
D.

N 9 3- 17 1 7
An Improved Classification Tree Analysis of High Cost

Modules Based Upon an Axiomatic Definition

of Complexity

Jianhui Tian

Soft. Eng. Process Group

IBM Canada Laboratory

North York Ontario,
Canada

Adam Porter

Computer Science Dept.

University of Maryland

College Park, Maryland

Marvin V..Zelkowitz

Inst. for Advanced Computer Studies

and Computer Science Dept.

University of Maryland

College Park, Maryland

Abstract

Identification of hiyh cost modules has been viewed

as one mechanism Lo improve overall system reliabil-
ity, since such modules tend to produce more than their

share of problems. A decision tree model has been

used to identify such modules. In this current paper, a

previously developed aziomaLi$ model of program com-

ple_iLy is merged with the previously developed decision
tree process for an improvement in the ability to iden-

tify such modules. This improvement has been tested

usin 9 data from the NASA Software Engineering Lab.

oratory.

1 Introduction

Identification of high cost modules has been viewed.

as one mechanism to improve overall system reliability,
since such modules tend to produce more than their

share of problems. In order to idefftify such modules,

Selby and Porter [2, 3] developed a decision proce-

•dure based upon decision trees. With their technique,

which we call Classification Tree Analysis (ERA), they
showed on a set of 16 large-scale programs contain-

ing over 4700 modules obtained from the NASA Soft-

ware Engineering Laboratory, that they could identify
which subset of the 74 measures obtained from each

module would produce good estimators of high-cost
modules.

Recently Tian and Zelkowitz [4] developed an ax-

iomatic model of program complexity. Based upon

this model, the 74 measures kept on each of the 4700

modules could be reduced to only 18 measures that

represented valid complexity measures. Using these

10006788L

18 measures, the decAsion tree process results in an

improvement over the original Selby-Porter method.

In this paper we will first describe the original de-
cision tree process, we then summarize the axiomatic

complexity model, and then demonstrate that we can

• improve on the previous model in identifying high-cost
modules.

2 Classification Tree Analysis

In a series of earlierstudiesby Selby and Porter,

a technique calledclassificationtree analysis(CTA)

was used toidentifyhigh costcomponents. Of critical

importance to CTA isthe selectionof measures (or

attributes)to constructthe classificationtree.

We define a high cost component as one in the

uppermost quartile(i.e.,25 percent) relativeto past
data. The rationalefor thisdefinitionisthe so called

"80:20rule",which statesthat about 80 percent of a

software system's cost isassociatedwith roughly 20

percentofthe system.

A classification tree is essentially a decision tree

that branches on the range of values accord_g to a
measure at an internal node repeatedly until a com-

ponent can be identified as high or low cost, or until
all measures are exhausted.

The'classification tree method that was used, called

the classification paradigm, consists of the following

three integral parts:

* Classification tree generation is the central

4-27

Modules
activity of constructing classification trees and

preparing them for analysis and feedback;

• Data management and calibration are the

activities that retain and manipulate historical

data and tailor classification tree parameters to

the development environment; and

• Analysis and feedback is the part that lever-

ages the information resulting from the tree gen-

eration by applying it in the development process.
The central piece of the application of classifica-

tion tree is to develop remedial plans and take
corrective actions.

2.1 CTA Method

The goal is to predict high cost modules in the cur-

rent project with high cost being interpreted as the

highest quartile. The historical data (or training set),

consisting of one project immediately preceding the

current one, are grouped into quartiles according to a

measure's value, with all measures being considered.

Starting from the root, a measure is selected to sep-
arate modules into four subsets associated with each
arc. The number to the left of an arc is the lower

(inclusive) bound and the number to the right is the

upper (non-inclusive) bound for the subset according
to the measured value. So we have four subsets (quar-

tiles).

