An Improved Continuation Call-Based
Implementation of Tabling

Pablo Chico de Guzman |, Manuel Carro , Manuel V. [lermenegildo
Clandio Silva |, and Ricardo Rocha-

School of Computer Science, Univ. Politéenica de Madrid, Spain

Depts. of Comp. Science and Electr. and Comp. Eng., Univ. of New Mexico, USA

DCC-FC & TIACC, University of Porto, Portugal

Abstract. Tabled evaluation has been proved an eflective method to
improve several aspects of goal-oriented query evaluation, including ter-
mination and complexity. Several “native” implementations of tabled
evaluation have been developed which offer good performance, but many
of them require significant changes to the underlying Prolog implementa-
tion, including the compiler and the abstract machine, Approaches based
on program transformation, which tend to minimize changes to both the
Prolog compiler and the abstract machine, have also been proposed, but
they often result in lower officiency. We explore some technigues aimed
al combining Lhe best of these worlds, i.e., developing an extensible im-
plementation which requires minimal modifications to Lthe compiler and
the abstract machine, and with reasonably good performance. Our pre-
liminary cxperiments indicate promising results.

Keoywords: Tabled logic programming, Implementation, Performance,
Program transformation.

1 Introduction

Tabling is a resolution strategy which tries to memoize previous calls
and Lheir answers in order Lo improve several well-known shorleomings found
in SLD resolution. It brings some of the advantages of bottom-up evaluation to
the top-down, goal-oriented evaluation strategy. In particular, cvaluating logic
programs under a tabling scheme may achieve termination in cases where SLD
resofution does not {because of infinite loops —for example, the tabled evalu-
ation of bounded term-size programs is guaranteed to always terininate). Also,
programs which perform repeated computations can be greatly sped up. Pro-
gram declaraliveness is also improved since the order of ¢lanses and goals within
a clause is less relevant, if at all. Tabled evaluation has been successfully ap-
plicd in many fickds, such as deductive databases , program analysis .
reasoring in Lhe sermantic Web , model checking , and others.

In all cascs the advantages of tabled evaluation stem from checking whether
calls Lo fabled predicates, i.e., predicales which have been marked Lo be evalu-
ated using tabling, have been made before. Repeated calls to tabled predicates
consume answers from a table, they suspend when all stored answers have been
consumed, and they fail when no more answers can be generaled. However, Lthe
advantages are not without drawbacks, The main problem is the complexity
of some {efficient) implermentations of tabled resolution, and a secondary igsue
is the difficulty in selecting which predicates to table in order not to incur in
undesired slow-downs.

Two main categories of Labling mechanisms can be distinguished: suspension-
basced and lincar tabling mechanisms. In suspension-basged mechanisms the com-
putation state of suspended tabled subgoals has to be preserved to avoid back-
tracking over them, This is done cither by freezéng the stacks, as in XSB , by
copying Lo another area, as in CAT | or by using an intermediate solution as
in CITAT . Linear tabling mechanisms maintain a single execution tree where
tabled subgoals always extend the eurrent computation without requiring sus-
pension and resumption of sub-computations. The computation of the (local)
fixpoint is performed by repeatedly looping subgeals until no more solutions can
be found. Examples of this method are the linear tabling of B-Prolog and
the DRA scheme [¢].

Suspension-based mechanisin have achicved very good performance results
but, in general, deep changes Lo the underlying Prolog implementation are re-
guired. Lincar mechanisms, on the other hand, can usually be implemented on
top of exisling sequential engines without major modifications bul their effi-
cieney is affected by subgoal recomputation. One of our theses is that it should
be possible to find a combination of the best of both worlds: a suspension-based
mechanism thal is reasonably efficient and does nol require complex modilica-
tions to the compiler or underlying Prolog implementation, thus contributing to
ils maintainabilily an making it eagier Lo port il to other Prolog systems. Also,
we would like to avoid introducing any overhead that would reduce the execution
specd for SLD exceution.

Our starting poinl s the Continuation Call Mechanism presented by Ramesh
and Chen This approach has the advantage that it indeed doees not need
deep changes to the underlying Prolog machinery. On Lhe other hand it has
shown up to now worge efficiency than the more “native” suspension-baged im-
plementations. Our aim is to analyze the bottlenecks of this approach, explore
varialions thereof, and propose solutions in order Lo improve ils elliciency while
keeping tabling-related changes clearly separated from the basic WAM imple-
mentation. While the approach may not necessarily be significantly simpler than
other (native) approaches, we will argue that it does allow a more modular design
which reduces and isolales in separate modules Lhe changes made Lo the under-
lying WAM. This hopefully will make it easier to maintain the implementation
of hoth tabling and the WAM itsclf, as well as adapting the tabling scheme and
code to other Prolog systems.

In more conerete terms, the implementation we will
propose tries Lo be non intrusive and change only minimally the initial WAM),
moving the low-level tabling data structures either to the Prolog level or to
external modules. Other systems, like Mercury . also implement tabling using
exlernal modules and program transformalion, so as not Lo change the compiler
and runtime systemn. Despite these similarities, the big differences in the base
language make the implementation technically very diTerent also.

2 Tabling Basics

We now sketeh how Labled evalualion works from a user point of view
and briefly describe the continuation call mechanism
implementation technique proposed , on which we basc our work.

2.1 Tabling by Example

We use ag running example the program in Figure | , whose
purpose is to determine reachability of nodes in a graph We ignore for now
the : - tabled path/2 declaration (which instruets the compiler to use tabled
execution for the designated predicate);, and assume that SLI) resolution is to
be used. Then, a guery such as ?- path(a, N). may never terminate if, for
example, edge/2 represents a cyclic graph.

