ksec and a value tA ∈ Z∗q : (1) compute g0 = ê(U, dA).
(2) compute and return V ⊕H2(U, g0, tAU) =m.
6.2. Basic Hyb

Basic Hyb is defined by the following algorithms:
generatekeysh Given a security parameter k: (1) Gen-
erate two cyclic groups G1 and G2 of prime order q and
a bilinear pairing ê : G1 × G1 → G2 choose randomly
a generator P ∈ G∗1. (2) choose randomly s ∈ Z∗q and
compute Ppub = sP . (3) choose randomly QA ∈ G∗1 and
tA ∈ Z∗q ; compute NA = tAP and dA = sQA. (4) choose
two hash functions H2 : G1 × G2 × G1 → {0, 1}n, H3 :
{0, 1}n−k0 × {0, 1}k0 → Z∗q for integers n and k0, 0 <
k0 < n, with k0 polynomial on n. The message space
is M = {0, 1}n−k0 . The ciphertext space is C = G∗1 ×
{0, 1}n. The secret key is Ksec = dA. The public key is
Kpub =< q,G1,G2, ê, n, k0, P, Ppub,H2,H3, QA, NA >=<
paramsh, QA, NA >.
encrypth Given a message m ∈ M and a public key

Kpub: (1) choose randomly σ ∈ {0, 1}k0 . (2) compute r =
H3 (m,σ), g

r = ê(Ppub,QA)
r . (3) return the ciphertext

C =< rP, (m||σ)⊕H2(rP, gr , rNA) >
decrypth Given C =< U, V >∈ C, paramsh and the
secret key Ksec and a value tA ∈ Z∗q : (1) compute g0 =
ê(U, dA). (2) compute V ⊕H2(U, g0, tAU) = (m||σ). (3)
split (m||σ) and compute r = H3(m,σ). (4) if U = rP ,
return the message m, otherwise return ⊥.

7. Type I adversary and a sequence of re-
ductions

With the auxiliary schemes Basic and Basic Hyb,
we will prove that our CL-PKE scheme is secure against

Type-I IND-CCA2 adversaries. The sequence of reduc-
tions is illustrated below with the corresponding Lemmas,
where → means “reduced to”, and Aj means “an adver-
sary”:

A1 →→→→→ Lemma 1→ A2

Type I IND-CCA2
↓
against
↓
Our CL-PKE

A2 →→→→→ Lemma 3→ A3

Type I IND-CCA2
↓
against
↓
PKE-Basic Hyb

A3 →→→→→ Lemma 4→ B

IND-CPA B solves BDH
↓
against
↓
PKE-Basic

Lemma 1. Assume H1 is a random oracle. Let A1 be a
Type-I IND-CCA2 adversary against our CL-PKE scheme,
with advantage ε1, execution time t1, which issues at most
q1 queries to H1, qe key extract queries and qd decrypt
queries. Then there is a Type I IND-CCA2 adversary A2
against Basic Hyb with advantage ε2 ≥ ε1/q1 and exe-
cution time t2 ≤ t1+ cG1

(q1+ qd+ qe), where cG1
denotes

the multiplication time of a point in G1 by a scalar.

Proof: We construct a Type-I IND-CCA2 adversary A2
that uses A1 to obtain an advantage against Basic Hyb.
This proof is similar to the proof of Lemma 1 in [ChCo5].
The game between the challenger Ch and the adversary

A2 begins with the challenger generating the public para-
meters, with the execution of algorithm generatekeysh,
of Basic Hyb. As result, the public key is Kpub = <
q,G1,G2, ê, n, k0, P, Ppub,H2, H3,QA, NA >=< paramsh,
QA,NA > and the secret keyKsec = dA are obtained. The
challenger returns Kpub to A2 and keeps Ksec.
The adversary A2 mounts an IND-CCA2 attack against

Basic Hyb using Kpub and A1 as follows.
A2 chooses at random an index I, 1 ≤ I ≤ q1, that will

be associated to an identity upon which A2 will try to
apply the challenge. A2 simulates the algorithm setup of
our CL-PKE, returning to A1: params =< q,G1,G2, ê, n,
k0, P, Ppub,H1, H2,H3 >=< paramsh, H1 > where H1 is
a random oracle controlled by A2.
The adversary A1 can issue queries to H1 at any time.

