An Improved Certificateless Public Key Encryption

Routo Terada *

Denise H. Goya ${ }^{\dagger}$

1. Introduction

The concept of Identity Based Encryption - IBE - system was proposed by [Sh4] for which the public key can be the identity itself. [BoFr1] presented an IBE system based on bilinear pairing functions, that requires a Public Key Generator - PKG. The PKG needs to be trusted in the sense that it can generate any of the private keys, i.e., it can exercise the so-called key escrow, which is undesirable in many applications. On the other hand this system does not require the so-called Public Key Infrastructure PKI - with its complex and costly management of Digital Certificates. [AlPa3] proposed a Certificateless Public Key Encryption - CL-PKE - scheme, i.e., a cryptographic scheme which does not require either a Digital Certificate to certify the public key or a PKI. It is also based on bilinear pairing functions. In CL-PKE an adversary \mathcal{A} may replace the victm's public key with another one, say X, so that \mathcal{A} knows the private key corresponding to X; but still \mathcal{A} is not able to decrypt the message encrypted with the original published public key. This important property is accomplished by the fact that only the PKG can bind the key pair for any other entity with that entity. For a secure CL-PKE scheme the public key of an entity can be bound to an identity of the entity without any security measure. Furthermore, it is key escrow free, which is not achieved in the framework proposed in [Sh4].

In this paper we construct a CL-PKE scheme based on bilinear pairing functions which: (1) does not allow key escrow by the PKG; (2) does not require Digital Certificates; (3) is more efficient on computation than previously published IBE or CL-PKE schemes ([BoFr1], [Ge3], [AlPa3], [AlPa5], [ChCo5], [Ga5]); (4) and is secure in the sense that it is strong against IND-CCA2 attack ${ }^{1}$ [Be8a], based on the Random Oracle Model [Be8a] and the difficulty of the BDH Problem ${ }^{2}$ [ChLe2]. For the security proof we reduce (in polynomial time) the problem of solving the BDH Problem to the IND-CCA2 attack against our CL-PKE. The BDH Problem is as follows: (1) Let G_{1} and G_{2} be two groups of prime order q and let $\hat{e}: G_{1} \times G_{1} \rightarrow G_{2}$ be a bilinear pairing function; (2) Given $P \in G_{1}^{*}, a, b, c \in Z_{q}^{*}$

[^0]and $P, a P, b P, c P$ compute $\hat{e}(P, P)^{a b c}$.

2. Proposed CL-PKE scheme

Our CL-PKE sheme is defined as the following set of algorithms.
setup Given a security parameter k the Public Key Generator - PKG: (1) generates two cyclic groups G_{1} and G_{2} of prime order q and a bilinear pairing $\hat{e}: G_{1} \times G_{1} \rightarrow$ G_{2}. Choose randomly a generator $P \in G_{1}^{*}$. (2) Chooses randomly $s \in Z_{q}^{*}$ and compute $P_{p u b}=s P$. (3) Chooses three hash functions: (a) $H_{1}:\{0,1\}^{*} \rightarrow G_{1}^{*}$ (b) H_{2} : $G_{1} \times G_{2} \times G_{1} \rightarrow\{0,1\}^{n}$ integer $n>0\left(\right.$ c) $H_{3}:\{0,1\}^{n-k_{0}} \times$ $\{0,1\}^{k_{0}} \rightarrow Z_{q}^{*}$, for integers n and $k_{0}, 0<k_{0}<n$, with k_{0} polynomial on n. The message space is $\mathcal{M}=\{0,1\}^{n-k_{0}}$. The ciphertext space is $\mathcal{C}=G_{1}^{*} \times\{0,1\}^{n}$. The system master-key is s. The system parameters are params $=$ $\left\langle q, G_{1}, G_{2}, \hat{e}, n, k_{0}, P, P_{\text {pub }}, H_{1}, H_{2}, H_{3}\right\rangle$
extract Given an identifier $I D_{A} \in\{0,1\}^{*}$, params and a master-key s the PKG: (1) computes $Q_{A}=H_{1}\left(I D_{A}\right)$. (2) returns the partial secret key $d_{A}=s Q_{A}$.
publish Given params, an entity A selects at random a secret information $t_{A} \in Z_{q}^{*}$ and computes its public key $N_{A}=t_{A} P$. A keeps t_{A} safely and publishes N_{A}.
encrypt Given a plaintext $m \in \mathcal{M}$, an identity $I D_{A}$, params and a public key N_{A} any message sender: (1) chooses randomly $\sigma \in\{0,1\}^{k_{0}}$. (2) computes $r=H_{3}(m, \sigma)$, $Q_{A}=H_{1}\left(I D_{A}\right), g^{r}=\hat{e}\left(P_{p u b}, Q_{A}\right)^{r}, f=r N_{A}$. (3) returns the ciphertext $C=\left\langle r P,(m \| \sigma) \oplus H_{2}\left(r P, g^{r}, f\right)\right\rangle$.
decrypt Given $C=\langle U, V\rangle \in \mathcal{C}$ and the secret values d_{A} and t_{A}, the entity A : (1) computes $g^{\prime}=\hat{e}\left(U, d_{A}\right)$, $f^{\prime}=t_{A} U, V \oplus H_{2}\left(U, g^{\prime}, f^{\prime}\right)=(m \| \sigma)(2)$ splits $(m \| \sigma)$ and computes $r=H_{3}(m, \sigma)(3)$ if $U=r P$, returns the plaintext m, else return \perp.

2.1. Decryption of the proposed CL-PKE

To prove the decryption is correct, it is enough to remember the pairing $\hat{e}()$ is bilinear, as shown next: $g^{\prime}=$ $\hat{e}\left(U, d_{A}\right)=\hat{e}\left(r P, s Q_{A}\right)=\hat{e}\left(P, Q_{A}\right)^{r s}=\hat{e}\left(s P, Q_{A}\right)^{r}=$ $\hat{e}\left(P_{p u b}, Q_{A}\right)^{r}=g^{r}, f^{\prime}=t_{A} U=t_{A} r P=r N_{A}=f$. Hence $H_{2}\left(U, g^{\prime}, f^{\prime}\right)=H_{2}\left(r P, g^{r}, f\right)$. Since $V=(m \| \sigma) \oplus$ $H_{2}\left(r P, g^{r}, f\right), V \oplus H_{2}\left(r P, g^{r}, f\right)=(m \| \sigma)$. Therefore decrypt recovers correctly the plaintext from the ciphertext by applying encrypt.

