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Abstract. A counting Bloom filter (CBF) generalizes a Bloom filter
data structure so as to allow membership queries on a set that can be
changing dynamically via insertions and deletions. As with a Bloom filter,
a CBF obtains space savings by allowing false positives. We provide a
simple hashing-based alternative based on d-left hashing called a d-left
CBF (dlCBF). The dlCBF offers the same functionality as a CBF, but
uses less space, generally saving a factor of two or more. We describe
the construction of dlCBFs, provide an analysis, and demonstrate their
effectiveness experimentally.

1 Introduction

A Bloom filter is an inexact representation of a set that allows for false positives
when queried; that is, it can sometimes say that an element is in the set when
it is not. In return, a Bloom filter offers very compact storage: less than 10
bits per element are required for a 1% false positive probability, independent of
the size or number of elements in the set. There has recently been a surge in
the popularity of Bloom filters and variants, especially in networking [6]. One
variant, a counting Bloom filter [10], allows the set to change dynamically via
insertions and deletions of elements. Counting Bloom filters have been explicitly
used in several papers, including for example [7, 8, 9, 10, 12, 18, 19].

In this paper, we present a new construction with the same functionality as
the counting Bloom filter, based on d-left hashing. We call the resulting structure
a d-left counting Bloom filter, or dlCBF. For the same fraction of false positives,
the dlCBF generally offers a factor of two or more savings in space over the
standard solution, depending on the parameters. Moreover, the construction is
very simple and practical, much like the original Bloom filter construction. As
counting Bloom filters are often used in settings where space and computation
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are limited, including for example routers, we expect that this construction will
prove quite useful in practice.

2 Background

2.1 Bloom Filters and Counting Bloom Filters

We briefly review Bloom filters; for further details, see [6]. A Bloom filter repre-
sents a set S of m elements from a universe U using an array of n bits, denoted by
B[1], . . . , B[n], initially all set to 0. The filter uses a group H of k independent
hash functions h1, . . . , hk with range {1, . . . , n} that independently map each
element in the universe to a random number uniformly over the range. (This
optimistic assumption is standard and convenient for Bloom filter analyses.) For
each element x ∈ S, the bits B[hi(x)] are set to 1 for 1 ≤ i ≤ k. (A bit can be
set to 1 multiple times.) To answer a query of the form “Is y ∈ S?”, we check
whether all hi(y) are set to 1. If not, y is not a member of S, by the construction.
If all hi(y) are set to 1, it is assumed that y is in S, and hence a Bloom filter
may yield a false positive.

The probability of a false positive for an element not in the set is easily derived.
If p is the fraction of ones in the filter, it is simply pk. A standard combinatorial
argument gives that p is concentrated around its expectation

(
1 − (1 − 1/n)mk

)
≈

(
1 − e−km/n

)
.

These expressions are minimized when k = ln 2 · (n/m), giving a false positive
probability f of f ≈ (1/2)k ≈ (0.6185)n/m. In practice, k must be an integer,
and both n/m (the number of bits per set element) and k should be thought of as
constants. For example, when n/m = 10 and k = 7 the false positive probability
is just over 0.008.

Deleting elements from a Bloom filter cannot be done simply by changing ones
back to zeros, as a single bit may correspond to multiple elements. To allow for
deletions, a counting Bloom filter (CBF) uses an array of n counters instead of
bits; the counters track the number of elements currently hashed to that location
[10]. Deletions can now be safely done by decrementing the relevant counters. A
standard Bloom filter can be derived from a counting Bloom filter by setting all
non-zero counts to 1. Counters must be chosen large enough to avoid overflow; for
most applications, four bits suffice [5, 10]. We generally use the rule of four bits
per counter when comparing results of our data structure with a standard CBF,
although we do note that this could be reduced somewhat with some additional
complexity.

