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Abstract

Firefly algorithm (FA) is a prominent metaheuristc technique. It has been widely studied and hence
there are a lot of modified FA variants proposed to solve hard optimization problems from various areas.
In this paper an improved chaotic firefly algorithm (ICFA) is proposed for solving global optimization
problems. The ICFA uses firefly algorithm with chaos (CFA) as the parent algorithm since it replaces the
attractiveness coefficient by the outputs of the chaotic map. The enhancement of the proposed approach
involves introducing a novel search strategy which is able to obtain a good ratio between exploration and
exploitation abilities of the algorithm. The impact of the introduced search operator on the performance of
the ICFA is evaluated. Experiments are conducted on nineteen well-known benchmark functions. Results
reveal that the ICFA is able to significantly improve the performance of the standard FA, CFA and four
other recently proposed FA variants.

Keywords: Firefly algorithm, chaos, global optimization, nature-inspired algorithms, exploitation, explo-
ration

1. Introduction

Many real-world optimization problems are formu-

lated as global optimization problems. These prob-

lems are difficult for solving because they are usu-

ally highly nonlinear with multiple local optimums.

As the number of dimensions increases the search

space of a problem grows exponentially and its prop-

erties may change 1. Therefore, exploring the en-

tire search space efficiently is a complex task. Most

deterministic optimization techniques are heavily

interrelated to structure of the solution space and

hence it is hard to generalize them for all types of

optimization problems. Also, these methods can be

simply trapped in the local optimum since they are

local search algorithms.

On the other hand, metaheuristic algorithms have

been shown as efficient tools to solve computation-

ally hard problems. These algorithms are problem

independent optimization methods which use some

randomness in their strategies in order to more eas-

ily avoid local optimums 2. The superiority of ma-

jority of metaheuristc algorithms comes from the

fact that they imitate the best processes in nature.

Over the last three decades more than a dozen of no-

table metaheuristic algorithms have been proposed
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3,4. Prominent members are genetic algorithm (GA)

and differential evolution (DE) method which use

mechanisms inspired by biological evolution, such

as reproduction, mutation, recombination, and se-

lection. There are also many efficient algorithms in-

spired by nature which are based on mimicking the

so-called swarm intelligence characteristics of bio-

logical agents such as birds, fish or ants. Well stud-

ied examples are particle swarm optimization (PSO)
5, artificial bee colony (ABC) 6, firefly algorithm

(FA) 7, cuckoo search (CS) 8, etc. After their in-

vention, metaheuristics have been modified or hy-

bridized with other methods in order to make their

performances more successful 9, 10, 11,12. Specially,

there are a lot of improved variants of some promi-

nent metaheuristic algorithms proposed for global

optimization 13, 14, 15, 16, 17, 18. However, studies

show that it is not possible to develop a general pur-

pose algorithm that reaches optimal solution for all

types of optimization problems 19. Hence, it is of

great importance to find the best and most efficient

algorithm for some types of optimization problems.

The firefly algorithm is designed to solve nu-

merical optimization problems in 2008 by Yang 2.

It is inspired by communication behavior of flash-

ing fireflies. The FA is effective metaheuristic tech-

nique, which has simple concept and easy imple-

mentation. Therefore the FA has been studied by

many researchers and new FA variants have been

described to solve different classes of optimization

problems, such as continuous, combinatorial, con-

strained, multi-objective, dynamic and noisy opti-

mization 20,21,22,23,24.

In spite of the fact that the FA has been shown

to be an efficient optimization technique, there is

still an insufficiency in the FA regarding its solution

search equation. It is observed that the FA search

equation can be overly random in the beginning of

the search process due to the usage of different val-

ues of its randomization term to update each solution

variable. Consequently FA search equation is good

for exploration, but poor for exploitation in the first

generations of the search process, which can consid-

erably deteriorate the optimization results.

An improved chaotic firefly algorithm (ICFA) for

global numerical optimization is presented to over-

come the above drawback. Three modifications are

made to the standard FA with the intention to modify

its behaviour in a bound-constrained search space.

Firstly, to improve the exploitation ability of the FA,

a new movement equation is employed in the initial

generations of a search. Secondly, considering the

previous work on the FA, the ICFA uses the chaotic

map in order to tune the attractiveness parameter and

consequently produce useful diversity in the popu-

lation. The third modification is related to the us-

age of the improved method to handle the boundary

constraints. The ICFA is tested to solve 19 well-

known benchmark functions. Numerical results re-

veal that the ICFA is superior to the standard FA and

five other FA variants.

The paper is organized as follows. Section 2

presents the standard FA. A brief literature review

of FA and its variants for numerical optimization is

presented in Section 3. The details of our proposed

ICFA are described in Section 4. Section 5 presents

benchmark problems, parameter settings and analy-

sis of the obtained results. In Section 6 the conclu-

sion is drawn.

2. Firefly algorithm

In the population of fireflies, each member repre-

sents a candidate solution in the search space 20.

Fireflies move towards the more attractive individu-

als and find potential candidate solutions. A firefly’s

attractiveness is proportional to its light intensity or

brightness, which is usually measured by the fitness

value. The framework of FA is given as Algorithm

1, restated from Ref. 2.

Important details related to the movement equa-

tion used in the FA for unconstrained functions with

higher variables are explained as follows. If solution

x j has better objective function value than xi, the pa-

rameter values xik are updated by the following rule

described in Ref. 2:

xik = xik+β ·(x jk−xik)+α ·sk ·
(

randk −
1

2

)

, (1)

β = βmin +(β0 −βmin) · e−γ·r2
i j , (2)

where k = 1,2, . . . ,D and D represents the number

of variables to be optimized.
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Algorithm 1 Framework of the FA

Create an initial population of solutions xi, i =
1,2, . . . ,SP

while (t < Maximum Cycle Number (MCN)) do

Move fireflies: For each solution xi, i =
1,2, . . . ,SP, compare it with other all solutions

x j, j = 1,2, . . . ,SP of the population. If the ob-

jective function value of x j is less than xi, then

move xi towards x j in all D dimensions, apply

control of the boundary conditions on the cre-

ated solution and evaluate it.

Rank the fireflies: Sort the population of solu-

tions according to their objective function val-

ues.

t = t +1.

end while

The second term on the right-hand of Eq. (1) is

due to the attraction. In this term ri j = ||xi − x j||2
is the l2 norm or Cartesian distance, while control

parameter β0 is attractiveness coefficient, parame-

ter βmin is minimum value of β and parameter γ is

absorption coefficient. The parameter β0 represents

attractiveness at r = 0, while the parameter γ charac-

terizes the variation of the attractiveness. The sug-

gested values for parameter β0 is 1 and for parameter

βmin is 0.2 2. For most applications γ = O(1) can be

employed 25.