In summary, our CL-PKE may be described as a composition of previous works, as follows. The usage of $r P$ in H_{2} was suggested by $[\mathrm{CrSh} 4]$. The usage of $r N_{A}$ and a complete formulation of H_{2} was found in [ChCo5], where they try to optimize the CL-PKE in [AlPa5] and [AlPa3]. The choices of the message and ciphertext spaces, besides H_{3}, was inspired by [Ga5], which in turn adopted the tranformation in [FuOk0] to strengthen the public key encryption scheme using fewer hash functions. [Ga5] involved three elliptic groups, it is not CL-PKE (but is IBE), and presented an improvement on the work in [BoFr1], which in turn allowed the realization of CL-PKE.

We briefly show previous PKE schemes based on bilinear pairing below:

Scheme	Ciphertext C	
[BoFr1]	$\left\langle r P, \sigma \oplus H_{2}\left(g^{r}\right), m \oplus H_{4}(\sigma)\right\rangle$	
$[\mathrm{AlPa} 3]$	$\left\langle r P, \sigma \oplus H_{2}\left(g_{\left(N_{A}\right)}^{r}\right), m \oplus H_{4}(\sigma)\right\rangle$	
$[\mathrm{AlPa} 5]$	$\left\langle r P, \sigma \oplus H_{2}\left(g^{r}\right) \oplus H_{5}\left(r N_{A}\right)\right.$, $\left.m \oplus H_{4}(\sigma)\right\rangle$	
$[\mathrm{ChCo5]}$	$\left\langle r P, \sigma \oplus H_{2}\left(r P, g^{r}, r N_{A}\right)\right.$, $\left.m \oplus H_{4}(\sigma)\right\rangle$	
[Ga5]	$\left\langle t P,(m \\| \sigma) \oplus H_{2}\left(g^{t}\right)\right\rangle$	
Our CL-PKE	$\left\langle t P,(m \\| \sigma) \oplus H_{2}\left(t P, g^{t}, t N_{A}\right)\right\rangle$	

Regarding this table, we observe that: (1) In [FuOk9] $r=H_{3}(m, \sigma)$ where $m, \sigma \in\{0,1\}^{n}$. (2) In [FuOk0] $t=$ $H_{3}(m, \sigma)$ where $m \in\{0,1\}^{n-k_{0}}, \sigma \in\{0,1\}^{k_{0}}$.

3. Complexity of the proposed CL-PKE

Let the basic operations be denoted as follows: P for bilinear pairing, M for scalar multiplication, E for exponentiation, and H for hash function.

Then we have the following tables with the number of computations in each of the published similar schemes of public key encryption based on bilinear pairing (where g is the number of bits to represent one point in G_{1}):

	crypt				decrypt			
PKE Scheme	P	M	E	H	P	M	E	H
[AlPa3]	3	1	1	4	1	1	0	3
[AlPa5]	1	2	1	5	1	2	0	4
[ChCo5]	1	2	1	4	1	2	0	3
Our CL-PKE	1	2	1	3	1	2	0	2
size (bits)								
PKE Scheme		pub.k		msg		ciph		
[AlPa3]		$2 g$		n		$g+$	$n+n$	
[AlPa5]		g		n		$g+$	$n+n$	
[ChCo5]		g		n		$g+$	$n+n$	
Our CL-PKE		g		$m^{\prime}-$		$g+$		

For some choices of m^{\prime} and k_{0}, k_{0} being of polynomial size on m^{\prime}, our CL-PKE computes smaller ciphertexts, as shown below, for the case $n=m^{\prime}-k_{0}$: (1) for $k_{0}>n, m^{\prime}>$ $2 n$, the ciphertext size is greater than in previous schemes; for $k_{0}=n, m^{\prime}=2 n$ it is equal; and for $k_{0}<n, m^{\prime}<2 n$, it is smaller. The case $k_{0}<n$ is the best choice, as long as $k_{0}(n)=O\left(n^{1 / c}\right)$, where $c>1$ is a constant.

4. Type-I IND-CCA2 adversary

This Section defines a type of adversary that will be used in Section 7.

The Type-I adversary against CL-PKE does not know the master-key and plays the Game 1 against a challenger, as follows:
Setup The challenger uses a security parameter k and executes the algorithm setup. It gives the adversary the system parameters params and keeps master-key safely.
Phase 1 The adversary issues queries q_{1}, \ldots, q_{n} of one of follows, to the challenger: (1) Extract the partial secret key PrivKeyL of $I D_{i}$. The challenger answers executing the algorithm extract and gives the result $d_{I D_{i}}$ to the adversary. (2) Publish the public key of $I D_{i}$. The challenger answers executing the algorithm publish and provides $N_{I D_{i}}$ to the adversary, but it keeps a list of key pairs $\left(N_{I D_{i}}, t_{I D_{i}}\right)$ already generated. (3) Replace. Replace the public key of $I D_{i}$ by a new value $N_{I D_{i}}^{\prime}$. The challenger records the new value $N_{I D_{i}}^{\prime}$ for $I D_{i}$. (4) Extract the secret key PrivKeyR of $I D_{i}$. If the public key of $I D_{i}$ has not been replaced, the challenger answers returning the corresponding value $t_{I D_{i}}$; otherwise, the game is aborted. (5) Decrypt $<I D_{i}, C_{i}, N_{i}>$. The challenger decrypts the ciphertext, after getting the secret values $d_{I D_{i}}$ (by executing extract, if necessary) and $t_{I D_{i}}$ (by looking up the list of key pairs, whose size is bounded by a polynomial on the amount of publications). If $t_{I D_{i}}$ is not found, the challenger returns \perp.
Challenge Once the adversary decides the Phase 1 is finished, it returns to the challenger two equal length messages $m_{0}, m_{1} \in \mathcal{M}$, an identity $I D_{c h}$ and a public key $N_{c h}$ upon which the challenge is to be applied. The challenger randomly chooses $b \in\{0,1\}$ and returns to the adversary the ciphertext $C^{*}=\operatorname{encrypt}\left(\right.$ params $\left., I D_{c h}, m_{b}, N_{c h}\right)$ as the challenge, under the condition that $I D_{c h}$ was not used in any previous extraction of the secret key PrivKeyL, in Phase 1 (so, $N_{c h}$ could be replaced, if the PrivKeyR is not asked).
Phase 2 The adversary issues new queries q_{n+1}, \ldots, q_{l} of one of follows, to the challenger: (1) Extract the partial secret key of $I D_{i}$, such that $I D_{i} \neq I D_{c h}$. The challenger answers as in Phase 1. (2) Publish the public key $I D_{i}$. The challenger answers as in Phase 1. (3) Replace the public key of $I D_{i}$ by a new public key value $N_{I D_{i}}^{\prime}$. The challenger answers as in Phase 1. (4) Extract the secret key PrivKeyR of $I D_{i}$. The challenger answers as in Phase 1. (5) Decrypt $<I D_{i}, C_{i}, N_{i}>$ $\neq<I D_{c h}, C^{*}, N_{c h}>$. The challenger answers as in Phase 1.