A set of modules associated with an arc is positively

identified if more than a threshold (termination crite-

rion) of modules are in the highest quartile of cost, and
it is represented in the tree as a terminal node marked

with a "+" sign. A set can be negatively identified

similarly, and represented correspondingly by a "-"

sign. If a set cannot be either positively or negatively

identified, another measure is selected to further clas-

sify these modules into finer subsets. This process
continues until either all modules are identified or all

measures are exhausted without being able to make

such a determination. In the latter case, the termi-

nal node is marked with a "?" sign, representing that

CTA can not make a prediction for modules in this
set.

Notice that the generation of the classification tree

depends solely on the training set and various-param-
eters selected for the technique. The current project

will only use the tree but not affect the structure of
the tree.

cyclomatic complexity
module+function call

operators
module calls

tT_l _2 _3 m4 m5

3 8 13 30 45

8 40 7 3 12

30 18 lO 33 58

3 4 3 0 5

prediction _ .7 _ _ +

actual - - + - +

Table 1: Predicting High Cost Modules

As an example, considerthe sample (fictitious)test

data ofTable I,and the classificationtreeinFigure i.

This testset includes5 modules and 4 measures. In

thiscase,the CTA method predicts3 out of4 modules

correctly(itmissesmodule ms) and isunable to clas-

sifymodule m2 through the classificationtree. For

example, module ms followsthe right most branch

from the root (cyclomaticcomplexity ofms isgreater

than 26) and againfollowsthe rightmost branch from

there (operatorcounts of ms isgreaterthan 34). We

can finallypredictit to be of high cost because its

module callcounts fallsbetween 4 and 10.

2.2 CTA Cost

There aretwo types ofcostassociatedwith the CTA

technique:the costofbuildingclassificationtreesand

the costof using them. The former isdetermined by

the factors: 1) the CTA parameters, 2) the size of

the availablemeasure pool where measures are to be

selected,and 3) the implementation efficiencyof the

CTA supporting tools.For the lattercostfactor,the

treesizeisa good measure. Because the classification

treeswe are studying have fixedstructure(thereare

4 branches from every internalnode), we can effec-

tivelycapture the cost ofusing classificationtreesby

counting the number ofinternalnodes for them.

2.3 CTA Performance

According to the match between CTA predictions
and actual cost data for the modules in a test set,

variousperformance measures can be defined:

Coverage: The percentage of modules (either posi-

tively or negatively) identified;

Accuracy: The percentage ofcorrectmatches between

predictionsand actual data;

Comsiflenc_/: The percentage of predicted high cost

modules who are actually high cost. High consistency

1000571mL

4-28

cyclomatic

complexity

- + ? ? + - module calls

? ? + -

Figure 1: Component Classification Tree

indicatesless"falsealarms;" and

Completeness: The percentage of actual high cost

modules predicted correctlyby CTA. It revealsthe

power of CTA to uncover high costmodules.

3 Axiomatic Program Complexity

Most program complexity studiesdefinecomplexity

as a numeric comparison between any two programs.

However, we have come to realizethatsome programs

are inherentlyincomparable. For example, itmakes

litttlesenseto compare the complexity between a pay-

rollsystem and a real-timeemission controlsystem in

a car. They each come from radicallydifferentappli-
cationdomains.

Instead we view complexity as a partial ranking

among the set of programs and a complezity measure

as a function applied to specific programs as an ap-
proximation of the attribute we are trying to deter-

mine. The followingsummarizes thismodel [4].

3.1 Axiomatic model

Consider a program as a hierarchy of modules con-

sisting of instructions, data, and the underlying exe-

cution control mechanism. We initially limit ourselves

to a PascaJ-like nested scope sequential control lan-

guage. Programs are represented by their abstract

syntax trees:

U represents the set of all programs.

AST(P) representsa binary abstracttree repre-

sentationfor program P. The root node of pro-

gram P isgiven by root(P), the leftsubtreeof P

isleft(P) and the rightsubtreeof P isgiven by

right(P).