The third term of Eq. (1) is randomization term.

In this term α ∈ [0,1] is randomization parameter

and randk is a random number uniformly distributed

between 0 and 1. Also, in this term sk = |uk − lk| is

the length scale for the kth variable of the solution,

where lk and uk are the lower and upper bound of

the parameter xik. In Ref. 2 it was noted that param-

eter α should be linked with scales and that the steps

should not be too large or too small.

The parameter α controls the step sizes of the

random walks 26. Although in Ref. 25 it was noticed

that for most problems a fixed value of randomiza-

tion parameter from range (0,1) can be used, later

findings pointed out that α needs to be reduced grad-

ually during iterations. A good way to calculate α is

given by

α(t) = α0 ·θ t , (3)

where α0 is the initial randomness factor and θ ∈
[0,1] is essentially a cooling factor, with t denoting

the iteration number 26. High values of α are needed

to provide enough differences between solutions to

escape from a local optimum. On the other hand,

its low values are necessary to provide the results as

near as much to the global optimum.

The update process is finished when the bound-

ary constraint-handling mechanism is applied to the

created new solution. The boundary constraint-

handling mechanism used in the FA is described by

xik =

{

lk, if xik < lk
uk, if xik > uk

(4)

where lk and uk are the lower and upper bound of kth

variable of the solution xi.

Exploitation and exploration are important com-

ponents of the FA, as well as of any metaheuristic

algorithm 27. The process of focusing the search on

a local region by using the information of previously

visited good solutions is exploitation. On the other

hand, exploration is the process of creating solutions

with plenty of diversity and far from the actual so-

lutions. Exploitation and exploration are fundamen-

tally conflicting processes. In order to be success-

ful, a search algorithm needs to establish a good ra-

tio between these two processes. The randomization

term of the FA search equation gives an ability to

the algorithm to get out of a local optimum in or-

der to seek on a global scale 26. In terms of the at-

traction mechanism, fireflies can automatically sub-

divide themselves into several subgroups, and each

group can search around a local region. These ad-

vantages indicate that the FA is good at exploration

as well as exploitation.

3. Brief review of FA

Yang tested the performance of FA for optimizing

multimodal numerical optimization problems 7. The

performance of the FA, when it was applied to ten

standard benchmark functions, has been compared

with the performance of the PSO and DE. The ex-

perimental results revealed that FA outperformed

both algorithms. But, when being applied to mul-

timodal continuous optimization problems, original
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FA gets trapped in the local optimum due to unsatis-

factory settings of its control parameters, which re-

main fixed throughout all iterations. In Ref. 7 it was

concluded that it is possible to improve the solution

quality and convergence speed by reducing the ran-

domness gradually. Some of the recent FA variants

developed to solve numerical optimization problems

more efficiently are presented as follows.

Gandomi et al. at 2013 developed FA variants

which use chaotic maps 28. In Ref. 28, twelve dif-

ferent chaotic maps are used to improve the attrac-

tion term of the algorithm. The experimental results

pointed out that tuning of the attractiveness coeffi-

cient is more effective than tuning light absorption

coefficient. It was concluded that the most suitable

choice to tune the attractiveness coefficient is the

Gauss map. Therefore, at the end of each CFA it-

eration, the value of parameter β0 is updated by

βchaos(t+1)=

{

0, if βchaos(t) = 0

1
βchaos(t)

−
[

1
βchaos(t)

]

, otherwise

(5)

where t denotes the iteration number. The Gauss

map generates chaotic sequences in (0,1).

In the same year, Fister et al. proposes to use

quaternion for the representation of individuals into

FA (also QFA) in order to avoid any stagnation 29.

The proposed QFA has been applied to optimize a

test-suite consisting of ten standard functions with

10, 30 and 50 variables. The results have shown that

QFA performs better than the standard FA and com-

parable with other state of the art algorithms, such

as DE, ABC and BA.

A wise step strategy FA (WSSFA) is proposed in

2014 30. In the WSSFA, each firefly in the swarm

has an independent step parameter, which consid-

ers the information of firefly’s previous best and the

global best positions. A variable step FA (VSSFA)

which employs a dynamic strategy to adjust ran-

domization parameter was proposed in 2015 in

Ref. 31. Experiments on standard benchmark func-

tions showed that the VSSFA and WSSFA reached

better solutions than the standard FA on some test

functions 30,31.

Wang et al. in 2016 developed a novel FA variant

(RaFA) which uses a random attraction model and

a Cauchy mutation operator 32. Simulation results

on standard benchmark functions have proven that

RaFA performs better than the standard FA and two

other improved FAs. Zhang et al. in the same year

designed the hybrid firefly algorithm (HFA) which

combines the advantages of both the firefly algo-

rithm (FA) and the differential evolution (DE) 33. A

diverse set of 13 high-dimensional benchmark func-

tions with 30 variables were used to test the per-

formance of the HFA. The experimental results re-

vealed that HFA outperformed the original FA, DE

and PSO algorithms in the terms of accuracy of so-

lutions, with faster convergence speed.

A new FA variant, called FA with neighbour-

hood attraction (NaFA), was developed by Wang et

al. in 2017 17. In this approach, each firefly was

attracted by other brighter fireflies selected from a

limited neighbourhood. Experiments on 13 standard

benchmark functions with 30 variables showed that

the NaFA obtained better solutions than the standard

FA and seven other FA variants.

4. The proposed approach: ICFA

Performance of the FA basically depends on its

search equation which is a mutation operator used

for both local and global search 26. However, achiev-

ing optimal balance between local and global search

may depend on a lot of factors, such as the setting of

algorithm-dependent parameters and the problem to

be solved. Furthermore, different amounts of explo-

ration and exploitation are needed during the search

process, considering the fact that different values

of control parameters might be optimal at differ-

ent stages of the search 27. In order to accomplish

more efficient search process the proposed ICFA in-

troduces a novel movement strategy. The remain-

ing modification is related to boundary constraints.

The details of each modification and implementation

steps of the ICFA are presented as follows.

4.1. Modifications of the movement

Diversity of a population is a key factor for achiev-

ing a proper balance between exploitation and ex-

ploration. The population of solutions which are
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different from each other is a precondition for ex-

ploration, while small diversity provides the final re-

sults as near as much to the global optimum. The

strength of perturbations in the FA is controlled by

the randomization parameter. The values of the ran-

domization term of Eq. (1) are higher in the initial

stages of the search process and they are gradually

reduced during the search. Hence the diversity of a

population is greater in the first generations of the

search process. Consequently exploration ability of

Eq. (1) is greater in these generations than in the

later ones. It is observed that for some problems the

usage of different values of the randomization term

for each solution variable produces too much ran-

domness in the first generations of the search pro-

cess. Therefore in these cases a less attractive di-

verse population is obtained. To sum up, the solu-

tion search equation described by Eq. (1) can be

overly random, and therefore good at exploration,

but lack at exploitation in the initial generations of

the search.