Guess The adversary generates a guess $b^{\prime} \in\{0,1\}$ and wins the game if $b^{\prime}=b$

In summary, a Type-I adversary \mathcal{A} against CL-PKE does not know the master-key, but can replace public key values and extract secret keys PrivKeyL and PrivKeyR, ask public keys and decryptions, for chosen identities, under the following restrictions: (1) \mathcal{A} cannot extract the secret key PrivKeyL for $I D_{c h}$. (2) \mathcal{A} cannot extract the secret key PrivKeyR for identifiers whose public keys were replaced. (3) In Phase 2, \mathcal{A} cannot issue decryption queries on the challenge ciphertext C^{*}, for the corresponding $I D_{c h}$ and $N_{c h}$, which were used to encrypt m_{b}.

Such an adversary is called Type-I IND-CCA2. We say the advantage of an adversary \mathcal{A} of Type-I IND-CCA2
against a scheme \mathcal{S} is a function of the security parameter k, defined by: $A d v_{\mathcal{S}, \mathcal{A}}^{I}(k)=\left|\operatorname{Pr}\left[b=b^{\prime}\right]-1 / 2\right|$

5. Type-II IND-CCA2 adversary

The Type-II adversary against CL-PKE knows the mas-ter-key (and thus it knows PrivKeyL for any entity) and plays Game 2 against a challenger, as follows:
Setup The challenger uses a security parameter k and executes the algorithm setup. It gives to the adversary the system parameters params and the master-key. The adversary chooses a victim with identity $I D_{c h}$.
Phase 1 The adversary issues queries q_{1}, \ldots, q_{n} of one of follows, to the challenger: (1) Publish the public key of $I D_{i}$. As in Phase 1 of Game 1, the challenger answers executing the algorithm publish and returns $N_{I D_{i}}$ to the adversary, but it keeps a list of key pairs $<N_{I D_{i}}$, $t_{I D_{i}}>$ previously generated. (2) Decrypt $<I D_{c h}, C_{i}$, $N_{c h}>$. The challenger answers with a decryption, as in Phase 1 of Game 1.
Challenge Once the adversary decides Phase 1 is finished, it gives the challenger two equal length messages $m_{0}, m_{1} \in \mathcal{M}$, over which the challenge is to be applied. The challenger randomly chooses a challenge $b \in\{0,1\}$ and returns to the adversary, as a challenge, the ciphertext $C^{*}=$ encrypt(params, $I D_{c h}, m_{b}, N_{c h}$)
Phase 2 The adversary issues new queries q_{n+1}, \ldots, q_{l} of one of follows, to the challenger: (1) Publish the public key of $I D_{i}$. The challenger answers as in Phase 1. (2) Decrypt $<I D_{c h}, C^{*}, N_{c h}>$ where $C_{i} \neq C^{*}$. The challenger answers as in Phase 1.
Guess The adversary generates a $b^{\prime} \in\{0,1\}$ and wins the game if $b^{\prime}=b$

In summary, an adversary \mathcal{A} of Type-II against CLPKE knows the master-key, and consequently it can compute the secret partial key PrivKeyL. Furthermore, it may ask for public keys and for decryptions, for an identity of its choice, under the following restrictions: (1) \mathcal{A} cannot replace the public key values. (2) \mathcal{A} cannot extract secret keys PrivKeyR. (3) In Phase 2, \mathcal{A} cannot issue decryption queries on the challenge ciphertext C^{*}, for the corresponding $I D_{c h}$ and $N_{c h}$, which were used to encrypt m_{b}.

Such an adversary is called Type-II IND-CCA2. We say the advantage of an adversary \mathcal{A} of Type-II IND-CCA2 against a scheme \mathcal{S} is a function of the security parameter k, defined by: $A d v_{\mathcal{S}, \mathcal{A}}^{I I}(k)=\left|\operatorname{Pr}\left[b=b^{\prime}\right]-1 / 2\right|$

Given the descriptions of adversaries against CL-PKE, we define the security notions as follows.

Definition 1. A CL-PKE scheme \mathcal{S} satisfies the INDCCA2 notion of security for any Type-I and Type-II INDCCA2 adversary \mathcal{A}, in polynomial time on k, if the following advantages are negligible $A d v_{\mathcal{S}, \mathcal{A}}^{I}(k)$ and $A d v_{\mathcal{S}, \mathcal{A}}^{I I}(k)$

6. Auxiliary Schemes

In this Section we define the set of algorithms Basic and Basic Hyb, which constitute Public Key Encryption schemes, to be used in the proofs in Section 7 as challengers.

For Type I adversaries we will have a sequence of reductions envolving Basic and Basic Hyb such that if there is a non-negligible advantage for an adversary against our CL-PKE then there is a polynomial time algorithm to solve the BDH (Bilinear Diffie-Hellman) Problem. Similarly for Type II adversaries the GDH (Gap Diffie-Hellman) Problem is reduced to a polynomial time attack of our CLPKE.