Adding the :- tabled declaration forces the compiler and runtime system to
distingnish the first oceurrence of a tabled goal (the generetor) and subsequent
calls which are identical nip Lo variable renaming (the consumers). The generalor
applies resolution using the program clauses to derive answers for the goal. Con-
sumers suspend Lhe current, execulion path (using implementation-dependent
means) and start execution on a different branch, When such an alternative
branch finally succecds, the answer gencrated for the initial query is inscrted
in a table associaled with the original goal. This makes it possible Lo reactivate
suspended ealls and to continue execution at the point where they were stopped.
Thus, eonsumers do not use SL1 resolution, but obtain instead the answers from
the table where they were inserted previously by the producer. Predicates not
marked as tabled arc executed following SLIY resolution, hopefully with (minimal
or no) overhead due Lo the availabilily of Ltabling in the system.

2.2 The Continuation Call Technique

The continuation call technique [14] implements tabling by a combination of
program transformation and side offects in the form of inscrtions into and re-
trievals from a table which relates calls, answers, and the continuation code to be
exceuted after consumers read answers from the table. We will now sketch how
the mechanism works using the path/2 example (Figure 1). The original code is
transformed into the program in Iigure 2 which is the one actually executed.
Roughly speaking, the transformation for tabling is as follows: a bridge pred-
icale for path/2 is introduced so thal calls Lo path/2 made from regular Prolog

path(X, Y} slg(path(X, Y)).

slg_path (path{X, Y), Id}:

edge(X, Y},
- tabled path/2. slgeall (Id, [X], path(Y, £), path_cont).
slg_path (path{X, Y), Id}:-

path(X, Z):- edge(X, Y),

edge(X, Y), answer(ld, path(X, Y)).

path(Y, Z).
path(X, Z):- path_cont(ld, [X], path(Y, Z)):-

edge(X, 7). answer(ld, path(X, Z)).

Fig. 1. A sample program Fig. 2. The program in Figure 1 after being trans-

formed for tabled execution

execulion do nol need to be aware of Lthe fact Lhal path/2 is being tabled. The
call to the slg/1 primitive will ensure that its argument is executed to com-
pletion and will return, on backtracking, all the solutions found for the tabled
predicate. To Lhis end, slg/1 starts by inserting the call in the answer Lable and
generating an identifier for it. Coontrol is then passed to a new, distinet predicate:
in this ease, slg_path/2.' slg_path/2 receives in the first argument the original
call to path/2 and in the second one the identifier generated for the parent call,
which is uscd to relate operations on the table with this initial call. Each clause
of slg_path/2 is derived from a clause of the original path/2 predicate by:

— Adding an answer/2 primitive at the end of cach clause resulting from a
transformation and which is nol a bridge Lo call a continuation predicate.
answer/2 is responsible for checking for redundant answers and executing
whatever continuations (see the following item) there may be associated with
that call identified by its first argument.

— Instrumenting recursive calls to path/2 using the slgcall/4 primitive. If
the term passed as an argument (i.c., path(X, Y)) is already in the table,
slgcall/4 creales a new consumer which consumes angwers from the ta-
ble. Otherwise, the term is inserted in the table with a new call identifier
and execution follows using the slg_path/2 program clauses Lo derive new
answers. In the first case, path_cont/3 is recorded as {one of) the continua-
tion(s) of path(X, Y} and slgcall/4 fails. In the second case path_cont/3
is only recorded as a continualion of path(X, Y) if the tabled call cannot
be completed. The path_cont/3 continuation will be called from answer/2
after inserting a new answer or erased upon completion of path(X, Y).

— The body of path_cont/3 encodes what remains of the clause body of path/2
after the reoursive call. It is constructed in a similar way to slg_path/2,
i.e., applying the same Lransformation as for the initial clauses and calling
slgcall/4 and answer/2 at appropriate times.

ALl IMProved WONLInuatlon al-5ased 1MpeInentatlon O 1apiing AN

slgcall (callid Parent, term Bindings,
term Call, term CCall) {
Id = insert Call into answer table;
if (Id.state == READY) {
Id . state = EVALUATING,;

answer(callid Id, term Answer) { call the transformed clause of Calf;

insert Answer in answer table check for completion;
If (Answer ¢ answer table) }

for each continuation calf C consume answers for Id;

of tabled call Id { if (Id.state '= COMPLETE)
call {C) consuming Answer, add a new continuation

} call (CCall, Bindings) to Id,

return FALSE; return FALSE;

} }

Fig. 3. Pseudo-code for answer/2 Fig. 4. Pseudo-code for slgeall/a

The seccond argument of sigcall/4 and path_cont/3 is a list of bindings
needed Lo recover ihe environment of the conlinualion call. Note that, in the
program in Figure 1, an answer to a query such as 7- path(X, Y) may need to
bind vartable X. This variable does nol appear in the recursive call to path/2, and
hence it does not appear in the path/2 term passed on to slgeall/4 either. In
order for the body of path_cont/3 teinsert in the table the answer corresponding
Lo the initial query, variable X (and, in general, any olher necessary variable) has
to be passed down to answer/2. This is done with the list [X], which is inserted
in the table as well and compleles the environment needed for the continualion
path_cont/3 to resume the previously suspended call.

A safe approximation of the variables which should appear in this list is the
sel of variables which appear in Lhe clause before the Labled goal and which are
used in the eontimation, including the answer/2 primitive if there is one in the
conlinuation —this is the case in our example. Variables appearing in the tabled
call itself do not need to be included, ag they will be passed along anyway.