2.2 Related Work on Counting Bloom Filters

The obvious disadvantage of counting Bloom filters is that they appear quite
wasteful of space. Using counters of four bits blows up the required space by a
factor of four over a standard Bloom filter, even though most entries are zero.
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Some work has been done to improve on this. The spectral Bloom filter was
desigend for multi-sets, but also considers schemes to improve the efficiency of
storing counters [7]. A paper on “optimal” Bloom filter replacements is another
work in this vein [17], introducing a data structure with the same functionality
as a counting Bloom filter that is, at least asymptotically, more space-efficient.

While this problem has received some attention, the previous work does not
appear to give useful solutions. Spectral Bloom filters are primarily designed for
multi-sets and skewed streams; we do not know of experiments or other evidence
suggesting they are appropriate as a replacement for a CBF. The alternatives
suggested in [17] do not appear to have been subject to experimental evaluation.
Moreover, the schemes suggested in both of these papers appear substantially
more complex than the standard counting Bloom filter scheme. This simplicity is
not just useful in terms of ease of programming; for implementations in hardware,
the simplicity of the Bloom filter scheme translates into very straightforward and
clean hardware designs.

Our goal is to provide a scheme that maintains the simplicity of the original
counting Bloom filter construction, and further is backed by experimental results
demonstrating that the scheme is likely to be very useful in practice. We believe
our work is novel in these regards. Our motivation for our general approach came
about when considering generalizations of Bloom filters for state machines. See
[4] for more details.

2.3 Background: d-Left Hashing

Our approach makes use of d-left hashing, a variation of the balanced allocations
paradigm [1] due to Vöcking [20], which we now recall. Often this setting is
described in terms of balls and bins; here, for consistency, we use the terms
elements and buckets. We have a hash table consisting of n buckets. Initially they
are divided into d disjoint subtables of n/d buckets. (For convenience we assume
n/d is an integer.) We think of the subtables as running consecutively from left
to right. Each incoming element is hashed to give it a collection of d possible
buckets where it can be placed, one in each subtable. We assume in the analysis
that these choices are uniform and independent. Each incoming element is placed
in the bucket containing the smallest number of elements; in case of a tie, the
element is placed in the bucket of the leftmost subtable with the smallest number
of elements. To search for an element in the hash table, the contents of d buckets
must be checked. Note that, if the bucket size is fixed a priori, there is the
possibility of overflow. Various combinatorial bounds on the resulting maximum
load have been proven [2, 20].

For our purposes, we are more interested in obtaining precise estimates of
d-left hashing under constant average load per bucket. For the case where el-
ements are only inserted, this can be obtained by considering the fluid limit,
corresponding to the limiting case where the number of elements and buckets
grow to infinity but with the ratio between them remaining fixed. The fluid limit
is easily represented by a family of differential equations, as described in [5, 14].
The advantage of using the fluid limits in conjunction with simulation is that
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it provides insight into how d-left hashing scales and the probability of overflow
when fixed bucket sizes are used. Because of lack of space, we do not review the
derivation of the differential equations. (See the full version for more details.)

Analyzing the behavior with deletions is somewhat more problematic in this
framework, as one requires a suitable model of deletions. Good insight can be
gained by the following approach. Suppose that we begin by inserting m ele-
ments, and then repeatedly, at each time step, delete an element chosen uni-
formly at random and then insert a new element. The corresponding fluid limit
equations can be easily derived and are very similar to the insertion-only case.
We can run the family of equations until the system appears to reach a steady
state distribution. (Again, more details are in the full version.)

3 The d-Left CBF Construction

3.1 The Framework

Our goal is to design a structure that allows membership queries on a set S over
a universe U that can change dynamically via insertions and deletions, although
there will be an upper bound of m on the size of the set. A query on x ∈ S should
always return that x ∈ S; a query on some y /∈ S could give a false positive. The
target false positive rate is ε. We allow for data structures that may with very
small probability reach a failure condition, such as the overflow of a counter, at
some point in its lifetime. Preferably, the failure probability is so small that it
should not occur in practice. The failure condition should, however, be apparent,
so that an appropriate response can be taken if necessary.