6.1. Basic

Basic is defined by three algorithms as follows: generatekeysb Given a security parameter k : (1) Generate two cyclic groups G_{1} and G_{2} of prime order q and a bilinear pairing $\hat{e}: G_{1} \times G_{1} \rightarrow G_{2}$. Choose randomly a generator $P \in G_{1}^{*}$. (2) Choose randomly $s \in Z_{q}^{*}$ and compute $P_{\text {pub }}=s P$. (3) Choose randomly $Q_{A} \in G_{1}^{*}$ and $t_{A} \in Z_{q}^{*}$ and compute $N_{A}=t_{A} P$. (4) Choose hash function $H_{2}: G_{1} \times G_{2} \times G_{1} \rightarrow\{0,1\}^{n}$ for integer $n>0$. The message space is $\mathcal{M}=\{0,1\}^{n}$. The ciphertext space is $\mathcal{C}=G_{1}^{*} \times\{0,1\}^{n}$. The secret key is $K_{s e c}=d_{A}$. The public key is $K_{p u b}=<q, G_{1}, G_{2}, \hat{e}, n, P, P_{p u b}, H_{2}, Q_{A}, N_{A}>=<$ paramsb, $Q_{A}, N_{A}>$.
encryptb Given a message $m \in \mathcal{M}$ and a public key $K_{p u b}:$ (1) choose randomly $r \in Z_{q}^{*}$. (2) compute $g^{r}=$ $\hat{e}\left(P_{p u b}, Q_{A}\right)^{r}$. (3) return the ciphertext $C=<r P, m \oplus$ $H_{2}\left(r P, g^{r}, r N_{A}\right)>$
decryptb Given $C=<U, V>\in \mathcal{C}$, paramsb, The secret key $K_{\text {sec }}$ and a value $t_{A} \in Z_{q}^{*}:(1)$ compute $g^{\prime}=\hat{e}\left(U, d_{A}\right)$.
(2) compute and return $V \oplus H_{2}\left(U, g^{\prime}, t_{A} U\right)=m$.

6.2. Basic Hyb

Basic Hyb is defined by the following algorithms: generatekeysh Given a security parameter k : (1) Generate two cyclic groups G_{1} and G_{2} of prime order q and a bilinear pairing $\hat{e}: G_{1} \times G_{1} \rightarrow G_{2}$ choose randomly a generator $P \in G_{1}^{*}$. (2) choose randomly $s \in Z_{q}^{*}$ and compute $P_{\text {pub }}=s P$. (3) choose randomly $Q_{A} \in G_{1}^{*}$ and $t_{A} \in Z_{q}^{*}$; compute $N_{A}=t_{A} P$ and $d_{A}=s Q_{A}$. (4) choose two hash functions $H_{2}: G_{1} \times G_{2} \times G_{1} \rightarrow\{0,1\}^{n}, H_{3}:$ $\{0,1\}^{n-k_{0}} \times\{0,1\}^{k_{0}} \rightarrow Z_{q}^{*}$ for integers n and $k_{0}, 0<$ $k_{0}<n$, with k_{0} polynomial on n. The message space is $\mathcal{M}=\{0,1\}^{n-k_{0}}$. The ciphertext space is $\mathcal{C}=G_{1}^{*} \times$ $\{0,1\}^{n}$. The secret key is $K_{s e c}=d_{A}$. The public key is $K_{p u b}=<q, G_{1}, G_{2}, \hat{e}, n, k_{0}, P, P_{p u b}, H_{2}, H_{3}, Q_{A}, N_{A}>=<$ paramsh, $Q_{A}, N_{A}>$.
encrypth Given a message $m \in \mathcal{M}$ and a public key $K_{p u b}:(1)$ choose randomly $\sigma \in\{0,1\}^{k_{0}}$. (2) compute $r=$ $H_{3}(m, \sigma), g^{r}=\hat{e}\left(P_{p u b}, Q_{A}\right)^{r}$. (3) return the ciphertext $C=<r P,(m \| \sigma) \oplus H_{2}\left(r P, g^{r}, r N_{A}\right)>$
decrypth Given $C=<U, V>\in \mathcal{C}$, paramsh and the secret key $K_{\text {sec }}$ and a value $t_{A} \in Z_{q}^{*}$: (1) compute $g^{\prime}=$ $\hat{e}\left(U, d_{A}\right)$. (2) compute $V \oplus H_{2}\left(U, g^{\prime}, t_{A} U\right)=(m \| \sigma)$. (3) split $(m \| \sigma)$ and compute $r=H_{3}(m, \sigma)$. (4) if $U=r P$, return the message m, otherwise return \perp.

7. Type I adversary and a sequence of reductions

With the auxiliary schemes Basic and Basic Hyb, we will prove that our CL-PKE scheme is secure against

Type-I IND-CCA2 adversaries. The sequence of reductions is illustrated below with the corresponding Lemmas, where \rightarrow means "reduced to", and \mathcal{A}_{j} means "an adversary":

$\mathcal{A}_{1} \rightarrow \rightarrow \rightarrow \rightarrow$	Lemma $1 \rightarrow \mathcal{A}_{2}$
Type I IND-CCA2	
\downarrow	
against	
\downarrow	
Our CL-PKE	
$\mathcal{A}_{2} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	Lemma $3 \rightarrow \mathcal{A}_{3}$
Type I IND-CCA2	
\downarrow	
against	
\downarrow	
PKE-Basic	
$\mathcal{A}_{3} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	Lemma $4 \rightarrow \mathcal{B}$
IND-CPA	\mathcal{B} solves BDH
\downarrow	
against	
\downarrow	
PKE-Basic	

Lemma 1. Assume H_{1} is a random oracle. Let \mathcal{A}_{1} be a Type-I IND-CCA2 adversary against our CL-PKE scheme, with advantage ε_{1}, execution time t_{1}, which issues at most q_{1} queries to H_{1}, q_{e} key extract queries and q_{d} decrypt queries. Then there is a Type I IND-CCA2 adversary \mathcal{A}_{2} against Basic $\mathbf{H y b}$ with advantage $\varepsilon_{2} \geq \varepsilon_{1} / q_{1}$ and execution time $t_{2} \leq t_{1}+c_{G_{1}}\left(q_{1}+q_{d}+q_{e}\right)$, where $c_{G_{1}}$ denotes the multiplication time of a point in G_{1} by a scalar.