Recovering a previous cxecution environment is an important operation in
tabled execulion. Other approaches Lo Lhis end are the use of forward trail and
freeze registers of SLG-WAM [16], which involves using lower-level mechanisms,
The continuation call approach, which performs several tabling operations al the
Prolog level through program transformation and can o prieri be expected to be
somewhat slower, has, however, the nice property that the implementation does
not need to change the underlying WAM machinery, which helps its adaptation it
to different Prolog systems. On the other hand, the table management is usually,
and for efficiency reasons, written using some lower-level language and accessed
using a suitable interface.

The psendo-code for answer/2 and slgeall/4 is shown in Figures 3 and 4,
respectively. The pseudo-code for sig/1 is similar to that of slgeall/4 but, in-
stead of consuming answers, they are returned on backtracking and it finally fails
when all the stored answers have been exhansted. The program Lransformation

and primitives try to complete subgoals as soon as possible, failing whencver
new answers are found. Thus, they implement the so-called local scheduling

Checking for completion: The completion detection algorithm

is similar to that in the SLG-WAM. We just provide a sketch
here. Completion is checked for in Lthe execulion of the slgcall/4 primitive
after exhausting all alternatives for the subgoal call at hand and resuming all
of its consumers. To do Lhat, we use Ltwo auxiliary felds in the table entry
corresponding to every subgoal, SgFr_dfn and SgFr_dep, to quickly determine
whether sueh a subgoal is a lcader node. The SgFr_dfn field reflects the or-
der in which the subgoals being evaluated were called. New subgoal frames are
numbered incrementally as they are ereated, adding once to the SgFr_dfn of the
previous (youngest) subgoal, whose frame is always pointed to by the global vari-
able SF_TOP. SgFr_dep holds the number of the older call on which it depends,
which is initialized with the same number ag SgFr_dfn, meaning Lhal initially
no dependencies exist. If Py, a tabled subgoal already inserted in the table, is
called from the exceution of another tabled subgoal, %, the SgFr_dep field of
the table entry of P» is uipdaled with the value of 8gFr_dep field of Py, meaning
Py depends on £, When checking for completion, and using this information
from the table enlries, a subgoal can quickly determine whether it is a leader
node. If 8gFr_dfn = SgFr_dep, then we know that during its evaluation no de-
pendencics to older subgoals have appeared and thus the Strongly Connected
Component (SCC) including the subgoals starting irom the table entry referred
to by SF_TOP up to the current subgoal can be completed. On the other hand, if
SgFr_dep < SgFr_dfn, we cannol perform completion. Tnstead, we musl propa-
gate the current dependency to C, the subgoal call that continues the evaluation.
To do that, the 3gFr_dep ficld is copicd to SgFr_dep ficld of 7, and completion
can be performed only when the computation reaches the subgoal thal. does not
depend on older subgoals.

Issues in the Continuation Call Mcechanisin: We have identilied two perfor-
mance-related issues when implementing the technique sketched in the previous
sectiom. T'he first one is rather general and related to the heavy use of the inter-
fuce between € and Prolog (in both directions) that the implementation makes,
which adds an overhead which cannot be neglected.

The second one is Lhe repealed copying of continuation calls. Conlinuation
cails (which are, in the end, Prolog predicates with an arbitrarily long list of
variables as an argument) are completely copied from ’rolog memory to the ta-
ble for every consumer found. Storing a pointer to these structures in memory is
not cnough, since slg/1 and slgecall/4 fail immediately after associating a con-
tinuation call with a tabled call in order to force the program to search for more
solutions and complete the tabled call. Therefore, the data structures created
during forward execulion may be removed on backtracking and not be avail-
able when needed. Reconstructing continuations as Prolog terms from the data
stored in the table when they are resumed to consume previously stored answors
is necessary. This can also clearly have a negalive impacl on performance.

Finally, an issue found with the implementation
i Lhatl it did nol allow backlracking over Prolog
predicates called from C, which makes it difficult to implement other scheduling
strategies. Since this shortcoming may appear also in other C interfaces, it is a
clear candidale for improvement.

3 An Improvement over the Continuation Call Technique

We now propose somne improvements to the different limitations of the original
design and implementation thal we discussed in Section 2.2, Tn order Lo measure
exeeution times, we are taking the implementation deseribed to be close
enough to that described in order Lo be used as a basis for our devel-
opments. Tt is also an implementation of high guality whose basic components

arc similar to those in use in current
tabling systems. This implementation was porled to Ciao, where the rest of the
development was performed. In what follows this initial port to Ciao will be
termed Lthe “baseline implementation.”

3.1 Using a Lower-Level Interface

Calls from C to DProleg were initially performed using a relatively high-level
interface similar to those commonly found in current state of the art logic pro-
gramming systems: operations to create and traverse Prolog terms appear to the
programmer as regular C functions, and details of the internal data representa-
tion are hidden 1o the programmer. This inlerface imposed a noticeable overhead
in our implementation, as the calls to C funetions had to allocate environments,
pass argurments, seb up Prolog environments Lo call Prolog from €, ete.

In order to make our implementation as fast as possible, a possibility is to
integrate all the C code into the WAM and try to avoid altogether costly format
conversions, ele. However, as mentioned belore, we preferred Lo make as few
changes as possible in the WAM. Therefore we chose to use directly lower-level
operations and lake advantage of facilities {e.g., macros) initially designed io
be internally used by the WAM. While this in principle makes porting more
involved, the faect is that the facilities provided in C interfaces for Prolog and
the internal WAM operalions are Lypically quile related and similar, since they
all provide an interface to an underlying architecture and data representation
which is common Lo many Prolog implementations.

Additionally, the code which constructs Prolog terms and performs calls from
C is the same regardless of the program being executed and its complexity is
certainly manageable. Therefore, we decided to skip the programmer interface
and call directly macros available in the engine implementation. That was not a
difficult task and it sped the execution up by a factor of 2.5 on average.