A standard counting Bloom filter offers one possible solution to this problem.
Our alternative has a different starting point. It is a folklore result (see [6])
that if the set S is static, one can achieve essentially optimal performance by
using a perfect hash function and fingerprints. One finds a perfect hash function
P : U → [|S|], and then stores at each location an f = �log 1/ε� bit fingerprint in
an array of size |S|, computed according to some (pseudo-)random hash function
H . A query on z requires computing P (z) and H(z), and checking whether the
fingerprint stored at P (z) matches H(z). When z ∈ S a correct response is
given, and when z /∈ S a false positive occurs with probability at most ε; this
uses m�log 1/ε� bits.

The problem with this approach is that it does not cope with changes in the
set S, and perfect hash functions are generally too expensive to compute for
most applications. To deal with this, we make use of the fact, recognized in [5],
that using d-left hashing provides a natural way to obtain an “almost perfect”
hash function. The resulting hash function is only almost perfect in that instead
of having one set element in each bucket, there can be several, and space is
not perfectly utilized. A strong advantage, however, is that it can easily handle
dynamically changing sets. The resulting construction meets our goals of being
a substantial improvement over Bloom filters while maintaining simplicity. (See
[12] for an alternative approach for dynamic “almost perfect” hash functions.)
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3.2 The Construction of a d-Left Counting Bloom Filter

We first present a seemingly natural construction of a dlCBF that has a subtle
flaw; we then demonstrate how this flaw can be corrected. To begin, we use a
d-left hash table, where each bucket consists of many cells, each cell being a fixed
number of bits meant to hold a fingerprint and a counter. As we want to avoid
pointers to keep our representation as small as possible, we use a fixed number
of cells per bucket, so that our hash table may be viewed as a large bit array.

We store a fingerprint for each element. The fingerprints are essentially com-
pressed by taking advantage of how they are stored. Specifically, each fingerprint
will consist of two parts. The first part corresponds to the bucket index the el-
ement is placed in. We assume the bucket index has range [B], where in this
setting we use [x] = {0, 1, . . . , x − 1}. The second part is the remaining finger-
print, which we refer to as the remainder, and is stored explicitly. We assume
the remainder has range [R].

For example, if we were just using a single hash function, and a single hash
table with B buckets, we would use a hash function H : U → [B] × [R]. The m
elements of S would be stored by computing H(x) for each x ∈ S and storing the
appropriate remainders in a cell for each bucket. In order to handle deletions in
the case that two (or more) elements might yield the same bucket and remainder,
each cell would also contain a small counter. A false positive would occur if and
only if for a query y /∈ S there existed x ∈ S with H(x) = H(y).

Using a single hash function yields the problem that the distribution of the
load varies dramatically across buckets, essentially according to a Poisson dis-
tribution. Since we use a fixed number of cells per bucket, to avoid overflow
requires a small average load as compared to the maximum load, leading to a
lot of wasted spaced. Using d-left hashing dramatically reduces this waste.

We now explain the subtle problem with using d-left hashing directly. Let us
suppose that our hash table is split into d subtables, each with B buckets. To
use d-left hashing, we would naturally use a hash function H : U → [B]d × [R],
giving d choices for each element, and store the remainder in the least loaded
of the d choices (breaking ties to the left). The problem arises when it comes
time to delete an element from the set. The corresponding remainder might be
found in more than one of the d choices, as the same remainder might have been
placed by another element in another of these d buckets at some later point in
time. When this happens, we do not know which copy to delete.

It is worth making this clear by framing a specific example. Suppose that
when an element x is inserted into the table, its d choices correspond to the first
bucket in each subarray, and its remainder is a. Suppose further that the loads
are such that the remainder is stored in the last subarray. Now suppose later
than an element y is inserted into the table, its d choices correspond to the ith
bucket in the ith subarray for each i, and its remainder is also a. Notice that,
because the remainder a was placed in the first bucket of the last subarray for
x, when y is placed, this remainder a will not be seen in any of y’s buckets.
Now suppose that, due to y, the remainder a is placed in the first bucket of the
first subarray. Finally, consider what happens when we now try to delete x. The
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appropriate remainder a now appears in two of x’s buckets, the first and the last,
and there is no way to tell which to delete. Deleting both would lead to false
negatives for queries on the element y; such occurrences happen too frequently
to allow this approach. Failing to delete would leave garbage in the table, causing
it to fill and leading to increased false positives.

