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Abstract: More layers in a convolution neural network (CNN) means more computational burden
and longer training time, resulting in poor performance of pattern recognition. In this work, a
simplified global information fusion convolution neural network (SGIF-CNN) is proposed to improve
computational efficiency and diagnostic accuracy. In the improved CNN architecture, the feature
maps of all the convolutional and pooling layers are globally convoluted into a corresponding
one-dimensional feature sequence, and then all the feature sequences are concatenated into the
fully connected layer. On this basis, this paper further proposes a novel fault diagnosis method
for a rotor–journal bearing system based on SGIF-CNN. Firstly, the time-frequency distributions of
samples are obtained using the Adaptive Optimal-Kernel Time–Frequency Representation algorithm
(AOK-TFR). Secondly, the time–frequency diagrams of the training samples are utilized to train the
SGIF-CNN model using a shallow information fusion method, and the trained SGIF-CNN model can
be tested using the time–frequency diagrams of the testing samples. Finally, the trained SGIF-CNN
model is transplanted to the equipment’s online monitoring system to monitor the equipment’s
operating conditions in real time. The proposed method is verified using the data from a rotor test
rig and an ultra-scale air separator, and the analysis results show that the proposed SGIF-CNN
improves the computing efficiency compared to the traditional CNN while ensuring the accuracy of
the fault diagnosis.

Keywords: rotor–journal bearings system; fault diagnosis; convolutional neural network; simplified
global information fusion CNN

1. Introduction

Hydrodynamic journal bearings, as one of the main mechanical moving parts of rotat-
ing machinery, always remain prone to failure because of the harsh industrial environment
and no doubt display increasing probability of failure with service life. As such, effective
maintenance for rotor–journal bearing systems is necessary to ensure that these machines
can be operated properly. Conventional maintenance techniques for rotor–journal bearing
systems can be broadly classified into three categories [1]: breakdown maintenance (BM),
scheduled maintenance (SM) and condition-based maintenance (CBM). SM sets a periodic
interval to perform overhauling regardless of the health status of a machine, while BM takes
place when failure has already occurred. Unfortunately, due to the increasing complexity
and the better quality and reliability requirements of rotating machinery, both methods have
a substantial economic impact and potential safety concerns, rendering them unsuitable for
complex industrial machines. In comparison, CBM is a better choice for complex rotating
machinery, as it attempts to avoid unnecessary maintenance tasks by taking maintenance
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actions only when there is evidence of abnormal behavior of the machines [2]. Implement-
ing a CBM paradigm requires the machine’s health to be monitored in a timely and accurate
manner. Therefore, condition monitoring and fault diagnostics of rotor–journal bearing
systems are gaining heightened popularity.

During the service life of rotor–journal bearings systems, the potential failure modes
can be classified as characteristic faults (due to oil film instability), which occur only in oil-
film-bearing-supported rotor systems, or common faults (due to imbalance, misalignment,
cracked shaft, excessive preload, loose rotating part and rub), which can occur in all
rotating machinery [3,4]. Conventional fault diagnosis techniques for rotor–journal bearing
systems can be classified into two categories [5]: traditional signal-processing techniques
and machine learning techniques.

Identifying the fault types of rotor–journal bearing systems using the various signal-
processing-technique-based methods is a time-consuming and laborious work which re-
quires a certain amount of prior knowledge [6] and cannot meet the real-time requirements
imposed by CBM. Compared with the traditional signal-processing-technique-based meth-
ods, machine-learning-based intelligent diagnosis methods can automatically handle the
vibration data and comprehensively recognize fault patterns of rotating machinery.

Generally, there are two types of machine-learning-based fault diagnosis techniques:
traditional machine learning techniques and deep learning techniques. The traditional
machine learning algorithms commonly applied in intelligent fault diagnosis of rotating
machinery mainly contain support vector machines (SVM) [7,8] and artificial neural net-
works (ANN) [9,10]. However, the traditional intelligent diagnosis methods have inherent
limitations [11]: (1) Variable working conditions and composite faults make it difficult to
extract signal features effectively; (2) the extracted signal features must be selected with the
advice of experienced engineering experts; (3) shallow machine learning algorithms are not
able to adequately learn complex nonlinear relationships between the input data.

The deep-learning-based fault diagnosis approach for rotating machinery can learn
the raw input’s deep-level representations and hierarchical patterns, providing significant
improvements in generalization capability and classification accuracy. Deep learning
architectures such as deep belief networks [12], deep autoencoder networks [13], recurrent
neural networks [14,15] and convolution neural networks (CNN) [16–18] have been applied
to the field of failure diagnosis of rotation machinery. Among them, the CNN-based
intelligent fault diagnosis methods have the capability of representation learning, which
can effectively learn the in-depth information of the raw input in a shift-invariant manner
and have achieved some results in the fault diagnosis of rotor–journal bearing systems.
Alves et al. [19] proposed a CNN-based condition monitoring method for the rotor–journal
bearings to predict ovalization faults in hydrodynamic journal bearings. Using shaft orbit
images generated from vibration signals, Jiang et al. [20] proposed a multilayer CNN model
to diagnose the faults of turbomachines, improving the generality and robustness of the
CNN. Shao et al. [21] developed an enhanced CNN-based fault diagnosis method to detect
the faults of a rotor–bearing system under variable operating conditions. He et al. [22]
proposed a CNN-based fault diagnosis method for the rotor-bearing systems using small
labeled infrared thermal images as model input. Kumar et al. [23] proposed a sparse
CNN-based fault diagnosis for rotor–bearing systems at varying speeds by developing
sparsity cost in the existing cost function of a CNN to enhance the learning capability of
the CNN.