To overcome this drawback, the ICFA modifies

the FA search equation presented by Eq.(1). The

novel mutation operator is given by

xik = xik +0.5 ·β (t) · (x jk − xik)+

0.5 ·β (t) ·(xrand1,k−xrand2,k)+α(t) ·sk ·
(

r− 1

2

)

,

(6)

β (t) = βmin +(βchaos(t)−βmin) · e−γ·r2
i j , (7)

where k = 1,2,..., D.

The second term in the right-hand side of Eq.

(6) is equal to the attraction term of Eq. (1) mul-

tiplied by a factor of 0.5. In addition, considering

the previous work related to the CFA variants, in the

attraction term of Eq. (6) chaotic sequences are em-

ployed in order to tune the attractiveness coefficient

β0. Hence at the end of each iteration t the outputs

of the Gauss chaotic map βchaos(t) generated by Eq.

(5) are used.

The third term in the right-hand side of Eq. (6)

is equal to the difference vector formed by the other

two solutions multiplied by a factor of 0.5. In this

term rand1 and rand2 are integers randomly gener-

ated within the range [1, SP], which are also differ-

ent from index i. Similar as in DE algorithm, adding

the vector subtraction might lead to better pertur-

bation of solutions than one-difference vector-based

strategies 34.

The fourth term in the right-hand side of Eq. (6)

is randomization term. In this term r is a random

number in (0,1). It can be noticed that the same

random number is used for all dimensions. Compar-

ing the randomization terms of Eq. (1) and Eq. (6),

Eq. (1) can have a larger search space due to inde-

pendent updating of each dimension. On the other

hand, Eq. (6) has a smaller search space due to the

same random number being employed for all dimen-

sions. Also, in this term the value α(t) is calculated

by Eq. (3) at the end of each iteration.

While different implementation of the random-

ization terms of Eq. (1) and Eq. (6) may seem of

minor importance, the implications on the FA per-

formance are quite beneficial. In fact, differences

among individuals of the population are reduced by

using Eq. (6) as a consequence of reducing the space

where the newly created solution can be. There-

fore this modification prevents the algorithm to pro-

vide too much exploration in the initial iterations

of the search process. However, the randomization

parameter is gradually reduced during the search,

and at one point using the same random number in

the randomization term of Eq. (6) can provide too

much exploitation and consequently premature con-

vergence. Therefore in order to adjust the exploita-

tion and exploration during the search process, the

ICFA uses both mutation operators which are de-

scribed by Eq.(6) and Eq.(1). In the initial gener-

ations of the search Eq. (6) is used, while Eq. (1) is

employed in the remaining generations. The ICFA

introduces a new control parameter in order to de-

termine the number of iterations in which it is fruit-

ful to use the mutation operator described by Eq.

(6). This parameter is called percent o f generations

(pg) and it takes value between 0 and 1. Therefore,

the ICFA uses Eq. (6) in the first pg ·MCN itera-

tions of a search process, while in the remaining it-

erations it employs Eq. (1). It is worth noting that

the vector subtraction is not included in Eq. (1) since
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the convergence may be slowed down by additional

randomness provided by it.

Observe that the parameter pg has a significant

role in balancing the exploration and exploitation of

the candidate solution search. When pg takes 0, the

search is based only on Eq. (1), i. e. the ICFA is

equal to the CFA. When pg increases from zero to

a certain value, the exploitation ability of the ICFA

will also increase appropriately. The reason lies in

the fact that Eq. (6) has a smaller search space

in comparison to Eq. (1) due to the same random

number used for all dimensions in the randomization

term. However, pg should not be too large since it

might result in relatively weakening the exploration

ability of the ICFA.

4.2. Boundary constraint-handling method

Using the efficient boundary constraint-handling

mechanism can greatly contribute to successful op-

timization performance of a search algorithm. Ac-

cording to Eq. (4), the standard FA can be eas-

ily caught in the local minimum if there are a

lot of solutions focused in the extreme values of

the search space. In order to overcome this, an

improved boundary constraint-handling mechanism

which creates a diverse set of values can be em-

ployed.

There are several improved boundary constraint-

handling methods which were successfully used in

order to help maintaining diversity in the population
35. In the ICFA the method for handling the bound-

ary constraints is given by 36:

xik =

{

2 · lk − xik, if xik < lk
2 ·uk − xik, if xik > uk,

xik, otherwise

(8)

where xik is the variable k of the candidate solution

i, and lk and uk are the lower and upper bound of the

parameter xik.

Algorithm 2 Pseudo-code of the ICFA

Initial control parameters of the ICFA, including:

SP, MCN, α0, βmin, β0, γ , θ , pg.

Initialize SP population solutions xi

(i = 1,2, . . . ,SP) randomly in the search space.

Evaluate each solution in the initial population us-

ing the objective function.

t=0

while t < MCN do

for i = 1 to SP do

for j = 1 to SP do

if ( f (x j) < f (xi)) then

if (t < pg ·MCN) then

Move xi toward x j according to Eq.

(6)

else

Move xi toward x j according to Eq.

(1)

end if

Apply control of the boundary condi-

tions on the created solution xi by Eq.

(8) and evaluate it

end if

end for

end for

for k = 1 to D do

Update the αk,t value by Eq. (3)

end for

Update the βt value by Eq. (7)

Rank the solutions and find the current best

t = t +1

end while

4.3. The pseudo-code of the ICFA

The proposed ICFA uses six specific control param-

eters to manage the search process: the initial ran-

domization α0, the initial maximum attractiveness

β0, the parameter βmin, the absorption coefficient γ ,

the cooling factor θ and the parameter pg which de-

termines the number of initial iterations in which the

novel mutation operator described by Eq. (6) is used

to update a solution. The ICFA also employs the size

of population SP and maximum cycle number MCN,

which are common control parameters for all nature
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Table 1. Benchmark functions used in the experiments, where D is the problem dimension.