For programs P and Q, IN(P, Q) is true if P is

a subprogram of Q (i.e., AST(P) is a suhtree of

AST(Q)).

If IN(P, Q) is true, then dist(P, Q) represents

the path length in order to go from root(P) to

root(Q).

P with allfreeoccurrence of z replaced by y not

in P isdenoted as P_. We use Pff to mean the

renaming iscarriedout forallcorrespondingone-

to-one pairsin listsa and _, where

(_ar(P)- o)n/3 =

(vat(P) isthe variablelistofprogram P).

A complexityranking7_ isa binary relationon the

setofprograms. The complexity rankingbetween'pro-

grams P and Q is 7_(P, Q). We interpret _(P, Q) as P

being no more complex than Q. P and Q are compa-

rable, denoted C(P, Q) , if either 7_(P, Q) or _(Q, P)

holds, i.e., C(P, Q) iff _(P, Q) v _(Q, P).

100067UL

4-29

A complezi_y measure V is a function that maps

every program into a vector of real numbers: V : U --.

Although simple definitions, we are immediately

confronted by a difficult problem:

Theorem TI: There exist complexity rankings that
are undecidable)

Although the general problem of complexity rank-

ing is unde¢idable, many practical rankings axe not.
In what follows we restrict ourselves to these more

practical rankings.

Axiom AI: (VP, Q) ([_] = [-_ =_ C(P,Q)) where

_-]is the function of program X.

Given programs P and Q, the problem of[_] = [_]

is unfortunately also undecidable. This axiom, then,

is at the center of the problem of developing effec-

tive complexity measures on real programs. We cer-

tainly want to be able to compare equivalent programs
in order to determine which is best; however, unde-

cidability says that we cannot always do this. It is
for this reason that most complexity measures have

not achieved significant breakthroughs since the un-

derlying models are rarely comparable. However, in

many practical applications, such as described above,
we know or can assume that two given programs have

the same or similar functionality.

Because of this,in practicewe often use a weaker

form of this axiom that only addressesthe similarity

of two programs:

Axiom AI': (VP, Q)([_]_[_]::¢,C(P,Q)).

A program in general consistsof many hierarchi-

callyrelatedcomponents. As a result,we requirethat

a program must be comparable with a subpart of it-

self.

Axiom A2: (v/3,Q) Q) c(/3,Q))

lAxiom and theorem references arc keyed to [4], which al_
contains the proofs of the theorems. Some of the theorems
given in that paper are not relevant to this present disoluJon

and hencearenotlistedhere.

Axiom A2 brings up the intuitivenotion that we

would likecomplexity to increaseas programs become

larger, i.e., if P is a component in Q (IV(P, Q)), then

/3isno more complex than Q. We leftthisout because

there are caseswhere the opposite istrue. Consider

Q formed from/3 by addition of easilyrecognizable

keywords or tags; Q might be more readable, thus

easierto maintain as a result.Another case isthat

loopsare often more easilyunderstood ifthey include

theirinitializationcode than ifpresentedwithout it.

Contextual information might help to reduce the

complexity of composite programs. But the degree

of the reduction must be limited,otherwise infinitely

large programs paradoxicallymight be the simplest.

On the other hand, a periodic function such as co-

sine(z) as the complexity of a program, where x is

some size measure of a program /3, is clearly not ac-

ceptable. As a general trend, then, adding compo-

nents must resultin a more complex program:

Axiom A3:

(_K e _V)(VP, Q)((IN(/3, Q) ^ (di_(/3, Q)

K)) _ R(/3, Q))

>

Since our goal isto compare the complexity of two

di.fferentprograms, define a predicate 7" such that

T(V(P), V(Q)) istrue ifprogram P isno more com-

plex than program Q. For V intoJR, we have the ob-

vious definitionthat T(V(P), V(Q)) i._just (])(P) <

])(Q)). For higher dimensions, other results are pos-

sible (e.g., a dot product called the performance level
measure which compares alternative software designs

[1]).