We solve this problem by breaking the hashing operations into two phases. For
the first phase, we start with a hash function H : U → [B]× [R]; this gives us the
true fingerprint fx = H(x) for an element. For the second phase, to obtain the d
locations, we make use of additional (pseudo)-random permutations P1, . . . , Pd.
Specifically, let H(x) = fx = (b, r). Then let

P1(fx) = (b1, r1), P2(fx) = (b2, r2), . . . , Pd(fx) = (bd, rd).

The values Pi(fx) correspond to the bucket and remainder corresponding to fx

for the ith subarray. Notice that for a given element, the remainder that can be
stored in each subarray can be different; although this is not strictly necessary,
it proves convenient for implementation. When storing an element, we first see
whether in any bucket bi the remainder ri is already being stored. If so, we
simply increment the corresponding counter. We point out that these counters
can be much smaller than counters used in the standard CBF construction, as
here collisions are much rarer; they occur only when H gives the same result for
multiple elements. Also, as we show in Claim 3.2, only one remainder associated
with fx is stored in the table at any time, avoiding any problem with deletions.
If ri is not already stored, we store the remainder in the least loaded bucket
according to the d-left scheme.

The following simple claims demonstrate the functionality of this dlCBF con-
struction. When considering false positives below, we ignore the negligible prob-
abilities of counter or bucket overflow, which must be considered separately.

Claim. When deleting an element in the set, only one remainder corresponding
to the element will exist in the table.

Proof. Suppose not. Then there is some element x ∈ S whose remainder is stored
in subtable j to be deleted and at the same time another element y ∈ S such
that Pi(fx) = Pi(fy) for i �= j. Since the Pi are permutations, we must have that
fx = fy, so x and y share the same true fingerprint. Now suppose without loss
of generality that x was inserted before y; in this case, when y is inserted, the
counter in subtable j associated with the remainder of x would be incremented,
contradicting our assumption.

Claim. A false positive for a query z occurs if and only if H(z) = H(x) for some
x ∈ S.

Proof. If z gives a false positive, we have Pi(fx) = Pi(fz) for some x ∈ S. But
then H(x) = H(z).

Claim. The false positive probability is 1 − (1 − 1/BR)|S| ≈ m/BR.

Proof. The probability that there is no false positive for z is the probability that
no x ∈ S has H(x) = H(z), and this expression corresponds to that probability.
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We have thereby avoided the problem of finding two possible fingerprints to
delete when handling deletions. In return, however, we have introduced another
issue. Our process is no longer exactly equivalent to the d-left hashing process we
have analyzed, since our d choices are no longer independent and uniform, but
instead determined by the choice of the permutations. In any instantiation, there
are really only BR collections of d choices available, not a full Bd. Fortunately
this problem is much less significant, at least in practice. Intuitively, this is
because the dependence is small enough that the behavior is essentially the
same. We verify this with simulations below. A formal argument seems possible,
for limited numbers of deletions, but is beyond the scope of this paper. More
discussion of this point is given in the full version.

3.3 Additional Practical Issues

In practice we recommend using simple linear functions for the permutations;
for example, when H(x) can has range [2q], we suggest using

Pi(H(x)) = aH(x) mod 2q

for a chosen uniformly at random from the odd numbers in [2q]. The high or-
der bits of Pi(H(x)) can be used for the bucket, and the low order bits for
the fingerprint. (Because of the dependence of these hash functions, using the
low order bits for the buckets is less effective; the same groups of buckets will
frequently be chosen. Also, although even H(x) values are then placed only in
even buckets, and similarly for odd H(x) values, since H(x) values are (pseudo)-
random the effect is negligible.) In this case, it is harder to see why the system
behavior should necessarily follow the fluid limit, since the dependence among
the bucket choices is quite strong with such limited hash functions. However,
our simulations, discussed below, suggest the fluid limit is still remarkably ac-
curate. (Some theoretical backing for this comes from the the recent results of
[11]; again, further discussion is in the full version.)