Function Formula Search range

Sphera f1(x) =
D

∑
i=1

x2
i [−100,100]D

Schwefel 2.22 f2(x) =
D

∑
i=1

|xi|+
D

∏
i=1

|xi| [−10,10]D

Schwefel 1.2 f3(x) =
D

∑
i=1

(
i

∑
j=1

x j)
2 [−100,100]D

Schwefel 2.21 f4(x) = max|xi|,1 6 i 6 D [−100,100]D

Rosenbrock f5(x) =
D−1

∑
i=1

(100(x2
i − xi+1)

2 +(1− xi)
2) [−30,30]D

Step f6(x) =
D

∑
i=1

⌊xi +0.5⌋2 [−100,100]D

Quartic f7(x) =
D

∑
i=1

ix4
i + random[0,1) [−1.28,1.28]D

Schwefel 2.26 f8(x) = 418.9829D−
D

∑
i=1

xisin(
√

|xi|) [−500,500]D

Rastrigin f9(x) = 10D+
D

∑
i=1

(x2
i −10cos(2πxi)) [−5.12,5.12]D

Ackeley f10(x) =−20exp(−0.2

√

1

D

D

∑
i=1

x2
i )− exp(

1

D

D

∑
i=1

cos(2πxi))+20+ e [−32,32]D

Griewank f11(x) = 1+
1

4000

D

∑
i=1

x2
i −

D

∏
i=1

cos(
xi√

i
) [−512,512]D

Penalized 1 f12(x) =
π

D
{10sin2(πy1) [−50,50]D

+
D−1

∑
i=1

(yi −1)2[1+10sin2(πyi+1)]+(yD −1)2}+
D

∑
i=1

u(xi,10,100,4)

yi = 1+
1

4
(xi +1),u(xi,a,k,m) =

{ k(xi −a)m, xi > a

0, −a 6 xi 6 a

k(−xi −a)m, xi <−a

Penalized 2 f13(x) =
D

∑
i=1

u(xi,5,100,4)+
1

10
{sin2(3πx1)+

D−1

∑
i=1

(xi −1)2[1+ sin2(3π · xi+1)] [−50,50]D

+ (xD −1)2(1+ sin2(2πxD)}

Alpine f14(x) =
D

∑
i=1

|xisin(xi)+0.1xi| [−10,10]D

Periodic f15(x) = 1+
D

∑
i=1

sin2(xi)−0.1e(∑
D
i=1 x2

i ) [−10,10]D

Xin-She Yang f16(x) = (
D

∑
i=1

|xi|)exp(−
D

∑
i=1

sin(x2
i )) [−2π,2π]D
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Table 1 (Continued)

Function Formula Search range

Himmelblau f17(x) =
1

D

D

∑
i=1

(x4
i −16x2

i +5xi) [−5,5]D

Styblinski-Tank f18(x) =
1

2

D

∑
i=1

(x4
i −16x2

i +5xi) [−5,5]D

W / Wavy f19(x) =
1

D

D

∑
i=1

1− cos(10xi)e
−0.5x2

i [−π,π]D

inspired algorithms. The computational time com-

plexity of the ICFA is equal to those of the standard

FA, i.e. it is O(MCN · SP2 · f ), where O( f ) is the

computational time complexity of the fitness eval-

uation function. The pseudo code of the proposed

ICFA is presented in Algorithm 2.

5. Experimental study

This section presents the detailed evaluation of the

proposed ICFA. In order to demonstrate the perfor-

mance of the ICFA, 19 well-known benchmark func-

tions are used 37. The Table 1 presents the name of

the benchmark function (column 1), its formula (col-

umn 2) and search space range (column 3). Listed

high-dimensional benchmark functions can be di-

vided into two categories according to their fea-

tures: unimodal functions ( f1 − f7) and multimodal

( f8 − f19) functions. A function is unimodal if it has

a single optimal solution. Multimodal functions are

more difficult test problems, since they have more

than one local optimum. However, although func-

tions f1 − f7 represent unimodal functions in 2D or

3D search space, they can be seen as multimodal

functions in high-dimensional cases 38.

There are three experiments for assessing the

performance of ICFA. First experiment is used to

investigate the impact of the introduced search strat-

egy described by Eq. (6) on the ICFA performance.

Therefore different values of the parameter pg were

tested in order to determine an appropriate choice

of this parameter. Second experiment is employed

to evaluate the performance of the ICFA when it is

compared to FA variants. Two types of comparisons

were considered. The first type is a direct compar-

ison between the ICFA and our implementation of

the standard FA and CFA. The second type of com-

parison is an indirect comparison, where the results

of other FA approaches were taken from the special-

ized literature and compared with those reached by

the ICFA. The third experiment is used to consider

the exploration and exploitation abilities of the pro-

posed algorithm.

5.1. Investigation of the parameter pg

The parameter pg is a new control parameter intro-

duced to maintain the diversity of the population and

therefore control exploration/exploitation balance of

the algorithm. It determines the number of initial

iterations in which the new movement equation de-

scribed by Eq. (6) is used to update a solution, and it

takes value between 0 and 1. If pg takes 0, the ICFA

is equal to the CFA which uses the improved bound-

ary handling method, i. e. the search is based only

on Eq. (1). When pg increases from zero to a cer-

tain value, the number of initial iterations in which

the search is based on Eq. (6) will increase, as well.

If pg takes 1, the search is based only on Eq. (6).

Therefore the parameter pg is an important factor

in the performance of the ICFA. In this subsection

different values of pg were tested in order to explore

the effects of pg on the performance of the ICFA. An

appropriate choice of pg could be determined from

the performed tests.

The parameter SP was set to 20 and the MCN

was set to 2000. The specific parameter val-

ues are the following: α0 = 0.8, β0 is a random

number from (0,1), βmin = 0.2, γ = 1 and θ =
(10−11/0.9)2/MCN . Then, pg was set to 0, 0.1, 0.2,

and 0.3. For each value of pg, the ICFA was run
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Table 2. Mean best objective function values and standard deviation values achieved by the ICFA with different pg values

with D = 30. The best results are indicated in bold.

pg = 0 pg = 0.1 pg = 0.2 pg = 0.3

F. Mean(std.) Mean(std.) Mean(std.) Mean(std.)

f1 1.20E-39(3.07E-40) 1.24E-39(2.36E-40) 1.15E-03(4.25E-03) 2.09E-02(2.41E-02)

f2 1.55E-20(1.72E-21) 1.54E-20(1.60E-21) 4.48E-02(6.08E-02) 8.32E-02(5.14E-02)

f3 1.65E-77(5.92E-78) 1.45E-77(3.67E-78) 4.29E-03(2.08E-02) 2.95E-02(6.07E-02)

f4 1.61E-20(2.72E-21) 1.67E-20(2.47E-21) 2.90E-03(8.52E-03) 3.34E-02(3.27E-02)

f5 3.17E+01(1.80E+01) 2.53E-05 (3.55E-05) 8.81E-06(1.30E-05) 3.25E-01 (3.93E-01)

f6 4.33E-01(4.95E-01) 0.0E+00(0.0E+00) 0.0E+00(0.0E+00) 0.0E+00(0.0E+00)

f7 5.81E-02 (1.42E-02) 1.90E-04(9.66E-05) 1.22E-04(1.52E-04) 1.39E-04 (1.88E-04)