T is our decision process which _determines how

well]) approximates our complexity ranking 7_ be-

tween P and Q based on the measured complexity

values V(/3) and])(Q). We would like the relation-

ship to be T(V(P), V(Q)) _ _(/3,Q), and infactit

isan implied axiom inmost other complexity models.

However, we believethat thisisthe major weakness

that has prevented most complexity models from be-

ing truly effective.Because of undecidabilityissues

(e.g.theorem TI), for allP and Q we cannot deter-

mine T for every 7_. As a result,we use a weaker

condition, namely:

Axiom A4: (V/3, Q) (_(/3, Q) ::_])(/3) _<])(Q))

Sinceformany usefulapplications,7_definesa total

ranking,we then have:

I0006788t.

4-30

Theorem T5: When 7_ is total, i.e., (VP, Q)C(P, Q),
we have:

(VP, Q) (V(P) < 12(Q) =_ _(P, Q))

In order to be useful, we would like our complex-

ity measures to distribute programs across a range of
values. If there is only a single Udominating _ cluster

point, we gain little information from the measure.
Axiom A5 allows, for rough comparisons, bi-polar or

multi-polar distributions:

Axiom AS: (¥k E R)(36 > 0) ([U - {P : V(P) E
[k - 6,k + 6]}1= IUI)

Axiom A5 forces our complexity measure to be

nontrivial, as in:

Theorem T7: (VP)(3Q) (V(P) ¢ V(Q))

When P maps programs into a discrete bounded

set S, axiom A5 requires that at least two points in S
have infinitely many programs with such values:

Theorem T8: If set S of complexity values is finite,

then:

I{k: (k e s) ^ (l{e: vcP) = _}1 = Itrl)]l >_2

3.2 A classification model

Given these five axioms, we developed a classifi-

cation model for categorizing the various complexity

measures depending upon the information they pro-
vide. A vertical classification uses a subset of the at-

tributes for the entire program, while a hierarchical

classification uses some functional relationship among

the program's parts.

Vertical classificalion

A complexity ranking "R is abstract, denoted

AB(7_), if given P and Q with A_T(P) - AST(Q),

then "R(P, Q)(and equivalently, 7_(Q, P)).

If two programs are syntactically identical except

for variable names, as long as two set of names are

isomorphic, the only conceivable differences is inter-

pretational (the meaning attached to each name). On

the other hand, when considered functionally, each
name is just a surrogate for the underlying data ob-

ject. Thus we have the classification:

A complexity ranking g is functional, denoted

FN(_), if given P and Q with name sets a and

such that A,.qT(P_) - AST(Q), then 7_(P, Q).

ltierarcliical classification

Assessing complexity by using only the components

while ignoring interactions (i.e. ignoring the context
where the components are defined and used) results in

a context free ranking: A complexity ranking 7_ is con-
text free, denoted CF(7?.), if given P, its ranking with

respect to any given Q can be uniquely determined

by: (I) Q and (2) root(P), the complexity ranking of

left(P), and the complexity ranking of right(P).

As a spedal case of context free complexity where

organizational information is completely ignored, we

can have primitive complexity: A complexity rank-

ing 7_ is primitive, denoted PR(7_), if all programs

P and Q with the same collection of AST(P) and

AST(Q) nodes (same number of occurrences for each

corresponding pair) then 7_(P, Q).

Also, a complexity ranking 7_ is interactional, de-

noted IA(g), if it is not context free, i.e. -,CF(g).

Without considering interaction, the complexity of

the composite complexity is the sum of all the com-

ponents complexities. However, due to interaction

among component parts, the total complexity may be

greater than the sum. Such a complexity ranking is
called overall.

If we are allowed to modify the internal structure,

or reorganize the program according to some program-

ming practices (such as modularization, data abstrac-

tion and information hiding), we may be able to cut

down the interfacing complexity, thus the overall com-

plexity. Since the two programs are functionally equiv-

alent, they are comparable in complexity (A2).