3.2 Calling Prolog from C

A relevant issue in the continuation call technique (and, possibly, in other cases)
is Lhe use of a C-to-Prolog interface Lo call Prolog goals from C — e.g., when

continuations, which have been internally stored, have to be resumed, as done
by slgcall/4 and answer/2. We wanted Lo design a solution which relied as
little as possible on non-widely available characteristics of C-to-Prolog interfaces
(to simplify porting the code), but which kept the efficiency as high as possible.

The general solution we have adopled is Lo move calls to continuations from
the C level to the Prolog level by returning them as a term, using an extra
argument in our primitives, Lo be called from Prolog. This is possible since con-
tinuations are rewritten as separate, unique predicates which therefore have an
entry point accessible from Prolog. 1f several continuations have to be called, they
can be returned and invoked one al a Lime on backlracking, and fail when there
is no pending continuation call. New continuations gencrated during program
execution can be destructively inserted at the end of the list of continuations
transparcitly to Prolog. Additionally, this avoids using up C stack space due to
repeated Prolog — C — Prolog — ... calls, which may exhaust the C stack.
Moreover, the C' code is somewhat simplified (e.g., there is no need to set up a
Prolog environment to be used from C) which makes using a lower-level, faster
interface tess of a burden.

3.3 Freezing Continuation Calls

In this section we sketch some proposals to reduce the overhead associated with
the way contlineation calls are handled in the original conlinuation call proposal.

Resuming consumers: OQur starting point saves a binding list in the table Lo
reinstall the environment of consumers when they have to be resumed. This is a
relalively non-intrusive Lechnique, but it requires copying lerms back and forth
between Prolog and the table where calls are stored. Restarting a consuiner needs
to construct a term whose first argument is the new answer (which is stored in
the heap), the second one is the idenlifier of the Labled goal (an atomic ilem),
and the third one a list of bindings (which may be arbitrarily large). If the list
ol bindings has N elements, constructing the conlinualion call requires crealing
7 2N + 4 heap cells. If a continuation call is resumed often and NV i high, the
efficiency of the system can degrade guickly.

The techriique we propose constructs conlinualion calls on the heap as regular
Prolog terms. As these continuations are later recovered through a unigue call
identifier, and each conlinnation is unified with a new, fresh variable (CCall
in resume_ccalls/4, Figure 7), full unification or even pattern matching are
unnecessary, and resuming a continuation is a constant time operation.

Iowever, the fragment of code which constructs the continuation eall performs
backtracking to eontinue cxploring pending branches. This will remove the con-
structed call from the heap. Protecting that term is needed to make it possible
to eonsiruct it only once and reuse it later. A feasible and simple solution is to
freeze conlinualion calls in a memory area which is not allected by backtracking.

COMT. CALL

Chedospoluis Sid 1 Subgoal frame

x

i 1

Conflwaiion space p
a Ans Coml Call e

Choicapotats
s
L3 .) a |
¢l 2 ‘ v 2

Fig. 5. [uitial slate Fig. 8. brozen continuation call

This will in principle make the aforementioned problem disappear. Selecting a
brand new arca will, however, bring additional issucs as some WAM instructions
would have Lo be changed in order Lo Lake it into account: for example, variable
binding direction is commonly determined using the addresses of variables (in
addition Lo their lags) so that younger variables point to older variables in order
to save trailing. One easy way to reconcile existing WAM machinery with this
continuation ecall arca is to reserve part of the heap for it, This makes the usual
WAM assumptions to hold and exactly the same WAM instructions can be used
to construct and traverse data structures both in the regular heap and in the
continualion call area. Therefore, regarding forward execulion and backlrack-
ing, only minimal changes (e.g., the initialization of the H pointer, and selecting
the right read/write heap pointer when dealing with the regular heap or the
continuation call zone) have Lo be introduced.

Figure & shows the state of the choicepoint stack and heap (both assumed to
grow downwards) before freezing a conlinuation call. Figure 6 shows the contin-
uation eall (C, [X,1,2], Ans) frozen at the beginning of the heap, where it is
unaffected by backtracking as the WAM execution started with the H peinter
placed just after the continuation call zone. In order Lo recover the continuation
calls, a new field is added to the table pointing to a (Prolog) list whose elements,
in turn, point to every continuation found so Tar for a given labled goal.

This makes freeging a continuation call require some extra time in order to
copy it on the heap. However, resuming a continuation is a constant time oper-
ation. Other systemns, like CHAT or SLG-WAM, spend some exlra time while
preparing a consumer to be resumed, as they need to record bindings in a for-
ward trail in order to later reinstall them. In our case, when the continuation is
to be executed, the list of bindings carried with it is unified with the variables
in its body, implemenling essentially Lhe same Minetionality as the forward Lrail.

In a previous paper [6] we presented a preliminary version of this technique
where the heap was frozen by manipulating the contents of some choicepoints,

in what can be seen as a variant of CHAT. The work presented herein works
around several drawbacks in that approach.

Memory manapement for continuation space: As mentioned before, the
arca for continuations is taken from the same memory zone where the general
heap is localed, thus making it possible to use the same WAM instruetions
without any change. In case more memory is needed, reallocating the heap and
the continualion area can be done simultaneously, keeping the same placement
relation between both, As data inside both areas has the same format, adjusting
pointers can be done wsing memory management routines already existing for
the regular WAM implementation, which only have to be updated to take into
account. the cxistence of a gap of unused memory between the continuation
call and regular heap areas. Additionally, sliding the heap within its zone to
make room for more heap or for more continuations amounts only to readjusting
pointers by a constant, amount.