Proof: We construct a Type-I IND-CCA2 adversary \mathcal{A}_{2} that uses \mathcal{A}_{1} to obtain an advantage against Basic Hyb. This proof is similar to the proof of Lemma 1 in [ChCo5].

The game between the challenger \mathcal{C}_{h} and the adversary \mathcal{A}_{2} begins with the challenger generating the public parameters, with the execution of algorithm generatekeysh, of Basic Hyb. As result, the public key is $K_{\text {pub }}=<$ $q, G_{1}, G_{2}, \hat{e}, n, k_{0}, P, P_{p u b}, H_{2}, H_{3}, Q_{A}, N_{A}>=<$ paramsh, $Q_{A}, N_{A}>$ and the secret key $K_{\text {sec }}=d_{A}$ are obtained. The challenger returns $K_{\text {pub }}$ to \mathcal{A}_{2} and keeps $K_{\text {sec }}$.

The adversary \mathcal{A}_{2} mounts an IND-CCA2 attack against Basic Hyb using $K_{\text {pub }}$ and \mathcal{A}_{1} as follows.
\mathcal{A}_{2} chooses at random an index $I, 1 \leq I \leq q_{1}$, that will be associated to an identity upon which \mathcal{A}_{2} will try to apply the challenge. \mathcal{A}_{2} simulates the algorithm setup of our CL-PKE, returning to \mathcal{A}_{1} : params $=<q, G_{1}, G_{2}, \hat{e}, n$, $k_{0}, P, P_{\text {pub }}, H_{1}, H_{2}, H_{3}>=<$ paramsh, $H_{1}>$ where H_{1} is a random oracle controlled by \mathcal{A}_{2}.

The adversary \mathcal{A}_{1} can issue queries to H_{1} at any time. These queries are processed by the algorithm queries to H_{1}, as follows.
queries to H_{1} When \mathcal{A}_{1} queries H_{1} for $I D_{i}, \mathcal{A}_{2}$ answers by looking up a list of triples $<I D_{j}, Q_{j}, h_{j}>$.

The list, denoted by $H_{1}^{\text {list }}$, is initially empty. \mathcal{A}_{2} may give one out of the following three answers: (1) If $I D_{i}$ already occurs in $H_{1}^{\text {list }}$, say a triple $<I D_{i}, Q_{i}, h_{i}>$, then \mathcal{A}_{2} answers with $Q_{i} \in G_{1}^{*}$. (2) Otherwise, if the query is on the I-th distinct identifier, then \mathcal{A}_{2} stores $<I D_{I}, Q_{A}, \perp>$ in the list and answers $H_{1}\left(I D_{I}\right)=Q_{A}$. (3) Otherwise, \mathcal{A}_{2} selects at random an integer $h_{i} \in Z_{q}^{*}$, computes $Q_{i}=h_{i} P \in G_{1}^{*}$, stores $<I D_{i}, Q_{i}, h_{i}>$ in the list and answers Q_{i}.

The game between the challenger \mathcal{C}_{h} and the adversary \mathcal{A}_{2} proceeds in the following Phases.
Phase 1 The adversary \mathcal{A}_{1} launches this Phase 1 of its attack as a series of queries (of extract of partial secret key PrivKeyL, publish of public key, replace, extract of PrivKeyR or decrypt). We can consider that \mathcal{A}_{1} will always issue a query to H_{1}, for the same identity on which it will try to issue the next queries. \mathcal{A}_{2} simulates the challenge of \mathcal{A}_{1} and answers these queries as follows: (1) Extract the PrivKeyL of $I D_{i}$. If $I D_{i}=I D_{I}$, then \mathcal{A}_{2} aborts the game (Event 1); otherwise answers with $h_{i} s P$, where h_{i} comes from the triple corresponding to $I D_{i}$ in $H_{1}^{l i s t}$ and $s P=P_{p u b}$. (2) Publish for $I D_{i}$. To answer this query, \mathcal{A}_{2} keeps another list, $K^{\text {list }}$, with quadruples of the form $<I D_{i}, t_{i}, t_{i} P, R_{i}>$, indexed by $I D_{i}$. For a new $I D_{i}, \mathcal{A}_{2}$ selects randomly an integer $t_{i} \in Z_{q}^{*}$ and inserts a quadruple $<I D_{i_{i}}, t_{i}, t_{i} P, t_{i} P>$ in the list, otherwise \mathcal{A}_{2} answers with R_{i}. (3) Replacement for $I D_{i}$ by N_{i}. \mathcal{A}_{2} replaces R_{i} by N_{i}, in the quadruple indexed by $I D_{i}$ in the $K^{\text {list }}$. (4) Extract the PrivKeyR for $I D_{i} . \mathcal{A}_{2}$ verifies if $R_{i}=t_{i} P$ in the quadruple indexed by $I D_{i}$ in $K^{l i s t}$. If so, \mathcal{A}_{2} returns t_{i}, otherwise aborts the game (Event 2). (5) Decrypt $<I D_{i}, C_{i}, N_{i}>$. \mathcal{A}_{2} looks up $K^{\text {list }}$ for a quadruple such that $N_{i}=t_{i} P$. If such quadruple does not exist, then \mathcal{A}_{2} aborts the game (Event 3). If the query for decryption was for $C_{i}=<U, V>$ for $I D_{I}$ (i.e., $I D_{i}=I D_{I}$), then \mathcal{A}_{2} requests decryption of C_{i} and t_{i}, and gives the answer from the challenger \mathcal{C}_{h} to \mathcal{A}_{1}. Otherwise, \mathcal{A}_{2} tries to decrypt by asking to H_{2} (which is controlled by \mathcal{C}_{h}) to obtain $H_{2}\left(U, g^{r}, t_{i} U\right)$, where $g^{r}=\hat{e}\left(U, h_{i} s P\right)^{r}$ and $h_{i} s P$ is obtained thru the extraction of PrivKeyL. By splitting $V \oplus H_{2}\left(U, g^{r}, t_{i} U\right), \mathcal{A}_{2}$ gets a result which is given to \mathcal{A}_{1}. Challenge At some point in time, \mathcal{A}_{1} finishes Phase 1, chooses $I D_{c h}, N_{c h}$ and two messages m_{0}, m_{1} on which it wants to challenge. If $I D_{c h} \neq I D_{I}$, then \mathcal{A}_{2} aborts the game (Event 4); otherwise, m_{0}, m_{1} and $N_{c h}$ are given to \mathcal{C}_{h}, that answers with the ciphertext $C_{c h}=<U^{\prime}, V^{\prime}>$. \mathcal{A}_{2} gives to \mathcal{A}_{1} the ciphertext $C_{c h}$.
Phase $2 \mathcal{A}_{2}$ keeps answering the requests the same way as in Phase 1, but it aborts the game if any decryption request on $<I D_{i}, C_{c h}, N_{c h}>$ is done (Event 5).
Guess If \mathcal{A}_{1} issues a guess $b^{\prime}, \mathcal{A}_{2}$ returns the same guess b^{\prime}.