The relationship among different hierarchical
classes can be summarized in the following tree:

100057BSL

4-31

Conte=t Free

CF()

Hierarchical

lnteractional

zA()

I Primitive

PR()
Non Prirniti_

O_rall

OA(_)
Not Overall

-OA(_)

Using this model, we have been able to "develop

Weyuker's 9 properties for complexity measures as

special cases of our axioms [5]. Since those proper-
ties have been widely studied over the past 4 years,

and since we can model her properties with our clas-

sification model, we believe that our axioms are s rea-

sonable approximation of program complexity.

4 Application of the Model

Sixteen software systems, ranging from 3000 to

112,000 lines of FORTRAN source code, were selected

from NASA ground support software for unmanned

spacecraft control developed in the NASA/GSFC Soft-

ware Engineering Laboratory. Each required between

5 and 140 person-months to develop over a period of 5

to 25 months by 4 to 23 persons. Each project contains

from 83 to 531 modules, totalling over 4700 modules.
There are 74 attributes, each quantified by a specific

measure, for each module divided into three broad cat-

egories: fault, effort, and style (or complexity).

For each application instance, one of the projects

was used as a training project in order to develop the
classification tree for the next project. This was re-

peated for the remainder of the 16 projects.

Five of the projectswere of a greatlydifferentsize

than the others (by more than s factorof 3). We

deemed these to not fulfillAxiom AI' on similarly

of functionality.This reduced the set of projectsto

11 (and 10 data points)and are given as Group A in

what follows.We used s differentorderingof6 of the

projectsin terms of trainingset to give us Group B

(and 5 additionaldata points).CTA referstothe orig-

inalClassificationTree Analysis process,while ACT

refersto the Axiomatic ClassificationTree processde-

veloped in thispaper.

4.1 Measure Screening

From the set of 74 measures for eachmodule, we

first eliminate all measures that are not directly mea-
sureable from the modules themselves. Thus effort

data, e.g., number of hours to develop the module,

are eliminated. We also eliminated change and error

data since they represent interactions among program

components and the operational environment. We can
therefore reduce the number of measures to 40.

All candidatemeasures satisfyaxioms Axiom AI'

(comparing functionallyequivalent programs), Ax-

iom A2 (comparing component-composite pairs),

Axiom A4 (measures agree with theirranking),and

Axiom A5 (no singlecluster). However, many of

the measures do not satisfyAxiom A3, the general

monotonicity axiom. These measures are averaging

measure such as assignment statements per 1000 ere-

curable s_aternents, which" may be correlated with av-

erage effort per 1000 lines or so, but not with the total
development effort. Therefore these measures will be

eliminated. This reduces the candidate measures from

40 to 18, with the candidate measure set S being the
left half of T_ble 2.

Both abstractand non-abstractaspectscontribute

to cost,so measures from any verticalclassare poten-

tiallyacceptable.On the other hand, as we are only

consideringcost and complexity at the module level,

the hierarchicalclassificationis not relavent. The

analysisbased on the measure classificationscheme

does not eliminateany measure for CTA in thiscase.

4.2 Aggregate Evaluation

Given 18 remaining measures that meet the bound-

ary conditionsbased on the axioms and measure clas-

sifications,we next determine which ofthem best pre-

dictstotaleffort.The underline distribution,as we

assumed, isa four region distribution(grouped into

four quaxtiles)determined by historicaldata. A quar-

tileof modules ispositivelyidentifiedifmore than

75% of the modules (tolerancelevel:25%) have the

upper most quartileof effort.The negative sets can

be similarlyidentified.

Let _r_(V)(i= I,2,3,4) be the number ofmodules

in quartileiusing measure V; pi(V) be the proportion

of modules in mi(P) belonging or to the upper most

quartileofeffort;and hi(V) be the restproportion in

mi(P) (thereforepi(V) + n_(V) = i). As a result,

a quartileispositivelyidentifiedifpi(V) >_0.75,and

100067881.