f8 4.74E+03(5.48E+02) 3.82E-04(1.25E-12) 3.82E-04(1.14E-12) 3.87E-04(2.28E-05)

f9 5.76E+01(2.20E+01) 5.92E-17(3.19E-16) 1.68E-04(8.61E-04) 1.94E-02(3.13E-02)

f10 2.17E-14 (6.92E-15) 2.60E-14(1.07E-14) 1.81E-03(5.37E-03) 3.59E-02(3.54E-02)

f11 3.53E-03(5.53E-03) 3.70E-18(1.99E-17) 8.34E-03(2.99E-02) 5.59E-02(7.95E-02)

f12 6.91E-03(2.59E-02) 1.57E-32(5.47E-48) 8.66E-06(1.92E-05) 2.40E-04(3.40E-04)

f13 4.26E-03(1.17E-02) 1.42E-31(4.33E-33) 1.97E-04(4.57E-04) 2.90E-03(4.77E-03)

f14 4.62E-02(8.08E-02) 2.02E-18(2.61E-18) 2.05E-04(4.72E-04) 3.83E-03(2.72E-03)

f15 1.22E-41(2.55E-42) 1.22E-41(1.98E-42) 1.018E-05(3.98E-05) 5.20E-04(8.37E-04)

f16 6.72E-12(1.33E-12) 3.51E-12(6.79E-27) 3.51E-12(1.45E-26) 3.51E-12(2.46E-16)

f17 -68.72 (2.94E+00) -78.33(2.85E-14) -78.33(4.04E-14) -78.30(3.78E-02)

f18 -1069.90(3.40E+01) -1174.99(2.59E-13) -1174.99(3.35E-13) -1174.98(1.37E-04)

f19 4.25E-01(6.49E-02) 0.0E+00(0.0E+00) 8.48E-06 (4.55E-05) 7.47E-05(1.09E-04)

30 times for each benchmark function with D = 30.

The mean best values and standard deviation values

were recorded and these values are shown in Table

2.

From the results presented in Table 2 it can be

seen that the performance of the ICFA depends on

the value of the parameter pg. For a majority of test

problems the ICFA obtains better or similar results

when pg = 0.1. The only exception are for prob-

lems f5 and f7 where ICFA with pg = 0.2 yields the

best mean and standard deviation values. The per-

formance of the ICFA was deteriorated almost for

all test problems when the pg is set to 0.3. Hence

the ICFA results when the value of pg is higher than

0.3 are not presented in this study. The Friedman

test was performed in order to find the suitable pg

value. In order to perform the Friedman test, we

rank the ICFA with different pg values according to

the mean values in Table 2. The best rank is indi-

cated in bold. It can be noticed that pg = 0.1 reaches

the best rank.

Table 3. Mean rank achieved by the Friedman test for ICFA
with different pg values.

ICFA Mean rank

pg = 0.1 1.58

pg = 0.2 2.24

pg = 0 2.92

pg = 0.3 3.26

Figure 1 presents convergence graphs associated

with the mean results among 30 runs obtained by the

ICFA with different pg values for the six selected

functions. From Figure 1 it can be seen that for ma-
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(a) Sphera ( f1) (b) Rosenbrock ( f5) (c) Schwefel 2.26 ( f8)

(d) Rastrigin ( f9) (e) Penalized 2 ( f13) (f) W / Wavy ( f19)

Figure 1. The convergence graphs of the mean results obtained by the ICFA with different pg values on the

selected functions with 30 variables.

jority problems the ICFA with pg = 0.1 converges

faster than that with other pg values. Therefore the

parameter pg is set to 0.1 in the further tests.

5.2. Direct comparison with the standard FA and

CFA

A direct comparison between the ICFA and standard

FA through the 19 benchmark functions with 30 and

50 variables is presented in this subsection. Addi-

tionally, since the ICFA uses the CFA as the parent

algorithm, the results of the CFA are also included

in the comparison with the proposed ICFA. Each

algorithm was implemented in Java programming

language on a PC with Intel(R) Core(TM) i5-4460

3.2GHz processor with 16GB of RAM and Win-

dows OS. To explore the effectiveness of the usage

of the modified FA equation alone, in our implemen-

tation of the CFA an improved method for handling

boundary constraints described by Eq. (8) is used.

In the other words, the difference between the ICFA

and CFA is the usage of the modified FA operator

described by Eq. (6) in the first ten percent of the

maximum number of generations.

For the FA, CFA and ICFA the values of parame-

ter SP was set to 20. For each algorithm, the param-

eter MCN was set to 2000 for benchmark functions

with 30 and 2500 for benchmark functions with 50

variables. In the experiments, the FA uses the same

specific parameter settings as those suggested in 2.

These values are the following: α0 = 0.2, β0 = 1.0,

βmin = 0.2, γ = 1 and θ = (10−4/0.9)1/MCN . The

specific parameter values utilized by the CFA and

ICFA in all the experiments are the following: α0 =
0.8, β0 is a random number from (0,1), βmin = 0.2,

γ = 1 and θ = (10−11/0.9)2/MCN . For each bench-

mark function, each algorithm was run indepen-

dently 30 times. It is important to note that for each

tested algorithm (the FA, CFA and ICFA), in each

generation the total number of attractions for all fire-

flies is SP · (SP − 1)/2. Consequently, the maxi-

mum number of function evaluations per generation

is SP · (SP−1)/2. Therefore the maximum number

of function evaluations (MaxFEs) per run obtained

by each tested algorithm, the FA, CFA and ICFA is

MaxFEs = 20 · 19 · 0.5 · 2000 = 380000 for bench-

mark functions with 30 variables and MaxFEs =
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Table 4. Mean and standard deviation values obtained by the FA, CFA and ICFA on 19 benchmarks with D = 30.

FA CFA ICFA

Function Mean Std. Mean Std. Mean Std.