The proof of Lemma 1 will continue after Proposition 2 , whose proof is given in the full paper.

Proposition 2. If the adversary \mathcal{A}_{2} does not abort during the simulation, then the algorithm \mathcal{A}_{1} 's view is the same as its view in the real attack.

Now it suffices to compute the probability of \mathcal{A}_{2} not aborting during the simulation. There are five events
which cause an abortion: (1) Event 1 , denoted $\mathcal{H}_{1}: \mathcal{A}_{1}$ asked PrivKeyL for $I D_{I} ;(2)$ Event 2, denoted $\mathcal{H}_{2}: \mathcal{A}_{1}$ replaced a public key of a particular identity and later asked its PrivKeyR; (3) Event 3, denoted $\mathcal{H}_{3}: \mathcal{A}_{1}$ asked to decrypt with an unknown public key $N_{i} ;(4)$ Event 4, denoted $\mathcal{H}_{4}: \mathcal{A}_{1}$ did not choose $I D_{I}$ as $I D_{c h} ;$ (5) Event 5 , denoted $\mathcal{H}_{5}: \mathcal{A}_{2}$ asked to decrypt $C_{c h}$ in Phase 2;

Any attempt to extract PrivKeyR for an entity that had its public key replaced is not allowed for \mathcal{A}_{1}. Since \mathcal{A}_{2} only simulates the requests by $\mathcal{A}_{1}, \mathcal{H}_{2}$ does not happen without \mathcal{A}_{1} aborting. A decryption request with an unknown public key does not produce a result (since \mathcal{A}_{1} would receive \perp as answer) and it is possible for \mathcal{A}_{1} avoid this situation in its implementation. Thus, we consider \mathcal{A}_{2} does not imply \mathcal{H}_{3}. Further, \mathcal{H}_{5} only happens when, in the challenge, \mathcal{A}_{1} chooses $I D_{I}=I D_{\text {ch }}$, but \mathcal{A}_{1} would be aborted if it requests a decryption on $<$ $I D_{c h}, C_{c h}, N_{c h}>$, the same way \mathcal{A}_{2} would do. Further, the fact that \mathcal{H}_{4} did not occur in the challenge phase (i.e., $I D_{I}=I D_{c h}$) implies that \mathcal{H}_{1} did not occur (since if it occured, \mathcal{A}_{1} would have asked PrivKeyL of $I D_{c h}$ and would be aborted before the challenge). Hence, we have $\operatorname{Pr}\left[\mathcal{A}_{2}\right.$ not aborted $]=\operatorname{Pr}\left[\neg \mathcal{H}_{1} \wedge \neg \mathcal{H}_{2} \wedge \neg \mathcal{H}_{3} \wedge \neg \mathcal{H}_{4} \wedge \neg \mathcal{H}_{5}\right]=$ $\operatorname{Pr}\left[\neg \mathcal{H}_{1} \wedge \neg \mathcal{H}_{4} \wedge \neg \mathcal{H}_{5}\right]=\operatorname{Pr}\left[\neg \mathcal{H}_{4}\right]$ The choice of I by \mathcal{A}_{2} is independent of the choice of $I D_{I}$ by \mathcal{A}_{1}, thus, $\operatorname{Pr}\left[\mathcal{A}_{2}\right.$ not aborted $]=1 / q_{1} . \mathcal{A}_{2}$ uses the guess of \mathcal{A}_{1}, whose definition says $\left|\operatorname{Pr}\left[b=b^{\prime}\right]-1 / 2\right| \geq \varepsilon_{1}$. If \mathcal{A}_{2} does not abort and its guess is successful, it wins the game. Combining these elements, we have the advantage: $\varepsilon_{2} \geq \varepsilon_{1} / q_{1}$

For the analysis of the time complexity of \mathcal{A}_{2}, observe the following: (1) Since \mathcal{A}_{2} basically simulates the challenge by \mathcal{A}_{1}, the execution time of \mathcal{A}_{1}, denoted t_{1}, is the principal component. (2) In the simulation, each extraction request of PrivKeyL, decrypt request and query to H_{1} involves a scalar multiplication in G_{1}^{*}, that \mathcal{A}_{1} would not do in the real attack. Considering $c_{G_{1}}$ denotes the multiplication time of a point in G_{1} by a scalar (random), then $c_{G_{1}}\left(q_{1}+q_{d}+q_{e}\right)$ is another component in the computation of t_{2}. Then $t_{2} \leq t_{1}+c_{G_{1}}\left(q_{1}+q_{d}+q_{e}\right)$. This ends the proof of Lemma $1 \square$

Lemma 3. Assume H_{3} is a random oracle. Let \mathcal{A}_{2} be an IND-CCA 2 adversary against the Basic Hyb scheme, with advantage ε_{2}, execution time t_{2}, which issues at most q_{3} queries to H_{3} and q_{d} decryption queries. Then there is an IND-CPA (defined in the Appendix) adversary \mathcal{A}_{3} against Basic with advantage $\varepsilon_{3} \geq\left(\varepsilon_{2}-\frac{q_{3}}{2^{k_{0}-1}}\right)\left(1-\frac{1}{q}\right)^{q_{d}}$ and execution time $t_{3} \leq t_{2}+q_{3}\left(T_{\text {encryptb }}+c . n\right)$ where c is a constant, $\left(n-k_{0}\right)$ is the plaintext message length in bits, q is the order of G_{1} and $T_{\text {encryptb }}$ is the execution time of encryptb.