Using simple invertible permutations Pi may allow further advantages. For
example, when inserting an element, it may be possible to move other elements
in the hash table, as long as each element is properly placed according to one
of its d choices. (Allowing such movement of elements was the insight behind
cuckoo hashing [15], and subsequent work based on cuckoo hashing, including
[16].) Intuitively, such moves allow one to rectify previous placement decisions
that may have subsequently turned out poorly. Recent work has shown that even
limited ability to move existing elements in the hash table can yield better bal-
ance and further reduce loads [15, 16]. In particular, such moves may be useful
as an emergency measure for coping with situations where the table becomes
overloaded, using the moves to prevent overflow. By using simple invertible per-
mutations Pi, one can compute fx from a value Pi(fx), and move the fingerprint
to another location given by Pj(fx). We have not studied this approach exten-
sively, as we believe the costs outweigh the benefits for our target applications,
but it may be useful in future work.
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4 A Comparison with Standard Counting Bloom Filters

Roughly speaking, our experience has been that for natural parameters, our
dlCBF uses half the space or less than standard CBF with the same false positive
probability, and it appears as simple or even simpler to put into practice. We now
formalize this comparison. Suppose, for convenience, that we are dynamically
tracking a set of m elements that changes over time.

For m elements, a standard CBF using cm counters, each with four bits, as
well as the theoretically optimal k = c ln 2 hash functions, gives a false positive
probability of approximately (2− ln 2)c using 4cm bits. (This is slightly optimistic,
because of the rounding for k.) The probability of counter overflow is negligible.

A comparable system using our dlCBF would use four subarrays, each with
m/24 buckets, giving an average load of six elements per bucket. The method
of Section 2.3 shows that providing room for eight elements per bucket should
suffice to prevent bucket overflow with very high probability. Each cell counter
should allow for up to four elements with the same hash value from the hash
function H in the first step to prevent counter overflow with high probability.
This can be done effectively with 2 bit counters, as long as one has a sentinel cell
value, say 0, that cannot be a fingerprint but represents an empty cell. (We ignore
the minimal effect of the sentinel value henceforth.) With an r bit remainder,
the false positive probability is upper bounded by 24 ·2−r, and the total number
of bits used is 4m(r + 2)/3. (For convenience, we think of r ≥ 5 henceforth,
so that our upper bound on the probability is less than 1.) Alternatively, one
can think in the following terms: to obtain a false positive rate of f = 24 · 2−r,
one needs to use (4 log2(1/f) + 20 + 4 log2 3)/3 bits per element. We note that
the constant factor of 4/3 in the leading term 4 log2(1/f)/3 could be reduced
arbitrarily close to 1 by using buckets with more items and filling them more
tightly; the corresponding disadvantages would be a larger constant term, and
more cells would need to be examined on each lookup when trying to find a
matching remainder.

Equating c = (r + 2)/3, the two approaches use the same amount of space.
But comparing the resulting false positive probabilities, we find

(2− ln 2)(r+2)/3 > 24 · 2−r

for all integers r ≥ 7. Indeed, the more space used, the larger the ratio between
the false positive probability of the standard CBF and the dlCBF. For r = 14
and c = 16/3, for example, the two structures are the same size, but the false
positive probability is over a factor of 100 smaller for the dlCBF. Moreover, the
dlCBF actually uses less hashing than a standard CBF once the false positive
probability is sufficiently small.