f1 8.22E-05 (1.83E-05)- 1.20E-39 (3.07E-40)≈ 1.24E-39 (2.36E-40)

f2 4.39E-03 (4.46E-03)- 1.55E-20 (1.72E-21)≈ 1.54E-20 (1.60E-21)

f3 7.26E-08 (2.50E-08)- 1.65E-77 (5.92E-78)≈ 1.45E-77 (3.67E-78)

f4 4.71E-03 (6.53E-04)- 1.61E-20 (2.72E-21)≈ 1.67E-20 (2.47E-21)

f5 5.40E+01 (6.04E+01)- 3.17E+01 (1.80E+01)- 2.53E-05 (3.55E-05)

f6 3.00E-01 (5.85E-01)- 4.33E-01 (4.95E-01)- 0.00E+00 (0.00E+00)

f7 6.26E-01 (2.78E-01)- 5.81E-02 (1.42E-02)- 1.90E-04 (9.66E-05)

f8 4.93E+03 (6.99E+02)- 4.74E+03 (5.48E+02)- 3.82E-04 (1.25E-12)

f9 4.96E+01 (1.18E+01)- 5.76E+01 (2.20E+01)- 5.92E-17 (3.19E-16)

f10 2.14E-03 (1.59E-04)- 2.17E-14 (6.92E-15)≈ 2.60E-14 (1.07E-14)

f11 5.76E-03 (5.32E-03)- 3.53E-03 (5.53E-03)- 3.70E-18 (1.99E-17)

f12 2.28E-07 (3.76E-08)- 6.91E-03 (2.59E-02)- 1.57E-32 (5.47E-48)

f13 6.29E-06 (1.43E-02)- 4.26E-03 (1.17E-02)- 1.42E-31 (4.33E-33)

f14 3.03E+00 (1.12E+00)- 4.62E-02 (8.08E-02)- 2.02E-18 (2.61E-18)

f15 8.25E-07 (1.08E-07)- 1.22E-41 (2.55E-42)≈ 1.22E-41 (1.98E-42)

f16 5.39E-12 (6.62E-13)- 6.72E-12 (1.33E-12)- 3.51E-12 (6.79E-27)

f17 -70.3214 (2.06E+00)- -68.7194 (2.94E+00)- -78.3323 (2.85E-14)

f18 -1036.4451 (3.75E+01)- -1069.9020 (3.40E+01)- -1174.9850 (2.59E-13)

f19 3.21E-01 (5.67E-02)- 4.25E-01 (6.49E-02)- 0.00E+00 (0.00E+00)

+/≈/- 0/0/19 0/6/13

20 ·19 ·0.5 ·2500= 475000 for benchmark functions

with 50 variables.

Three metric are used to estimate the perfor-

mances of the FA, CFA and ICFA. The performance

comparison concerning the robustness and conver-

gence speed are conducted between the FA, CFA

and ICFA. The mean and corresponding standard

deviation values of 30 independent runs are used

to determine the quality or accuracy of the solu-

tions obtained by these algorithms. The convergence

speed of each algorithm is compared by the metric

AVEN 39. This metric records the average number

of function evaluations needed to achieve the accept-

able value. The convergence speed is faster if the

value of AVEN is smaller. The robustness or reli-

ability of each algorithm is compared by measuring

the success rate (SR%). This rate denotes the ratio of

successful runs in the 30 independent runs. A suc-

cessful run means the algorithm reaches a solution

whose objective function value is less than the cor-

responding acceptable value. The robustness of the

algorithm is better if the value of SR is greater.

Mean and standard deviation results for bench-

mark functions with 30 and 50 variables are reported

in Table 4 and Table 5. Wilcoxon’s rank sum test at

a 0.05 significance level was conducted between the

compared algorithm and the ICFA. The result of the

test is represented as ”+/≈/-”, which means that the

corresponding algorithm is significantly better than,

statistically similar to, and significantly worse than

the ICFA.

The results regarding the benchmark functions

with 30 variables indicate that the ICFA is signif-

icantly better than the FA and CFA in most cases.
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Table 5. Mean and standard deviation values obtained by the FA, CFA and ICFA on 19 benchmarks with D = 50.

FA CFA ICFA

Function Mean Std. Mean Std. Mean Std.

f1 1.61E-04 (1.32E-05)- 3.20E-39 (3.88E-40)≈ 3.21E-39 (4.02E-40)

f2 1.07E-03 (1.88E-03)- 3.32E-06 (1.79E-05)- 3.34E-20 (2.79E-21)

f3 5.29E-07 (1.52E-07)- 1.90E-76 (5.96E-77)≈ 1.97E-76 (6.78E-77)

f4 1.09E-02 (2.07E-03)- 1.99E-03 (4.59E-03)- 1.28E-04 (4.96E-04)

f5 9.31E+01 (1.00E+02)- 1.21E+02 (1.12E+02)- 9.14E-06 (1.28E-05)

f6 5.33E-01 (8.84E-01)- 9.33E-01 (1.81E+00)- 0.00E+00 (0.00E+00)

f7 5.78E-01 (2.51E-01)- 1.34E-01 (3.80E-02)- 2.18E-04 (2.04E-04)

f8 8.91E+03 (7.18E+02)- 8.59E+03 (1.06E+03)- 6.36E-04 (4.67E-12)

f9 9.29E+01 (2.26E+01)- 1.04E+02 (2.52E+02)- 1.78E-16 (7.03E-16)

f10 2.92E-03 (2.33E-04)- 3.51E-14 (8.29E-15)≈ 3.83E-14 (9.14E-15)

f11 3.69E-04 (3.60E-05)- 1.23E-03 (2.76E-03)- 4.44E-17 (6.78E-17)

f12 2.07E-02 (2.93E-02)- 8.29E-03 (2.11E-02)- 1.06E-32 (1.69E-33)

f13 9.89E-02 (1.40E-02)- 4.26E-03 (1.17E-02)- 1.69E-31 (1.37E-32)

f14 2.47E-02 (1.92E-02)- 1.53E-02 (3.13E-02)- 8.31E-18 (8.50E-18)

f15 2.61E-06 (2.45E-07)- 3.17E-41 (4.75E-42)≈ 3.01E-41 (3.83E-42)

f16 1.80E-20 (1.98E-21)- 2.59E-20 (8.49E-21)- 1.21E-20 (1.28E-34)

f17 -69.2281 (2.47E+00)- -68.0031 (1.80E+00)- -78.3323 (3.83E-14)

f18 -1720.8113 (4.46E+01)- -1750.0273 (4.79E+01)- -1958.3083 (3.32E-13)

f19 3.57E-01 (5.62E-02)- 4.32E-01 (4.89E-02)- 0.00E+00 (0.00E+00)

+/≈/- 0/0/19 0/4/15

Specifically, the ICFA is significantly better than the

FA and CFA on 19 and 13 test problems out of 19

benchmarks, respectively. It is similar to the CFA on

6 test problems. From the results of the benchmark

functions with 50 variables, it is clear that the ICFA

also outperforms the FA and CFA in the majority of

cases. Particularly, it can be observed that the ICFA

is significantly better than the FA on each test prob-

lem. With respect to the CFA, the ICFA performs

significantly better on 15 test problems and similar

on 4 benchmarks.

The ”threshold value” (column 2) of each bench-

mark function, AVEN and SR results for benchmark

functions with 30 and 50 variables are presented in

Table 6. Particularly, when the objective function

value of the best solution obtained by an algorithm

is less than the threshold value, the run is considered

as successful. From the AVEN results presented

in Table 6 it can be noticed that the ICFA shows

faster convergence speed than the FA and CFA in

all cases. In addition, the SR results demonstrate

that the ICFA is more robust with a 100% success

rate on all benchmarks except the Schwefel 2.21 ( f4)

function with 50 variables. For function f4 with 50

variables no algorithm gets 100% success rate, but

the ICFA achieves the largest success rate.