Proof: Consequence of Theorem 5.4. in $[\mathrm{FuOk} 0]$. \square
Lemma 4. Assume H_{2} is a random oracle. Let \mathcal{A}_{3} be an IND-CPA adversary against the Basic scheme, with advantage ε, execution time t_{3} and it issues at most q_{2} queries to H_{2}. Then there is an algorithm \mathcal{B} that solves BDH (Bilinear Diffie Hellman) Problem in G_{1} with advantage $\varepsilon \geq 2 \varepsilon_{3} / q_{2}$, with time complexity $O\left(t_{3}\right)$.

Proof: We will construct an algorithm \mathcal{B} to solve BDH , while interacting with the adversary \mathcal{A}_{3}. Our proof is similar to Lemma 4.3 in [BoFr1], which was also used in the proof of Lemma 3 in [ChCo5].

Initially, \mathcal{B} receives as input the BDH parameters $<$ $q, G_{1}, G_{2}, P, \hat{e}>$, produced from a security parameter k. It receives an instance $<P, a P, b P, c P>$, where a, b, c are values selected at random from Z_{q}^{*}. The algorithm \mathcal{B} finds the value $\hat{e}(P, P)^{a b c}$, interacting with \mathcal{A}_{3} as follows: (1) setup. \mathcal{B} simulates the algorithm generatekeysb to create the public key $K_{p u b}=<q, G_{1}, G_{2}, \hat{e}, n, P, P_{p u b}, H_{2}, Q_{A}$, $N_{A}>$ with $P_{p u b}=a P$ (i.e., $s=a$), $Q_{A}=b P$ and $N_{A}=t_{A} P$, where t_{A} is chosen randomly from Z_{q}^{*}. The secret key $K_{\text {sec }}=d_{A}=s Q_{A}$, that \mathcal{B} does not know, is $d_{A}=a b P . H_{2}$ is a random oracle controlled by $\mathcal{B} . K_{p u b}$ is given to \mathcal{A}_{3} and the game proceeds in the following phases. (2) queries. \mathcal{B} answers the queries from \mathcal{A}_{3} to the oracle H_{2} (to encrypt the plaintexts) as follows: queries $H_{2}\left(X_{i}, Y_{i}, Z_{i}\right)$: At any time \mathcal{A}_{3} can query H_{2}. \mathcal{B} answers to these queries with the help of a list of quadruples $<X_{i}, Y_{i}, Z_{i}, H_{i}>$, indexed by the first three terms. The list, denoted $H_{2}^{l i s t}$, is initially empty. \mathcal{B} can give one out the two answers: (a) If $\left(X_{i}, Y_{i}, Z_{i}\right)$ is an index of a quadruple in $H_{2}^{\text {list }}$, then \mathcal{B} answers with the corresponding H_{i}. (2) otherwise, \mathcal{B} selects at random a string $H_{i} \in\{0,1\}^{n}$, inserts a quadruple $<X_{i}, Y_{i}, Z_{i}, H_{i}>$ in the list and answers with H_{i}. (2) challenge. \mathcal{A}_{3} finishes the query phase and gives two equal length messages m_{0} and $m_{1} . \mathcal{B}$ chooses at random a string $R \in\{0,1\}^{n}$, it defines the ciphertext $C_{c h}=<U^{\prime}, V^{\prime}>=<c P, R>$, which is given to \mathcal{A}_{3}. Observe that the decrypted $C_{c h}$ is: $V^{\prime} \oplus$ $H_{2}\left(U^{\prime}, \hat{e}\left(U^{\prime}, d_{A}\right), c N_{A}\right)=R \oplus H_{2}\left(c P, \hat{e}(c P, a b P), c N_{A}\right)$. (3) guess. \mathcal{A}_{3} generates a guess $b \in\{0,1\}$ (that will not be used). Now, \mathcal{B} chooses at random a quadruple $<$ $X_{i}, Y_{i}, Z_{i}, H_{i}>$ from $H_{2}^{\text {list }} . \mathcal{B}$ assumes $X_{i}=c P$ and answers Y_{i}, as being the solution of $\hat{e}(c P, a b P)=\hat{e}(P, P)^{a b c}$.

Let \mathcal{H} be the event of the algorithm \mathcal{A}_{3} issuing a query about $H_{2}\left(c P, \hat{e}(c P, a b P), c N_{A}\right)=H_{2}(X, Y, Z)$ at some point in time during the simulation.

The proof of Lemma 4 will continue after Proposition 5 and 6 , whose proofs are given in the full paper.

Proposition 5. $\operatorname{Pr}[\mathcal{H}]$ in the simulation is equal to $\operatorname{Pr}[\mathcal{H}]$ in the real attack by \mathcal{A}_{3}.

Proposition 6. In the real attack $\operatorname{Pr}[\mathcal{H}] \geq 2 \varepsilon_{3}$.
From Proposition 5 and Proposition 6 it follows that $\operatorname{Pr}[\mathcal{H}] \geq 2 \varepsilon_{3}$. Hence, after the simulation, (X, Y, Z) occurs in some quadruple in $H_{2}^{\text {list }}$, with probability at least $2 \varepsilon_{3}$. Considering that \mathcal{A}_{3} issues q_{2} distinct queries, it follows that \mathcal{B} answers correctly the computation of $\hat{e}(P, P)^{a b c}$ with probability at least $2 \varepsilon_{3} / q 2$.

For the time complexity analysis of \mathcal{B}, we need to observe that, during the queries, q_{2} distinct operations are done with the list $H_{2}^{l i s t}$. Then the time complexity $t=$ $q_{2} O\left(\log q_{2}\right)+O(1)$. On the other hand, $t_{3}=q_{2} T_{\text {encryptb }}+$ $T_{\text {guess }}$, where $T_{\text {encryptb }}$ is the execution time of encryptb and $T_{\text {guess }}$ is the time for \mathcal{A}_{3} to produce the guess. By the definition of \mathcal{A}_{3}, its execution time is polynomial on k, as well as the time for encryptb. fwConsider the integers
$0 \leq x, y, z=O(k)$, with $q_{2}=O\left(k^{x}\right), T_{\text {encryptb }}=O\left(k^{y}\right)$, $T_{\text {guess }}=O\left(k^{z}\right)$. Then $t_{3}=O\left(k^{x}\right) O\left(k^{y}\right)+O\left(k^{z}\right)$ and $t=O\left(k^{x}\right) O\left(\log k^{x}\right)=O\left(k^{x}\right) O(\log k)=O\left(t_{3}\right)$ since $y>0$, because $T_{\text {encryptb }}$ involves computation of the pairing $\hat{e}()$. This ends the proof of Lemma 4.