These queries are processed by the algorithm queries to
H1, as follows.
queries to H1 When A1 queries H1 for IDi, A2 an-
swers by looking up a list of triples < IDj, Qj, hj >.

The list, denoted by Hlist
1 , is initially empty. A2 may

give one out of the following three answers: (1) If IDi
already occurs in Hlist

1 , say a triple < IDi, Qi, hi >,
then A2 answers with Qi ∈ G∗1. (2) Otherwise, if the
query is on the I-th distinct identifier, then A2 stores
< IDI , QA,⊥ > in the list and answers H1(IDI) = QA.
(3) Otherwise, A2 selects at random an integer hi ∈ Z∗q ,
computes Qi = hiP ∈ G∗1, stores < IDi,Qi, hi > in the
list and answers Qi.
The game between the challenger Ch and the adversary

A2 proceeds in the following Phases.
Phase 1 The adversary A1 launches this Phase 1 of its
attack as a series of queries (of extract of partial secret
key PrivKeyL, publish of public key, replace, extract
of PrivKeyR or decrypt). We can consider that A1 will
always issue a query to H1, for the same identity on which
it will try to issue the next queries. A2 simulates the
challenge of A1 and answers these queries as follows: (1)
Extract the PrivKeyL of IDi. If IDi = IDI , then A2
aborts the game (Event 1); otherwise answers with hisP ,
where hi comes from the triple corresponding to IDi in
Hlist
1 and sP = Ppub. (2) Publish for IDi. To answer

this query, A2 keeps another list, Klist, with quadruples of
the form < IDi, ti, tiP,Ri >, indexed by IDi. For a new
IDi, A2 selects randomly an integer ti ∈ Z∗q and inserts a
quadruple < IDii , ti, tiP, tiP > in the list, otherwise A2
answers with Ri. (3) Replacement for IDi by Ni. A2
replaces Ri by Ni, in the quadruple indexed by IDi in the
Klist. (4) Extract the PrivKeyR for IDi. A2 verifies
if Ri = tiP in the quadruple indexed by IDi in Klist.
If so, A2 returns ti, otherwise aborts the game (Event
2). (5) Decrypt < IDi, Ci,Ni >. A2 looks up Klist for a
quadruple such that Ni = tiP . If such quadruple does not
exist, thenA2 aborts the game (Event 3). If the query for
decryption was for Ci =< U,V > for IDI (i.e., IDi = IDI
), then A2 requests decryption of Ci and ti, and gives the
answer from the challenger Ch to A1. Otherwise, A2 tries
to decrypt by asking to H2 (which is controlled by Ch) to
obtain H2(U, gr , tiU), where gr = ê(U, hisP)r and hisP is
obtained thru the extraction of PrivKeyL. By splitting
V ⊕H2(U, gr, tiU), A2 gets a result which is given to A1.
Challenge At some point in time, A1 finishes Phase 1,
chooses IDch,Nch and two messages m0,m1 on which it
wants to challenge. If IDch 6= IDI , then A2 aborts the
game (Event 4); otherwise, m0, m1 and Nch are given to
Ch, that answers with the ciphertext Cch =< U 0, V 0 >.
A2 gives to A1 the ciphertext Cch.
Phase 2 A2 keeps answering the requests the same way
as in Phase 1, but it aborts the game if any decryption
request on < IDi, Cch,Nch > is done (Event 5).
Guess If A1 issues a guess b0, A2 returns the same guess
b0.
The proof of Lemma 1 will continue after Proposition

2, whose proof is given in the full paper.

Proposition 2. If the adversary A2 does not abort dur-
ing the simulation, then the algorithm A1’s view is the
same as its view in the real attack.