Alternatively, we might equalize the false positive probabilities. For example,
using 9 4-bit counters (or 36 bits) per element with six hash functions in a standard
CBF gives a false positive probability of about 0.01327. Using 11-bit remainders
(or 52/3 bits per element) with the dlCBF gives a smaller false positive probability
of approximately 0.01172. The dlCBF provides better performance with less than
1/2 the space of the standard CBF for this very natural parameter setting.
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5 Simulation Results

5.1 A Full Example and Comparison

We have implemented a simulation of the dlCBF in order to test its performance
and compare to a standard CBF. We focus here on a specific example, and
extrapolate from it. We chose a table with 4 subarrays, each with 2048 buckets,
and each bucket with 8 cells, for a total capacity of 216 elements. Our target load
is 3 · 214 = 49152 elements, corresponding to an average load of six items per
bucket. The approach of Section 2.3 suggests that bucket overload is sufficiently
rare (on the order of 10−27 per set of elements) that it can be ignored.

We must also choose the size of the remainder and the number of counter
bits per cell. In our example we have chosen 14 bit fingerprints, which as per
our analysis of Section 4 should give us a false positive rate of slightly less than
24 ·2−14 ≈ 0.001465. We use 2 bit counters per cell to handle cases where a hash
value is repeated. The total size of our structure is therefore exactly 220 bits.

In our construction, we use a “strong” hash function for the first phase (based
on drand48), and random linear permutations exactly as described in Section 3.3
for the second phase.

For every experiment we perform, we do 10000 trials. In each trial, we initially
begin with a set of 49152 elements, which we represent with the dlCBF; this
corresponds to an average of six elements per bucket. We then simulate 220 time
steps, where in each time step we first delete an element from the current set
uniformly at random, and then we insert a new element chosen uniformly at
random from the much larger universe. This test is meant to exemplify the case
where the dlCBF always remains near capacity, although the underlying set is
constantly changing; it also matches the setting of our fluid limit equations. We
test to make sure counter and bucket overload do not occur. After the 220 time
steps, we consider 10000 elements not in the final set, and see how many give
false positives, in order to approximate the false positive rate that would be
observed in practice.

We first consider the issue of overflow in the hash table. Over the 10000 trials,
overflow never occurred. In fact, the fourth subarray never, over all insertions
and deletions, had any buckets with eight elements, so overflow was never even
an immediate danger. More concretely, we note that the fluid limit provides
a very accurate representation of what we see in the simulation (even though
we are using simple random linear permutations). Specifically, after all of the
random insertions and deletions, we examine the bucket loads, and consider their
distribution. As we can see in Table 1, the fluid limit matches the simulations
extremely well, providing a very accurate picture of performance.

We now turn consider the cell counter. Recall that this counter is necessary
to track when multiple elements have the same first round hash value. Over
all 10000 trials, the largest this counter needed to be was 4. That is, on six
of the trials, there were at some time four extant elements that shared the
same hash value. This requires only two bits per cell counter (again assuming
a sentinel value). While more precise calculations can be made, it is easy to
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Table 1. Simulation results with 6n elements being placed into n buckets using four
choices, compared to the differential equations. The simulation results give the fraction
of buckets with load at least k for each k up to 9; the results are based on the final
distribution of elements after 220 deletions and insertions, averaged over 10000 trials.
No bucket obtained a load of 9 at any time over all 10000 trials.

Simulation Steady
Results State

(Fluid limit)
Load ≥ 1 1.0000 1.0000
Load ≥ 2 0.9999 0.9999
Load ≥ 3 0.9990 0.9990
Load ≥ 4 0.9920 0.9920
Load ≥ 5 0.9502 0.9505
Load ≥ 6 0.7655 0.7669
Load ≥ 7 0.2868 0.2894
Load ≥ 8 0.0022 0.0023
Load ≥ 9 0.0000 1.681e-27

bound the probability of counter flow: for any set of m elements, the probability

that any five will share the same hash value is at most
(
m
5

) (
1

|B||R|
)5

, which for
our parameters is approximately 5.62e − 17. Again, for most practical settings,
counter overflow can be ignored, or if necessary a failsafe could be implemented.