Frozen continuations are, in principle, only reachable from the table struc-
ture, which makes them candidates to be (wrongly) removed in case of garbage
collection. A possible solution which needs almost no change Lo the garbage col-
leetor is to link a DProlog list L from some initial, dummy choice point. Each
element in L poinls Lo the continualion list of a generator, which makes all the
continuations reachable by the garbage collector, and therefore protected. When
a generator is completed all of its answers arc already stored in the trie, and
ils conlinualions are no longer needed. Removing the pointer from L to this list
of unneeded continuations will make garbage collection reclaim their space. In
order Lo adjust the pointers from Lable enlries Lo the conlinuations when Lhese
are reallocated after a garbage collection, each element of L includes a pointer
back to the corresponding table entry which can be used to quickly locate which
pointers have Lo be updaled in the Lable enlries. A new rouline has o be added
to the garbage collector to perform this step.

Avoiding trail management to recover a continuation call state: The
samne term T cotresponding to a continuation call C' can be used several times to
generate multiple answers to a query. This is in general not a problem as answers
are in any case saved in a sale place (e.g . the answer Lable), and backiracking
would undo the bindings to the free variablesin T'. There is, however, a particular
case which needs special measures. When a continuation call €y, identical Lo C,
is resumed within the scope of €, and it is going to read a new answer, the state
of 1" has to be reset to its frozen initial state. Since) is using the same heap
term T as ', we say that (! is a reusing call.

The solution we present tries to climinate the need for treating reusing calls
a5 a special case of a continuation call. Reusing calls appear because our baseline
implementation resumes continuations when new answers arc found, just when
we could be in the scope of an identical continuation call. But resumptions can
be delayed until the moment in which we are going to check for comnpletion (in
the generator) and then the continuation calls with unconsumed answers can
be resumed. Following this approach there are no reusing calls because a new

continuation call is never resumed within the scope of another continuation call
and we do not need Lo do any trail management.

New tabling primitives and translation for path/2: Figure 7 shows the
new program transformation we propose for the path/2 program in order to
take into aceount the ideas in the previous sections. Variables Pred, CCall, and
F will contain goals built in C but called from Prolog (Section 3.2). The third and
fourth arguments of resume_ccalls/4 implement a trick to create a choicepoint
with dummy slols which will be used Lo store poinlers to the nexl conlinualion
to execute and to the generator whose continuations we are resurming. Creating
such a slot in this way, at the source level, avoids having to change the structure
of choicepoints and how they are managed in the abstract machine.

In the clanse corresponding Lo path/2, the primitive slg/1 shown in Figure 2
is now split into slgecall/3, execute generator/2, and consume_answer/2.
slgcall/3 tests whether we are in a generator position. In that case, it con-
structs a new goal from the Lerm passed as [irst argument (the lerm slg_path/2
will be constructed in this case). This goal is returned in variable Pred, which
will be called tater. Otherwise, Lhe goal true will be relurned.

This new goal is always passed to execute_generator/2 which executes it. If
it is true it will succeed, and the exccution will continue with consume_answer/2.
However, slg_path/2 is ensured Lo ultimalely fail (because the solutions to the
tabled predicate are generated by storing answers into the table and failing in
ansver/2), so thal the “else” parl of execute_generator/2 is taken. There,
consumers are resumed before checking for completion and consume_answer/2
returns, on backtracking, cach of the answers found for path(X, Y).

slg_path/2 is similar (o path/2 but it does not have Lo relurn all solulions
on backtracking, as consume_answer/2 does. Instead, it has to generate all pos-
sible solutions and save Lhem: new_ccall/5 inserls a new conlinuation if the
execution of path(Z,Y) iz not complete. Otherwise, it uses path_cont_1 as the
main functor of a goal whosc arguments arc answers consumed from the table.
This goal is relurned in F and immediately called. Tn this particular case the
(recursive) call to path/2 is the last goal in the recursive clause (see Figure 1),
and therefore the continualion directly inserts the answer in the Lable.

Finally, answer/2 does not resume continuations anymore to avoid reusing
calls, since resume_ccalls/4 resumes all the continuations of the tabled call
identified by 8id and its dependent gesseralors before checking Tor completion.

3.4 Freezing Answers

When resume_ccalls/4 is resuming continuation calls, answers found for the
tabled calls so far are used to continue execution. These answers are, in prin-
eiple, stored in the table (i, answer/2 inserted them}, and they have to be
constructed on Lhe heap so that the continuation eall can access them and pro-
ceed with execution.

The ideas in Seetion 3.3 can be reused to freeze the answers and avoid the
overhiead of building them again. As done with the eonlinuation calls, a new

path(X.Y) - slg_path (path(X, Y), Sid) :-
slgeall (path(X, Y), Sid, Pred), edge(X, Y),
execute_generator (Pred,Sid), answer(path(X, Y), Sid).

cansume_answer(path(X, Y}, Sid}.
path_cont_1{path(X, Y}, Sid, [Z]) :-

slg_path {path(X. Y),Sid) - answer(path(Z, Y), Sid).
edge(X, 7),
slgeall (path(Z, Y), NSid, Pred), execute_generator (Pred,Sid) —
execute_generator (Pred, NSid), (
new_ccall (Sid, NSid, [X], call {Pred) —>
pathcont1, F}, true
call (F). ;

resume_ccalls (Sid , CCall ,0,0),
call (CCall)

).

Fig. 7. New program transformation for right-reeursive definition of path/2

field is added to the table pointing to a (Prolog) list which holds all the answers
found so far for a tabled goal. This list will be traversed for cach of the consumers
of the corresponding tabled call. Tn spite of this freezing operalion, answers Lo
tabled goals are additionally stored in the table. There are two reasons for this:
the first one is that when some tabled goal is completed, all the answers have
Lo be accessible from outside Lhe derivation tree of the goal. The second one is
that the table makes checking for duplicate answers faster.