In summary, the proposed ICFA is able to ob-

tain more accurate solutions than the conventional

FA and CFA and also reaches near-optimal solutions

for most of the benchmark functions. Also, these re-

sults show that ICFA is able to improve robustness

and convergence speed with respect to the original

FA and CFA. Especially, in these tests the CFA and

ICFA used the same parameter settings, and the only
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Table 6. The AVEN(SR) of FA, CFA and ICFA on 19 functions with D = 30 and D = 50. The best results among the three

algorithms are shown in bold.

D=30 D=50

Func. Threshold FA CFA ICFA FA CFA ICFA

AVEN(SR) AVEN(SR) AVEN(SR) AVEN(SR) AVEN(SR) AVEN(SR)

f1 1E-8 -(0) 71424(100) 69802(100) -(0) 74547(100) 74511(100)

f2 1E-8 -(0) 109165(100) 108106(100) -(0) 141813(100) 141372(100)

f3 1E-8 -(0) 52503(100) 50863(100) -(0) 56171(100) 56215(100)

f4 1E-5 -(0) -76323(100) 76019(100) -(0) 102928(32) 102490(64)

f5 1E-2 -(0) -(0) 44194(100) -(0) -(0) 47666(100)

f6 1E-8 62499(87) 26708(83) 1602(100) 83587(56) 35193(68) 1617(100)

f7 1E-2 -(0) -(0) 1784(100) -(0) -(0) 2636(100)

f8 1E-2 -(0) -(0) 5493(100) -(0) -(0) 7790(100)

f9 1E-8 -(0) -(0) 67117(100) -(0) -(0) 87451(100)

f10 1E-8 -(0) 107463(100) 106229(100) -(0) 136961(100) 91416(100)

f11 1E-8 -(0) 144961(80) 71197(100) -(0) 93838(84) 87451(100)

f12 1E-8 -(0) 108143(97) 53896(100) -(0) 70342(88) 69225(100)

f13 1E-8 -(0) 121349(97) 60600(100) -(0) 80744(52) 78525(100)

f14 1E-8 -(0) 194754(3) 97074(100) -(0) -(0) 126728(100)

f15 1E-8 -(0) 119542(100) 58630(100) -(0) 78840(100) 76572(100)

f16 1E-8 29286(100) 13815(100) 294(100) 504(100) 5723(100) 134(100)

f17 -78 -(0) -(0) 2646(100) -(0) -(0) 2842(100)

f18 -39D -(0) -(0) 570(100) -(0) -(0) 561(100)

f19 1E-8 -(0) -(0) 53419(100) -(0) -(0) 63220(100)

difference between the CFA and ICFA is the usage

of different search operators in the first 0.1 ·MCN

iterations of the search process. Therefore the ob-

tained results validate that the usage of the modi-

fied FA search equation contributed to CFA and im-

proves accuracy of the results, robustness and con-

vergence speed of the CFA.

5.3. Indirect comparison with other FA variants

An indirect comparison is presented in this subsec-

tion, since the results reported by other FA vari-

ants were taken from the specialized literature and

compared with those achieved by the ICFA. The

four prominent FA variants developed for numeri-

cal optimization are used for the comparison with

the ICFA. These algorithms are: wise step strategy

FA (WSSFA) 30, variable step FA 31, FA with ran-

dom attraction and Cauchy mutation (RaFA) 32 and

FA with neighborhood attraction (NaFA) 17. The

results obtained by the four algorithms were taken

from Ref. 17. Considering the fact that in Ref. 17

only the first 13 benchmark functions ( f1- f13) were

solved by these FA approaches, the comparison will

only be made on such test problems. Each of these

four FA variants used MaxFEs = 5E+05 to solve

the first thirteen thirteen benchmark functions with

D = 30. The ICFA performed MaxFEs = 38E+04 to

solve these benchmarks. The parameter settings of

WSSFA, VSSFA, RaFA and NaFA can be found in

Refs. 31, 30, 32 and 17. All of the ICFA parameter

values were set to the same values as specified in the

Subsection 5.2.

Table 7 shows the mean best objective function
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Table 7. Experimental results obtained by the VSSFA, WSSFA, RaFA, NaFA and ICFA on 13 benchmark functions with

D = 30. The best mean results and the best ranks are indicated in bold.

Function VSSFA WSSFA RaFA NaFA ICFA

f1 5.84E+04 6.34E+04 5.36E-184 4.43E-29 1.24E-39

Rank 4 5 1 3 2

f2 1.13E+02 1.35E+02 8.76E-05 2.98E-15 1.54E-20

Rank 4 5 3 2 1

f3 1.16E+05 1.10E+05 4.91E+02 2.60E-28 1.45E-77

Rank 5 4 3 2 1

f4 8.18E+01 7.59E+01 2.43E+00 3.43E-15 1.67E-20

Rank 5 4 3 2 1

f5 2.16E+08 2.49E+08 2.92E+01 2.39E+01 2.53E-05

Rank 4 5 3 2 1

f6 5.48E+04 6.18E+04 0.00E+00 0.00E+00 0.00E+00

Rank 4 5 3 3 3

f7 4.43E+01 3.24E-01 5.47E-02 2.91E-02 1.90E-04

Rank 5 4 3 2 1

f8 1.07E+04 1.06E+04 5.03E+02 6.86E+03 3.82E-04

Rank 5 4 2 3 1

f9 3.12E+02 3.61E+02 2.69E+01 2.09E+01 5.92E-17

Rank 4 5 3 2 1

f10 2.03E+01 2.05E+01 3.61E-14 3.02E-14 2.60E-14

Rank 4 5 3 2 1

f11 5.47E+02 6.09E+02 0.00E+00 0.00E+00 3.70E-18

Rank 4 5 1.5 1.5 3

f12 3.99E+08 6.18E+08 4.50E-05 1.36E-31 1.57E-32

Rank 4 5 3 2 1

f13 8.12E+08 9.13E+08 8.25E-32 2.13E-30 1.42E-31

Rank 4 5 1 3 2

Mean rank 4.31 4.62 2.50 2.27 1.46

Overall rank 4 5 3 2 1
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results achieved by the ICFA and other four FA vari-

ants for thirteen benchmark functions with D = 30

and the ranks by the mean best objective function

values of the five approaches. From the mean results

it can be noticed that the ICFA performs better than

the VSSFA and WSSFA in each test function. When

comparing the mean results obtained by the ICFA

with respect to the RaFA, it can be seen that the

RaFA outperformed the ICFA for functions f1, f11

and f13, while both algorithms reached the same re-

sults for function f6. The ICFA performs better than

the RaFA on the remaining 9 benchmarks. Com-

pared to the NaFA, the ICFA achieved better mean

results for 11 test problems, the worse mean result

for the problem f11 and the same mean result for

the functions f6. From the average rank and over-

all rank presented in Table 4 the ICFA achieved the

highest rank, followed by the NaFA, RaFA, VSSFA

and WSSFA. It is important to emphasize that the to-

tal number of function evaluations by the ICFA was

76% of the total number of function evaluations used

by the each of NaFA, RaFA, VSSFA and WSSFA.