4-32

Meets Axiom A3 Fails Axiom A3

assignment statements
input-output statements

input-output parameters
source Rues

comments

source lines minus comments

executable statements

function calls

module calls

functionplus module calls

cyclomaticcomplexity

operators

assignment st4ttements per I000 executable statements

input-output statement per comment
input-output parameters per comment

input-output statements per 1000 executable statements

input-output statements per input-output parameter

input-output statements per 1000 source lines

function calls per comment

function calls per input-output statement

function calls per function plus module call

function calls per input-output parameter

function calls per module call

.module calls per comment

module calls per input-output parameter

module callsper functionplus module call

operands

totaloperators

totaloperands

decisionsstatements

format statements

origin

module calls per input-output

function plus module calls per

function plus module calls per

function plus module calls per
function plus module calls per

statement

i000 source lines

input-outputstatement

input-output parameter
1000 executable statements

functionplus module callsper comment

cyclomaticcomplexity per 1000 source lines

cyclomaticcomplexity per 1000 executablestatements

Table 2: Attributespassinginitialscreening

negativelyidentifiedifhi(P) _>0.75.

To formulate the objective function for the aggre-

gated selection, we need to evaluate the contribution

of each quartile. We can weight them by the num-

ber of modules falling into the quartile. Therefore, we
formulate our selection criteria as:

max ,(V) *p,(V) + m,(V) *n,(V
_,_eS

(1)

for i ranging from 1 to Pi(P) >_ 0.75 V ni(Y) > 0.75

This selection criterion maximizes the number of

modules in positively or negatively identified quartiles.

For each of the quartiles neither positively nor nega-

tively identified, another measure is selected using the

same criterion. The process continues until all mod-
ules are identified or all measures are exhausted.

5 Results

We applied both the original CTA process and the

modified ACT process to the 16 NASA projects broken

down into the 11 projects of groups A and six projects

of B. The following sections describe the results of this

analysis.

Size of generated trees

One measure of the efficiencyof the technique is

the sizeof the classificationtreesthat are generated.

Figure 2 shows that the axiomatic model (ACT) re-

duces tree sizeapproximately 27% over the original

CTA model from 188 nodes to 136 nodes in the 15

programs with average treesizedropping from 12.5to

9.1nodes.

The smaller the tree the more desirable (less costly

to use to navigate through the tree, fewer measures to

collect), thus a point in the upper left region represents

an improvement over the original CTA.

Performance coverage

Table 3 compares the coveragebased on the original

and modified classificationtrees. In allthe projects

except one, near 100% coverage isachieved by both

methods. Thus the decisiontree analysismethod al-

most always willpredicta cost for a module and will

1000ST_t.

4-33

d

2(

I(

CTA .."#(_"s6)

" o° °°,"°"

J ACT
D,

I0 20

individual data points average

group A Igroup B A B all
CTA 1715788649341836341'17.713.412.5
ACTi911257443339 [33241!12.32.69.1

Figure 2: InternalNode Count Comparison

group A group B

98 98 99 98 91 93 97 100 100 98 100 98 97 97 100
99 100 97 100 82 93 100 98 100 99 ! 98 98 100 97 100

a.individualdata points

IgroupA group B9_71CTA 1 9_ 99

Ac'r I 97 9g 9_I
b. average compazison

Table 3: Coverage Comparison

@

@

' groupindividUalAdata pointSgroup B

_6676 78 63 53 67 7185 73 7170 50 8177 58
6773806650678183738g 7954868558

Table 4: Accuracy Comparison

iadividu_! data points

group A group B

70 66 31 54 52 63 30 16 50 10 7 100 33 17 65
67 61 37 57 56 63 50 15 50 23 43 85 40 29 65

.'l_ble 5: Consistency Comparison

individualdata points

groupA group B
266054 6242214233647 7 4 40 6347

304673 594921 1433 6 3071 1340 6347

T_ble 6: Completeness Comparison

average
A Ball

70 68 69
7574 74

average
A Ball

39 35 38
50 50 50

average
ABall
38 28 35
35 39 35

of the prediction process.