Theorem 7. If the $B D H$ Problem is difficult over G_{1} and the hash functions H_{1}, H_{2}, and H_{3} are random oracles, then the proposed CL-PKE is secure againts Type-I INDCCA2.

Proof: Assume there is an Type-I IND-CCA2 adversary against our CL-PKE, with a non-negligible advantage ε_{1}, that issues at most q_{d} queries for decryption, q_{e} queries for extraction of the partial secret key and q_{1}, q_{2}, q_{3} queries to H_{1}, H_{2}, H_{3}, respectively, and with execution time t_{1}.

It follows from the three previous lemmas that there is an algorithm which solves BDH with non-negligible advantage $\varepsilon \geq \frac{2}{q_{2}}\left(\frac{\varepsilon_{1}}{q_{1}}-\frac{q_{3}}{2^{k_{0}-1}}\right)\left(1-\frac{1}{q}\right)^{q_{d}}$ and execution time $t \leq t_{1}+c G_{1}\left(q_{1}+q_{d}+q_{e}\right)+q_{3}\left(T_{\text {encryptb }}+c_{0} . n\right)+c_{1}$ where c_{0}, c_{1} are constants, $\left(n-k_{0}\right)$ is the size in bits of messages and $T_{\text {encryptb }}$ is the execution time of encryptb. Since t_{1} is polynomial on k (as well as t_{2} and t_{3}), t is also polynomial on k. If we rename all $q_{i}, i \in\{1,2,3\}$, by q_{H}, we obtain the approximation $\varepsilon \simeq \frac{2 \varepsilon_{1}}{q_{H}^{2}}$. Hence our CL-PKE is secure against a Type-I IND-CCA2 adversary.

8. Type-II adversary and a sequence of reductions

The Gap Diffie-Hellman - GDH - Problem is considered in the following:

Theorem 1. If the GDH Problem is difficult in G_{1} and H_{1}, H_{2}, H_{3} are random oracles, then our CL-PKE scheme is secure against Type-II IND-CCA2 adversaries.

Proof: It is given in the full paper.

9. Conclusions

We have constructed a CL-PKE scheme that does not allow key escrow, which is undesirable in many applications. We analyzed both its efficiency and security. It is more efficient than previously published CL-PKE schemes, and we proved it is strong against IND-CCA2 attack, under the Random Oracle Model.

References

[AlPa3] AL-RIYAMI, S. S.; PATERSON, K. G. Certificateless Public Key Cryptography. 2003. Cryptology ePrint Archive, Report 2003/126. http://eprint.iacr.org/.
[AlPa5] AL-RIYAMI, S. S.; PATERSON, K. G. C: CBE from CL-PKE: A generic construction and efficient schemes. In: Public Key Cryptography - PKC 2005. [S.l.: s.n.], 2005. pp. 398-415.
[Be8a] BELLARE, M. et al. Relations among notions of security for public-key encryption schemes. In:

CRYPTO 98: Proceedings of the 18th Annual IACR Conference on Advances in Cryptology. SpringerVerlag, 1998. pp. 26-45. ISBN 3-540-64892-5.
[Be8] BELLARE, M.; Practice-oriented provable-security. In: ISW '97: Proceedings of the First International Workshop on Information Security. London, UK: Springer-Verlag, 1998. pp 221-231. ISBN 3-540-64382-6.
[BoFr1] BONEH, D.; FRANKLIN, M. K. Identity-based encryption from the Weil pairing. In: CRYPTO 01: Proceedings of the 21st Annual International Cryptology Conference on Advances in Cryptology. London, UK: Springer-Verlag, 2001. pp. 213-229. ISBN 3-540-42456-3. http://eprint.iacr.org/2001/090/.
[ChCo5] CHENG, Z.; COMLEY, R. Efficient Certificateless Public Key Encryption. 2005. Cryptology ePrint Archive, Report 2005/012. http://eprint.iacr.org/.
[ChLe2] CHEON, J. H.; LEE, D. H. Diffie-Hellman Problems and Bilinear Maps. 2002. Cryptology ePrint Archive, Report 2002/117. http://eprint.iacr.org/.
[CrSh4] CRAMER, R.; SHOUP, V. Design and Analysis of Practical Public-Key Encryption Schemes Secure against Adptative Chosen Ciphertext Attack, SIAM Journal of Computing 33:167-226, 2003.
[FuOk9] FUJISAKI, E.; OKAMOTO, T. Secure Integration os Asymetric and Symmetric Encryption Schemes. In: CRYPTO 99: Proceedings of the Annual IACR Conference on Advances in Cryptology. Springer-Verlag LNCS \#1666, 1999. pp. 535-544.
[FuOk0] FUJISAKI, E.; OKAMOTO, T. How to Enhance the Security of Public-Key Encryption at Minimum Cost, IEICE Transactions on Fundamentals, vol. E83-A, number 1, 2000, ISBN 3-540-65644-8, pp.24-32.
[Ga5] GALINDO, D. Boneh-Franklin Identity Based Encryption Revisited. 2005. Cryptology ePrint Archive, Report 2005/117. http://eprint.iacr.org/.
[Ge3] GENTRY, C. Certificate-Based Encryption and the Certificate Revocation Problem. 2003 http://eprint.iacr.org/2003/183/.
[Sh4] SHAMIR, A. Identity-based cryptosystems and signature schemes. In: Proceedings of CRYPTO 84 on Advances in cryptology. New York, NY, USA: Springer-Verlag New York, Inc., 1984. pp. 47-53. ISBN 0-387-15658-5.

[^0]: *rt@ime.usp.br, University of Sao Paulo
 †University of Sao Paulo
 ${ }^{1}$ Indistinguishability Adaptive Chosen-Ciphertext Attack
 ${ }^{2}$ Bilinear Diffie-Hellman Problem