Finally, we consider false positives. Over the 10000 trials, the fraction of false
positives ranged from 0.00106 to 0.00195, with an average of slightly less than
0.001463. This matches our predicted performance almost exactly.

We emphasize again that this is a specific example, and the various per-
formance metrics could be improved in various ways. False positives could be
reduced by simply increasing the fingerprint size; space utilization could be im-
proved by using fewer, larger buckets.

We now compare with a simulation of a standard CBF. We choose to compare
by trying to achieve nearly the same false positive rate We use 13.5 counters
per element (with 9 hash functions), or 663552 counters for 49152 elements. At
four bits per counter, this works out to 2654208 bits, over 2.5 times the size
of our dlCBF. Again, we performed 10000 trials, each having 220 deletions and
insertions after the initial insertion of the base set. The largest counter value
obtained was 13, which appears in just one of the 10000 trials; counter values of
12 were obtained in 16 trials. These results match what one would obtain using
a back-of-the-envelope calculation based on the Poisson approximation of the
underlying balls and bins problem, as in e.g. Chapter 5 of [13] (or see also [10]).
The approximate probability that a counter is hashed to by 16 elements (giving
an overflow) in an optimal CBF configuration, where the expected number of
hashed elements per counter is ln 2, is approximately e− ln 2(ln 2)16/(16!) ≈ 6.79 ·
10−17, roughly the same as the counter overflow probability for the dlCBF.

Over the 10000 trials, the fraction of false positives ranged from 0.00108 to
0.00205, with an average of slightly less than 0.001529. Again, this matches our
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predicted performance almost exactly, and it is just slightly higher then the
dlCBF. As in Section 4, our conclusion is that the dlCBF can provide the same
functionality as the standard CBF, using much less space without a significant
difference in complexity.

5.2 Additional Simulation Results

Suppose that we add more elements to the initial set, so that the average load per
bucket is 6.5 instead of 6. (Specifically, in our simulations, we had 8192 buckets
and 53428 elements, with each bucket having a capacity of 8 elements.) Using the
fluid limit differential equations, we find that (in the steady state limit) the frac-
tion of buckets with load at least 9 is approximately 2.205e−08. We would there-
fore expect in our experiments, with just over 1 million deletions and insertions,
that some bucket would reach a load of 9 (causing an overflow if buckets have
capacity 8) slightly over 2 percent of the time. This indeed matches our simula-
tions; over 10000 trials, we had an overflow condition in 254 trials. This example
demonstrates the fact that in general the equations are quite useful for deter-
mining the threshold number of elements over which overflow is likely to occur.

These overflows could be mitigated by allowing elements to be moved, as dis-
cussed in section 3.3. We have implemented and tested this functionality as well.
Specifically, we have focused on a simple improvement: if all the buckets associ-
ated with an inserted element are at capacity, we see if any of the items in just
the first subarray can possibly be moved to another of its choices to resolve the
overflow. This additional failsafe allowed us to handle an average load per bucket
of 6.75 (or 55296 elements), without overflow in 10000 trials. A potential bucket
overflow occured between 40 to 100 times in each trial, but even this limited
allowance of movement allowed the potential overflows to be resolved. Greater
loads could be handled by allowing more movement, and this is certainly wor-
thy of further experimentation. For many applications, however, including the
router-based applications we are considering, we believe that movement should
remain a failsafe or a very rare special case. The small loss in space utilization
is compensated for by simplicity of design.

6 Conclusion

We have demonstrated via both analysis and simulation that the dlCBF provides
the same performance as a standard CBF using much less space. We believe the
dlCBF will become a valuable tool in routing hardware and other products where
the functionality of the counting Bloom filter is required.

One interesting area we hope to examine in future work is how to make the
dlCBF responsive to large variations in load. The ability to move fingerprints
offers one approach. Another interesting possibility is to dynamically changing
the size of the fingerprint stored according to space needs.

A more general question relates to the use of d-left hashing. Since d-left hashing
provides a natural way to obtain an “almost perfect” hash function, where else
could it be used effectively to improve on a scheme that calls for perfect hashing?
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