3.5 Repeated Continuation Calls

Continuation calls could be duplicated in a table entry, which forces an unnee-
essary recomputation when new answers are found. This problem can also show
up in other suspension-based Labling implementalions and it can degrade Lhe
efficiency of the system. As an example, if the program in Figure 7 is executed
against a graph with duplieate edge/2 facts, duplicate continuation calls will be
created, as edge (X, Z) in the body of slg_path/2 can match two identical facts
and return two identical bindings which will make new_ccall/4 to insert two
identical continualions. Since we Lraverse Lhe new continualions Lo copy them
in the heap, we can check for duplicates before storing them without having to
pay an excessive performance penalty. As done with answers, a trie structure is
used to check for duplicates in an efficient manner.

4 Performance Evaluation

We have implemented the proposed Lechnigues as an extension ol the Ciao sys-
tem . Tabled evaluation is provided to the user as a loadable package that pro-
vides the new directives and uscr-level predicates, performs the program trans-
formations, and links in the low-level support for Labling. We have implemented

Table 1. Terse description of the benclunarks nsed

lchain X Teft-recursive path program, unidimensional graph.

leyele X Lefl-recursive path prograin, eyelic graph.

rchain X Right-recursive path program (this generates more continuation
calls), unidimensional graph.

rcycle X Right-recursive path program, cyclic graph.

rcycieR X Right-recurgive path program, cyclic graph with repeated odges.

reycleF X Like reyele 256, bul executing fib{20¢,) belore edge/2 goals.

numbers X Find arithmetic expressions which evaluate to some number N
using all the numbers in a list L.

numbers Xr Same ag above, but all the numbers in L are all the same {this
gonerates a larger scarch space).

atr2 A parser for Japancsc.

Table 2. Speed comparizon of three Ciao implementations

[Benchmark|Ciao + Ccal (baseline)|Lower C interf.

Ciao + CCI

lchain 1,024 7.12 2.85 1.80
leyele 1,024 7.32 2.92 1.96
rchain 1,024 2. 620,603 1,046, 1(} ha7.92
reyele 1,024 Ba1A00 2772.60 |,097.26
numbers 5 1,691.00 781.40 772,10
numbers Hr 3,974,90 1,425.48 1,059.93

and reasured three varianls: the first one is based on a direcl adaptation of
the implementation presented , using the standard, high-level C interface.
We have also implemented a sccond variant in which the lower-level and sim-
plified C interface is used, as discussed in Seclions 3.1 and 3.2, Finally, a third
variant, which we call CC {Callable Continuations), incorporates the proposed
improvements Lo the model discussed in Sections 3.3 and 3.4.

We evaluated the impact of this series of optimizations by using some of the
benchmarks in Table 1. The resnlts are shown in Table 2, where times are given
in milliseconds. Lowering the level of the C interface and improving Lhe trans-
formation for tabling and the way calls are performed have a clear impact, It
should also be noled that the latter improvement seems to be specially relevant
in non-trivial programs which handle data structures (the larger the data struc-
tures are, the more re-copying we avoid) as opposed to those where little data
management is done. On average, we consider the version reported in the right-
most colimn to be the implementation of choice among those we have developed,
and this is the one we will refer to in the rest of the paper.

Table 3 tries to determine how the proposed implementation of tabling com-
pares with state-of-the-art systems —namely, the lalest available versions of
XSDB, YapTab, and B-Prolog, at the time of writing. In this table we provide, for
several benchimarks, the raw time (in milliscconds) taken to exceute them us-
ing tabling and, when possible, SLD resolution. Measuremenls have been made

on Ciao-1.13, using the standard, unoptimized bytecode-based compilation, and
with the CC extensions loaded, as well as in XSB 3.0.1, YapTab 5.1.1, and
B-Prolog 7.0, All the executions were performed using local scheduling and dis-
abling garbage collection; in the end this did not impact execution times very
much. We used gee 4.1.1 Lo compile all Lhe systems, and we executed them on
a machine with Fedora Core Linux, kernel 2.6.9, and an Intel Xeon processor,

Analyzing the behavior of the reycle X benchmark, which is an example
of almost pure tabling evaluation, we observe that our asymptotic behavior is
similar to other tabling approaches. If we multiply X by N, the resulting time for
all of the systems (excepl YapTab) is mulliplied by approximately 2N. YapTab
does not follow the same behavior, and, while we could not find out exactly the
reason, we think it is due to YapTab on-the-fly creating an indexing table which
sclects the right edge/2 clause in constant time, while other implementations
spend more time performing a search.

B-Prolog, which uses a linear tabling approach, is the fastest SLG resclution
implementation for reycle X, since there is no recomputation in that bench-
mark. However, efliciency suffers if a coslly predicale has Lo be recornputed: this
is what happens in reycleF, where we added a call to a predicate caleulating
the 20'F Fibonacei number before each of Lhe calls to edge/2 in the hody of
path/2. This is a (well-known) disadvantage of linear tabling techniques which
does not affeet suspension-bascd approaches. It has to be noted, however, that
current. versions of B-Prolog implement an oplimized variant of its original lin-
ear tabling mechanism [22] which tries to avoid recvaluation of looping subgoals.
The impact of recompettation is, therefore, nol as important as it may initially
geemn. Additionally, in our experience B-Prolog is already a very fast SLD sys-
tem, and its speed scems to carry on to SLO execution, which makes it, in our
experiments, the fastest SLG systern in absolule terms, excepl when unneeded
recompitation is performed.

The ideas discussed in Seclion 3.5 show their elTecltiveness in the reycleR 2048
benchinark, where duplicating the clauses of edge/2 produces repeated consuimers,
While B-Profog is affected by a factor close to 2, and XSB and Yap'lab by a factor
of 1.5, the Cliao+CC implementation is allected only by a factor of a 5% because it
does not add repeated consumers to the tabled evaluation.