Now it suffices to compute the probability of A2 not
aborting during the simulation. There are five events

which cause an abortion: (1) Event 1, denoted H1: A1
asked PrivKeyL for IDI ; (2) Event 2, denoted H2: A1
replaced a public key of a particular identity and later
asked its PrivKeyR; (3) Event 3, denoted H3: A1 asked
to decrypt with an unknown public key Ni; (4) Event 4,
denoted H4: A1 did not choose IDI as IDch; (5) Event
5, denoted H5: A2 asked to decrypt Cch in Phase 2;
Any attempt to extract PrivKeyR for an entity that

had its public key replaced is not allowed for A1. Since
A2 only simulates the requests by A1, H2 does not hap-
pen without A1 aborting. A decryption request with
an unknown public key does not produce a result (since
A1 would receive ⊥ as answer) and it is possible for A1
avoid this situation in its implementation. Thus, we con-
sider A2 does not imply H3. Further, H5 only happens
when, in the challenge, A1 chooses IDI = IDch, but
A1 would be aborted if it requests a decryption on <
IDch, Cch, Nch >, the same way A2 would do. Further,
the fact that H4 did not occur in the challenge phase (i.e.„
IDI = IDch) implies that H1 did not occur (since if it oc-
cured, A1 would have asked PrivKeyL of IDch and would
be aborted before the challenge). Hence, we have Pr[A2
not aborted] = Pr[¬H1 ∧ ¬H2 ∧ ¬H3 ∧ ¬H4 ∧ ¬H5] =
Pr[¬H 1 ∧¬H4 ∧¬H5] = Pr[¬H4]̇ The choice of I by A2
is independent of the choice of IDI by A1 , thus, Pr[A2
not aborted] = 1/q1. A2 uses the guess of A1, whose def-
inition says |Pr[b = b0]− 1/2| ≥ ε1. If A2 does not abort
and its guess is successful, it wins the game. Combining
these elements, we have the advantage: ε2 ≥ ε1/q1
For the analysis of the time complexity of A2, observe

the following: (1) Since A2 basically simulates the chal-
lenge by A1, the execution time of A1, denoted t1, is the
principal component. (2) In the simulation, each extrac-
tion request of PrivKeyL, decrypt request and query to
H1 involves a scalar multiplication in G

∗
1, that A1 would

not do in the real attack. Considering cG1
denotes the

multiplication time of a point in G1 by a scalar (random),
then cG1(q1 + qd + qe) is another component in the com-
putation of t2. Then t2 ≤ t1+cG1(q1+qd+qe). This ends
the proof of Lemma 1 2

Lemma 3. Assume H3 is a random oracle. Let A2 be
an IND-CCA2 adversary against the Basic Hyb scheme,
with advantage ε2, execution time t2, which issues at most
q3 queries to H3 and qd decryption queries. Then there
is an IND-CPA (defined in the Appendix) adversary A3
againstBasic with advantage ε3 ≥

¡
ε2 − q3

2k0−1
¢ ³
1− 1

q

´qd
and execution time t3 ≤ t2 + q3(Tencryptb + c.n) where c
is a constant, (n − k0) is the plaintext message length in
bits, q is the order of G1 and Tencryptb is the execution
time of encryptb.

Proof: Consequence of Theorem 5.4. in [FuOk0].2

Lemma 4. Assume H2 is a random oracle. Let A3 be
an IND-CPA adversary against the Basic scheme, with
advantage ε, execution time t3 and it issues at most q2
queries to H2. Then there is an algorithm B that solves
BDH (Bilinear Diffie Hellman) Problem in G1 with ad-
vantage ε ≥ 2ε3/q2, with time complexity O(t3).

Proof: We will construct an algorithm B to solve BDH,
while interacting with the adversary A3. Our proof is
similar to Lemma 4.3 in [BoFr1], which was also used in
the proof of Lemma 3 in [ChCo5].
Initially, B receives as input the BDH parameters <

q,G1, G2, P, ê >, produced from a security parameter k.
It receives an instance < P, aP, bP, cP >, where a, b, c are
values selected at random from Z∗q . The algorithm B finds
the value ê(P,P)abc, interacting with A3 as follows: (1)
setup. B simulates the algorithm generatekeysb to cre-
ate the public keyKpub =< q,G1, G2, ê, n, P, Ppub,H2, QA,
NA > with Ppub = aP (i.e., s = a), QA = bP and
NA = tAP , where tA is chosen randomly from Z∗q . The
secret key Ksec = dA = sQA, that B does not know, is
dA = abP . H2 is a random oracle controlled by B. Kpub
is given to A3 and the game proceeds in the following
phases. (2) queries. B answers the queries from A3
to the oracle H2 (to encrypt the plaintexts) as follows:
queries H2(Xi, Yi, Zi): At any time A3 can query H2. B
answers to these queries with the help of a list of quadru-
ples < Xi, Yi, Zi, Hi >, indexed by the first three terms.
The list, denoted Hlist