The performance levelbetween the two selection

methods issignificantlydifferent,with the modified

ACT selectionmethod outperforming the original

CTA method by a margin of50% to 38%.

Performance completeness

While ACT generatesmany fewer "falsealarms,"

(i.e.,predictinghigh cost modules which reallyare

not high cost- the above consistencymeasure), both

methods are comparable in actuallyidentifyingthe

high cost modules, i.e.,the completeness measure of

Table 6. That is,both willfailto indicatehigh cost
modules in over halfthe cases.

rarelyleavemodules unclassified.So, we can conclude

that the CTA technique using eitherselectionmethod

achievesfairlygood and consistentcoverage,with an

averageof 97% coverage for both.

Performance accuracy

Accuracy improved about 5% with the ACT pro-

cess,as given in _ble 4.

Performance consistency

Table 5 givesthe cons_tency comparison. This is

the measure that drivesthe whole process,being that

identificationof high costmodules isthe major goal

6 Conclusions

ClassificationTrees are a method to use measure-

able quantitiesfrom program modules inorder to de-

terrninedesireableattributesfrom the development

process. Identificationof high cost modules should

correlatecloselywith other processmeasures such as

reliability.

In thispaper, we presented a ClassificationTree

Analysis (CTA) method and a modification to it,

the Axiomatic ClassificationTree Analysis (ACT)

method, where an axiomatic model of program com-

plexitywas used to develop the candidate measures in

the classificationtree.

I00_788L

4-34

In all important measures, the ACT was either as
good as or improved upon the original CTA model:

(I) Classification trees were smaller; (2) Coverage was
the same; (3) Accuracy improved; (4) Consistency im-
proved and (5) Completeness was the same. We there-
fore believe that we have a candidate process that im-
proves upon the original model.

Using an axiomatic basis for classification trees has
two important economic benefits:

1. By eliminating unnecessary measures from the

classificaiton tree (e.g., reducing the list from 74
to 18 in the NASA SEL experiment), we elimi-
nate the need to collect such data. This would

imply less overhead on the development process.

2. The axiomatic classification tree analysis tech-

nique generates improved results, allowing man-
agement to better control and evaluate the de-
velopment process and allow for more informed

decision making with less risk involved.

Of course there is still much more to be done. ACT

is only right on 50% of the modules it calls high cost,
and only finds accurately over one third of these mod-

ules. However, the method is improving, and is inex-
pensive to use since it is availabh as a byproduct of
static analysis of the developing code. Further work
will continue on developing these models.

Acknowledgements

This research was supported in part by National
Science Foundation grant CCR-8819793 and National
Aeronautics and Space Administration grant NSG-
5123 totheUniversityof Maryland.

References

II]C_rdenas S. and M. V. Zelkowitz,"A man-

agement toolforthe evaluationof softwarede-

signs," IEEE 7bans. on Sofltvare Engineering 17,
9 (September,1991)961-971.

[2]PorterA. A. and R. W. Selby,"Empirically
Guided Software Development Using Metric-

Based ClassificationTrees", IEEE Software,

(March, 1990) 46-54.

[31 Selby R. W. and A. A. Porter, "Learning from
example: Generation and evaluation of decision
trees for software resource analysis," IEEE Trans.
on Software Engineering 14, 12 (1990) 1743-1757.

[4]TianJ.and M. V. Zelkowitz,"A formal program
complexitymodel and itsapplication,",I.ofS_/s-

_ems and Sofl_oan_ 17, 3 (March, 1992) 253-266.

[5] E. J. Weyuker, "Evaluating Software Complexity
Measures," IEEE Trans. on So]ttoare Engineer-

ing, 14, 9 (1988) 1357-1365.

lO0O5788L

4-35