In order to compare our implementation with XSB, we must take into ac-
count that XSDB is somewhat slower than Ciao when executing programs using
SLIY resolution —at least in those cases where the program cxecution is large
entough Lo be really significant (belween 1.8 and 2 limes slower for these non-
trivial programs)}. This is partly due to the fact that XSB is, even in the case
of SLD execution, prepared for tabled resolution, and thus the SLG-WAM has
an additional overhead (reported to be around 10% [16]) not present in other
Prolog systems and also presumably thal the priorities of their implementors
were understandably more focused on the implementation of tabling. However,
XSB executes tabling aroune 1.8 times fagter than our current implementation,
confirming, as expected, the advantages of the native implementation, since we
perform some aperations at the Prolog level.

Table 3. Comparing Ciao+CC with X818, YapTah, and B-Prolog

Clao+CC X5B YapTal B-Prolog
Program SLD] Tabling] SLD | Tabling] SLD [Tabling] SLD] Tabling
reycle 2546 - TORT - 36.44 - 59.95 - 26.02
reyele 512 - 288.14 151.26 - 31147 - 103.16
reycle 1,024 - 1,087.26 - 68318 - 1,229.86 - 407.95
revele 2,048 - 4.375.93 3.664.02 - 2,451.67 - 1,596.06
reyeleR 2,048 - 4,578.50 - 5473.91 - 3.576.31 - 2877.60
revelel 256 - 1.641.95 2472.61 - 1,023.77 - 2,023.75
numbers 3r l.62 [.39 3.61 1.91 1.87 1.08 |16 1.13
numbers 4r 99.74 3613 211.08 h1.72] 108.08 29.16 83.89 22.07
numbers br [7,702.03|1,059.03|16,248.01|1,653.82|8,620.33| 919.88|6,599.75 708.40
alr2 - 703.19 - 581.31 - 27811 - 272.55

Although this lower efficiency is ebviously a disadvantage of our implemen-
tation, it is worth noling thal, since our approach does nol introduce changes
neither i the WAM nor in the associated Prolog compiler, the speed at which
non-tabled Urolog is executed remains unchanged. In addition to this, the mod-
ular design of our approach gives beller chances of making il easier Lo port o
other systems. In our case, executables which do not need tabling have very
little tabling-related code, as the data structures (for Lries; ele.) are created as
dynamic libraries, loaded on demand, and only stubs are needed in the regular
engine. The program transformation is taken carc of by a package (a plugin for
the Ciao compiler) which is loaded and aclive only al compile Lime.

In non-trivial benchmarks like numbers Xr, which at least in principle should
rellect more accurately whal one might, expect in larger applications, execulion
times are in the end somewhat favorable to Ciao+CC when comparing with
XSB. This is probably due to the faster raw speed of the basic engine in Ciao
but it also iraplies that the overhead of the approach Lo Labling used is reasonable
after the proposed optimizations. In this context it should be noted that in these
experiments we have used the baseline, bytecode-based compilation and ahstract
machine, Turning on global analysis and using optimizing eompilers [3,10] can
further improve the speed of the SLD part of the computation.

The resulls are also encouraging Lo us because they appear Lo be another
example supporting the “Ciao approach:” start from a fast and robust, but
extensible L1I>-kernel system and then include additional characteristics by means
of pluggable components whose implementation must, of course, be as efficient
as possible but. which in Lhe end benelit from the initial base speed of the systermn.

We have not analyzed in detail the memory consumption behavior of the
continuation call technique, as we are right now working on improving it. How-
ever, since we copy Lhe same part of the heap CAT does, but using a difTerent,
strategy, and we eventually (as gencrators are completed) get rid of the data
structures corresponding o the frozen continuation calls, we foresee thal our
memory consumption should currently be in the same range as that of CAT.

5 Conclusions

We have reported on the design and efficiency of some improvements made to
the continueation eall mechanism of Ramesh and Chen. While, as expected, we
cannol achieve using just these technigques the same level of performance dur-
ing tabled evaluation as the natively implemented approaches our experimental
results show that the overhead is essentially a reasonable constant factor, with
good scaling and convergence characteristics. We argue that this is a useful
result sinee the proposed mechanism is still casier to add to an existing WAM-
based systemn than implementing olher approaches such as the SLG-WAM. as
it requires relatively small changes to the underlying execution engine, In fact,
almost everylhing s implemented within a fairly reusable C library and using a
Prolog program transformation. Our main conclusion is that using an external
rnodule for implementing Labling is a viable alternative for adding tabled evalu-
ation to Prolog systems, especially if coupled with the proposed optimizations.
It is also an approach that tics in well with the modular approach to extensions
which is an integral part of the design of the Ciao system.

Acknowledgments

This work was funded in part by the IST program of the Kuropean Commission,
FP6 FET project IST-15905 MORBIUS, by the Spanish Ministry of Education and
Science (MIEC) project TIN2005-09207-C03 MERIT-COMVERS and by the
Tovernment, of the Madrid Region (CAM) Project S-0505/T1C /0407 PROME-
SAS. Manuel Hermenegildo is also funded in part by the Prince of Asturias
Chair in Information Science and Technology at the U, of New Mexico, USA
and the IMDEA-Software Institute, Madrid, Spain. Cldudio Silva and Ricardo
Rocha were partially funded by project Myddas (POSC/EIA/59154/2004). Ri-
carde Rocha was also funded by project STAMPA (IPI'DC/ELA/6TT38/2006).