2 , is initially empty. B can give
one out the two answers: (a) If (Xi, Yi, Zi) is an index
of a quadruple in Hlist

2 , then B answers with the corre-
sponding Hi. (2) otherwise, B selects at random a string
Hi ∈ {0, 1}n, inserts a quadruple < Xi, Yi, Zi, Hi > in
the list and answers with Hi. (2) challenge. A3 finishes
the query phase and gives two equal length messages m0

and m1. B chooses at random a string R ∈ {0, 1}n, it de-
fines the ciphertext Cch =< U 0, V 0 >=< cP,R >, which
is given to A3. Observe that the decrypted Cch is: V 0 ⊕
H2(U 0, ê(U 0, dA), cNA) = R⊕H2(cP, ê(cP, abP), cNA). (3)
guess. A3 generates a guess b ∈ {0, 1} (that will not
be used). Now, B chooses at random a quadruple <
Xi, Yi, Zi,Hi > from Hlist

2 . B assumes Xi = cP and an-
swers Yi, as being the solution of ê(cP, abP) = ê(P,P)abc.
Let H be the event of the algorithm A3 issuing a query

aboutH2(cP, ê(cP, abP), cNA) =H2(X, Y,Z) at some point
in time during the simulation.
The proof of Lemma 4 will continue after Proposition 5

and 6, whose proofs are given in the full paper.

Proposition 5. Pr[H] in the simulation is equal to Pr[H]
in the real attack by A3.

Proposition 6. In the real attack Pr[H] ≥ 2ε3.
From Proposition 5 and Proposition 6 it follows that

Pr[H] ≥ 2ε3. Hence, after the simulation, (X,Y,Z) oc-
curs in some quadruple in Hlist

2 , with probability at least
2ε3. Considering that A3 issues q2 distinct queries, it fol-
lows that B answers correctly the computation of ê(P, P)abc
with probability at least 2ε3/q2.
For the time complexity analysis of B, we need to ob-

serve that, during the queries, q2 distinct operations are
done with the list Hlist

2 . Then the time complexity t =
q2O(log q2)+O(1). On the other hand, t3 = q2Tencryptb+
Tguess, where Tencryptb is the execution time of encryptb
and Tguess is the time for A3 to produce the guess. By
the definition of A3, its execution time is polynomial on k,
as well as the time for encryptb. fwConsider the integers

0 ≤ x, y, z = O(k), with q2 = O(kx), Tencryptb = O(k
y),

Tguess = O(kz). Then t3 = O(kx)O(ky) + O(kz) and
t = O(kx) O(log kx) = O(kx) O(log k) = O(t3) since
y > 0, because Tencryptb involves computation of the pair-
ing ê(). This ends the proof of Lemma 4. 2

Theorem 7. If the BDH Problem is difficult over G1 and
the hash functions H1,H2, and H3 are random oracles,
then the proposed CL-PKE is secure againts Type-I IND-
CCA2.

Proof: Assume there is an Type-I IND-CCA2 adversary
against our CL-PKE, with a non-negligible advantage ε1,
that issues at most qd queries for decryption, qe queries for
extraction of the partial secret key and q1, q2, q3 queries
to H1,H2, H3, respectively, and with execution time t1.
It follows from the three previous lemmas that there is

an algorithmwhich solves BDHwith non-negligible advan-

tage ε ≥ 2
q2

³
ε1
q1
− q3

2k0−1

´³
1− 1

q

´qd
and execution time

t ≤ t1+cG1(q1+ qd+qe)+q3(Tencryptb+c0.n)+ c1 where
c0, c1 are constants, (n−k0) is the size in bits of messages
and Tencryptb is the execution time of encryptb. Since t1
is polynomial on k (as well as t2 and t3), t is also poly-
nomial on k. If we rename all qi, i ∈ {1, 2, 3}, by qH , we
obtain the approximation ε ' 2ε1

q2
H
. Hence our CL-PKE is

secure against a Type-I IND-CCA2 adversary.2

8. Type-II adversary and a sequence of re-
ductions

The Gap Diffie-Hellman - GDH - Problem is considered
in the following:

Theorem 1. If the GDH Problem is difficult in G1 and
H1,H2, H3 are random oracles, then our CL-PKE scheme
is secure against Type-II IND-CCA2 adversaries.