To check the differences between the ICFA and

each compared algorithm for 13 benchmarks, the

Wilcoxon signed-rank test at a 0.05 significance

level is performed 40. The statistical analysis results

of applying Wilcoxon’s test at a 0.05 significance

level between the ICFA and the four FA variants are

given in Table 8.

Table 8. Results of multiple-problem Wilcoxon’s test for the
ICFA versus the VSSFA, WSSFA, RaFA and NaFA over 13
benchmark functions at a 0.05 significance level.

Algorithm p value Decision

ICFA versus VSSFA 0.001 +

ICFA versus WSSFA 0.001 +

ICFA versus RaFA 0.01 +

ICFA versus NaFA 0.008 +

More precisely, Table 8 shows the names of com-

pared approaches (column 1), p value (column 2)

and the decision regarding a null hypothesis (col-

umn 3). Sign ”+” indicates that the first algorithm

is significantly better than the second, sign ”-” in-

dicates that the first algorithm is significantly worse

than the second and sign ”≈” that there is no sig-

nificant difference between the two algorithms. In

our comparisons, all the p values were computed us-

ing the PSPP software package. According to the

obtained p values presented in Table 8, it is clear

that the ICFA performs significantly better than the

NaFA, RaFA, VSSFA and WSSFA.

5.4. Discussion on exploration and exploitation

Exploration and exploitation are frequently men-

tioned by a lot of researchers in their studies. How-

ever, often informal definitions of these abilities

have been used, similar to informal definitions in

the Section 2. In the Section 4 it is indicated that

the introduced mutation operator described by Eq.

(6) enhances the exploitation ability of the CFA.

In this subsection, in order to formally prove this

claim, the formal definition of exploitation and ex-

ploration based on similarity measurements, pro-

posed in Ref. 27 is used. More precisely, a definition

of similarity to the closest neighbor SCN is decisive

for delimiting exploration from exploitation. When

a new solution g is produced, a similarity measure-

ment to the closest neighbor SCN can be defined in

various ways. In this paper, we are looking for sim-

ilarity between a new solution g and the whole pop-

ulation. Therefore, similarity to the closest neighbor

SCN is defined by

SCN(g,P) = min{||g− xi||2|xi ∈ P}, (9)

where P denotes the current population and xi is the

ith solution of the population. Then the process of

exploration or exploitation is determined by the fol-

lowing conditions:

SCN(g,P)> T (exploration), (10a)

SCN(g,P)6 T (exploitation). (10b)

In Eq. (10a) and Eq. (10b) T is a threshold value

that defines the boundary of the neighborhood of the

closest neighbor and it is problem-dependent. Ac-

cording to Eq. (10a) the exploration process focuses

the search on points which are outside of the cur-

rent neighborhood of the closest neighbor. On the

other hand, according to Eq. (10b) the exploitation
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(a) Sphera ( f1) (b) Rosenbrock ( f5) (c) Schwefel 2.26 ( f8)

(d) Rastrigin ( f9) (e) Penalized 2 ( f13) (f) W / Wavy ( f19)

Figure 2. The proportion of exploration in different phases of the CFA and ICFA for the selected benchmark

functions with 30 variables.

process visits those points which fall into the current

neighborhood of the closest neighbor.

In order to distinguish between the ICFA and

CFA from the exploitation and exploration perspec-

tive based on this definition, the proportion of explo-

ration process in each search phase on several rep-

resentative benchmark functions ( f1, f5, f8, f9, f13

and f19) with 30 variables is recorded. In this study

the ICFA and CFA uses the same parameter settings,

i. e. parameter values for both algorithms were set

to the same values as those specified in the Subsec-

tion 5.2. Also, an improved method for handling

boundary constraints described by Eq. (8) is used in

our implementation of the CFA. Hence, the only dif-

ference between the CFA and ICFA is the usage of

different search operators in the first 0.1 ·MCN iter-

ations of the search process. In this experiment, the

parameter T is set to (ub - lb)/100, where ub and lb

are upper and lower bound of the variable, listed in

Table 1 41. Each search phase includes 20 iterations

and the initial 200 iterations are examined. There-

fore, for each selected benchmark function the evo-

lutionary process is divided equally into 10 phases.

The numbers of exploration process are recorded at

each phase and then the proportion of exploration

can be found. The experimental results are shown

in Fig. 2. From Fig. 2 it is observed that in each

phase the proportion of exploration of the ICFA is

less than that of the CFA. Therefore it can be con-

cluded that usage of the proposed modified search

strategy, weakens exploration ability, but it enhances

exploitation ability of the CFA in the inital genera-

tions of the search process.

6. Conclusion

An improved variant of the chaotic firefly algorithm,

called ICFA, is proposed in this paper. It was noticed

that the FA search equation can be overly random in

the beginning of the search process due to the usage

of different values of its randomization term for each

solution variable. To overcome this issue, a mod-

ified movement strategy is proposed to enhance the

exploitation ability of the firefly algorithm in the ini-

tial generations of a search. Also, the ICFA uses dif-

ferent boundary constraint-handling method in com-

parison with the FA in order to help maintain diver-

sity in the population.
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The effectiveness of the proposed algorithm

was investigated on 19 high-dimensional benchmark

functions. Three comprehensive experiments are

considered in the test design. Experimental re-

sults of the first experiment confirmed that the us-

age of the proposed operator in the first ten percent

of the maximum iterations significantly contributes

in achieving the superior performance of the pro-

posed ICFA. The findings of the second experiment

showed that the proposed ICFA performs better than

the standard FA, CFA, and the four recent FA ap-

proaches with respect to the accuracy of the results

with improved convergence speed. The Wilcoxon’s

test with the significance level of 0.05 was employed

in order to statistically analyse the performance of

the ICFA. The obtained results verify that the per-

formance of the ICFA was statistically better than

the FA, CFA and other four FA approaches in the

majority of test functions. The results of the third

experiment demonstrated that the usage of the pro-

posed modified search strategy enhances exploita-

tion ability of the CFA. Our future study will be fo-

cused on developing a new algorithm which would

combine the FA with some other popular metahuris-

tic methods in order to solve more complex high-

dimensional problems.
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