References

Bucno, F., Cabeza, T3, Carvo, M., Hermencgildo, M., Ldpez-Carcla, T, Tucbla,
G. {eds.): The Ciao System. Ref. Manual (v1.13). Technical report, C. 8. School
(UPM) (2008), http://www.ciachome.org

Cabeza, D., Hermenegildo, M.: The Ciao Modular, Standalcne Compiler and Its
Ceneric Trogram Processing Library. Tn: Special Tssue on Parallelism and Tmple-
mentation of {C)LP Systems. Llectronie Netes in Theoretical Compuler Science,
vol. 30(3), lilsevier, North Holland (2000)

Carro, M., Morales, J., Muller, H.L.., Puebla, G., Hermenegildo, M.: High-Level
Languages for Small Devices: A Case Study. In: Flautner, K., Kim, T. (eds.) Com-
pilers, Architecture, and Synthesis for Embedded Systoms, pp. 271 281. ACM Press
/ Sheridan (October 2006)

Chen, W., Warren, D.5.: Tabkled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43(1), 20 74 (1998)

Dawson, 8., Ramakrishman, C.R., Warren, D.S.; Practical Prograimn Analysis Uising
General Purpose Logic Programming Systems — A Case Study. In: Proceedings of
PTDT 19496, pp. 117 126, ACM Press, New York, USA (1996)

http://www.ciaohome.org

Chico de Guzman, P., Carro, M., llermenegildo, M., Silva, C., Rocha, R Seme
Improvements over the Continuation Call Tabling Implementation Technique, In:
CICT.OTS 2007, ACM Press, New York (2007)

Demoen, B., Sagonas, K. CAT: The Copying Approach to Tabling. In:
Palamidessi, C., Meinke, K., Glaser, H. (eds.) ALP 1998 and PLILP 1998, LNCS,
vol. 1490, pp. 21-35. Springer, Heidelberg (1998)

Demaoen, B., Sagonas, K.T.: Chat: The copy-hybrid approach o tabling. Practical
Applications of Declaralive Languages, 106-121 (1999)

Guo, H.-F., Gupta, G.;: A Simple Scheme for Implementing Tabled Logic Pro-
gramming Systems Based on Dynamic Reordering of Alternatives. Tn: Tnternational
Conlerence on Logic Programming, pp. 181-196 (2001)

Morales, J., Carro, M., llermenegildo, M.: Improving the Compilation of Prolog
to € Using Moded T'ypes and Determinisin Inlonnation. ln: Jayaraman, B, (ed.)
PADL 2004. LNCS, vol. 3057, pp. 86-103. Springer, Heidelberg (2004)
Ramakrishna, ¥.8., Ramakrishnan, C.R., Ramakrishnan, T.V_, Smolka, S.A ., Swift,
T., Warren, D.S.; Lflicient Medel Checking Using Tabled Resolution. ln: Gruu-
berg, O. (ed.) CAV 1997, LNCS, vol. 1254, pp. 143-154. Springer, Heidelberg (1397)
Ramakrishnan, T.V., Rao, ., Sagonag, K.T'., Swift, T., Warren, D.S.: Efficient
tabling mechanisms for logic programs. Tn: TCLD, pp. 697 711 (1995)
Ramakrishnan, R., Ullman, J.D.: A survey of research on deductive database sys-
tems. Journal of Logic Programming 23(2), 125-149 (1993)

Ramesh, R., Chen, W.: A Portable Mothod for Tntegrating SLO Resolution into
Prolog Systems. ln: Bruynooghe, M. {ed.) lntemational Symoposium on Logic Pro-
gramming, pp. 618-632. MIT Press, Cambridge (1994)

Rocha, R., Silva, C., Topes, R On Applying Program Transformation to Tmple-
ment Suspension-Based Tabling in Prolog. Tn: Dahl, V., Niemeld, 1. {eds) TCLT
2007. LNCS, vol. 4670, pp. 444-445. Springer, leidelberg (2007)

Sagonas, K., Swift, T.: An Abstract Machine for Tabled Execution of Fixed-Order
Stratified Logic Programs. ACM Transactions on Programming Languages and
Systems 20(3), 586-634 (1998)

Silva, C.: On Applying Program Transformation to Implement Talled Evaluation in
Prolog. Master’s thesis, Faculdade de Ciéncias, Universidade do Porte (January 2007)
Somogyi, 7., Sagonas, K.: Tabling in Mercury: Design and lniplementation. 1n:
Van llentenryck, P. (ed.) PADL 2006, LNCS, vol. 3819, pp. 150-167. Springer,
Heidelberg (2005)

Tamaki, H.,Sato, M.: OLD regolution with talylation. Tn: Third Tnternational Confer-
ence on Logic Programming, London. LNCS, pp. 84-98. Springer, [leidelberg (1986)
Warren, D.S.: Memoing for logic programs. Communications of the ACM 35(3),
93 101 {1992)

Wairren, R., llermenegildo, M., Debray, S.K.: On the Practicality of Global Flow
Analysis ol Logic Programs. In: Fifth International Coulerence and Symposium on
Logic Programming, pp. 684-609. MIT Press, Cambridge (1988)

Zhou, N.-F., Sato, T., Shen, Y.-D.: Linear Tabling Strategies and Optimiza-
tions. Theory and Practice of Logic programming (accepted for publication 2007),
http://arxiv.org/abs/0705.3468v1

Zhou, N.-F., Shen, Y.-D., Yuan, L.-Y., You, J-H.: Implementation of a linear
tabling mechanism. Journal of Functional and Logic Programming 2001(10} {Oc-
tobor 2001)

Zou, Y., Finin, I, Chen, 11.; F-OWL: An Inference Lngine [or Semantic Wels, I
Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A. (eds.) FAABS 2004.
LNCS (LNAT), vol. 3228, pp. 238 248. Springer, Haidelberg (2004)

http://arxiv.org/abs/0705.3468vl