Proof: It is given in the full paper.

9. Conclusions

We have constructed a CL-PKE scheme that does not
allow key escrow, which is undesirable in many appli-
cations. We analyzed both its efficiency and security.
It is more efficient than previously published CL-PKE
schemes, and we proved it is strong against IND-CCA2
attack, under the Random Oracle Model.

References

[AlPa3] AL-RIYAMI, S. S.; PATERSON, K. G. Cer-

tificateless Public Key Cryptography. 2003.

Cryptology ePrint Archive, Report 2003/126.

http://eprint.iacr.org/.

[AlPa5] AL-RIYAMI, S. S.; PATERSON, K. G. C: CBE
from CL-PKE: A generic construction and efficient

schemes. In: Public Key Cryptography - PKC 2005.

[S.l.: s.n.], 2005. pp. 398-415.

[Be8a] BELLARE, M. et al. Relations among notions

of security for public-key encryption schemes. In:

CRYPTO 98: Proceedings of the 18th Annual IACR

Conference on Advances in Cryptology. Springer-

Verlag, 1998. pp. 26-45. ISBN 3-540-64892-5.

[Be8] BELLARE, M.; Practice-oriented provable-security.

In: ISW ’97: Proceedings of the First Interna-

tional Workshop on Information Security. London,

UK: Springer-Verlag, 1998. pp 221-231. ISBN 3-540-

64382-6.

[BoFr1] BONEH, D.; FRANKLIN, M. K. Identity-based en-
cryption from the Weil pairing. In: CRYPTO 01:

Proceedings of the 21st Annual International Cryp-

tology Conference on Advances in Cryptology. Lon-

don, UK: Springer-Verlag, 2001. pp. 213-229. ISBN

3-540-42456-3. http://eprint.iacr.org/2001/090/.

[ChCo5] CHENG, Z.; COMLEY, R. Efficient Certificate-
less Public Key Encryption. 2005. Cryptology ePrint

Archive, Report 2005/012. http://eprint.iacr.org/.

[ChLe2] CHEON, J. H.; LEE, D. H. Diffie-Hellman Problems
and Bilinear Maps. 2002. Cryptology ePrint Archive,

Report 2002/117. http://eprint.iacr.org/.

[CrSh4] CRAMER, R.; SHOUP, V. Design and Analysis

of Practical Public-Key Encryption Schemes Secure

against Adptative Chosen Ciphertext Attack, SIAM

Journal of Computing 33:167-226, 2003.

[FuOk9] FUJISAKI, E.; OKAMOTO, T. Secure Integration
os Asymetric and Symmetric Encryption Schemes. In:

CRYPTO 99: Proceedings of the Annual IACR Con-

ference on Advances in Cryptology. Springer-Verlag

LNCS #1666, 1999. pp. 535-544.

[FuOk0] FUJISAKI, E.; OKAMOTO, T. How to Enhance the
Security of Public-Key Encryption at Minimum Cost,

IEICE Transactions on Fundamentals, vol. E83-A,

number 1, 2000, ISBN 3-540-65644-8, pp.24—32.

[Ga5] GALINDO, D. Boneh-Franklin Identity Based En-

cryption Revisited. 2005. Cryptology ePrint Archive,

Report 2005/117. http://eprint.iacr.org/.

[Ge3] GENTRY, C. Certificate-Based Encryption

and the Certificate Revocation Problem. 2003

http://eprint.iacr.org/2003/183/.

[Sh4] SHAMIR, A. Identity-based cryptosystems and sig-

nature schemes. In: Proceedings of CRYPTO 84

on Advances in cryptology. New York, NY, USA:

Springer-Verlag New York, Inc., 1984. pp. 47-53.

ISBN 0-387-15658-5.