Although the CNN-based fault diagnosis method has academically achieved certain
results in fault diagnosis of rotor–journal bearing systems, diagnostic performance still
needs to be improved to meet the challenges of the complex industrial production scene.
Harsh industrial environments place high accuracy and time requirements on equipment
condition monitoring systems. The common approach to improve CNN accuracy is in-
creasing the network’s depth and width. However, more layers and kernels in the CNN
architecture imply more computational burden and longer training time. The parameter
size of a CNN model can reach hundreds of thousands or even millions, leading to over-
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fitting, vanishing gradient, and low computational efficiency. Therefore, improving the
accuracy of CNN models without significantly increasing the amount of computation is
a difficult problem for industrial applications of CNN-based fault diagnosis methods. In
addition, only the last pooling layer’s feature maps are input into the fully connected layer,
and the feature maps of the shallow layers are all neglected in the typical CNN structures.
Therefore, it is of practical value to improve the performance of fault diagnosis methods
based on CNNs by integrating the shallow information while reducing the parameter size
of the model.

To address the issues mentioned above, some researchers have adopted various meth-
ods to improve the pattern recognition performance of CNNs. Lin et al. [24] proposed a
novel CNN structure called “Network In Network” to enhance model discriminability by
stacking three multilayer perceptron convolutional layers and one global average pooling
layer. Wu et al. [25] proposed a CNN-based automatic modulation classification method
with multi-feature fusion, and experimental results show that the proposed method has
good performance on the public dataset. Li et al. [26] proposed a modified CNN for
fault diagnosis based on the LeNet-5 architecture by replacing the fully connected layer
with a global average pooling layer. Wang et al. [27] proposed an end-to-end health state
diagnostics model based on a CNN with multiscale feature extraction modules, which
can directly learn feature maps from the raw vibration signal. Kim et al. [28] propose a
direct-connection-CNN-based fault diagnosis method for rotor systems by improving the
connectivity between various layers within the CNN. Kumar et al. [29] proposed a CNN
model with multiple convolutional layers and batch normalization layers to detect the
bearing faults in a squirrel cage induction motor. Wang et al. [30] proposed an improved 1D-
CNN-based bearing fault diagnosis method by processing long-time series by introducing
a dilated convolution operation. Zhang et al. [31] proposed an improved CNN model with
multiscale feature extraction to diagnose bearing defects using limited training samples.
Luo et al. [32] proposed an improved CNN framework with shallow pooling layer informa-
tion fusion to detect the faults of high-speed train axle–box bearing systems. Fu et al. [33]
proposed a residual-learning-based CNN with multiscale comprehensive feature fusion to
recognize vehicle color. Jun et al. [34] proposed an improved CNN model with multilayer
information fusion to predict the remaining useful life of bearings. Sang et al. [35] pre-
sented an improved CNN model with a multi-information flow for person reidentification.
Nguyen et al. [36] constructed a multibranch structure deep neural network model to
diagnose bearing faults using multiple-domain image representation data.

However, as the improved CNN models mentioned above input information from
the shallow layers to the classification layer, the parameter sizes in these CNN models are
large, and the required memory tends to increase very quickly with high hardware resource
consumption. The performance of these methods mentioned above still must be improved
to meet the challenge of complex industrial scenarios. In this work, a simplified global
information fusion-CNN (SGIF-CNN) model is presented to enhance the performance
of the CNN-based fault diagnosis approach for rotor–journal bearing systems without
increasing computational burden. In the SGIF-CNN structure, the feature maps of all
the convolutional and pooling layers are globally convolved into a corresponding feature
sequence. Then, all the feature sequences are concatenated into a one-dimensional feature
vector before connecting to the fully connected layer for the pattern recognition task. The
effectiveness of the SGIF-CNN-based fault diagnosis approach for rotor–journal bearing
systems is evaluated on experimental datasets from a test bench and engineering datasets
from an ultralarge air separator. The results of case studies on datasets of the rotor–journal
bearing systems show that the SGIF-CNN model could improve computing efficiency and
fault diagnosis accuracy compared to a traditional CNN.

The main contributions of this paper are summarized as follows:

(1) A novel SGIF-CNN architecture is proposed to reduce model parameter size and en-
hance network capacity by shortcutting the simplified information of the shallow layers.
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(2) Time–frequency plots with an excellent resolution of the vibration data acquired from
the rotor–journal bearing system are generated using the Adaptive Optimal Kernel
Time–Frequency Representation (AOK-TFR) algorithm. As a result, proper features
for different health conditions of the rotor–journal bearing systems can be obtained.

(3) A novel fault diagnosis method for rotor–journal bearing systems based on AOK-TFR
and SGIF-CNN is proposed. By concatenating the simplified shallow layers’ informa-
tion into the fully connected layer, the effective information amount input into the
classification layer can be increased without increasing computational burden.

(4) The industrial applications framework of the SGIF-CNN-based fault diagnosis method
for rotor–bearing systems is presented to realize the real-time fault monitoring of the
ultralarge air separator in a production plant.

The remainder of this paper is organized as follows. Section 2 provides a brief review
of AOK-TFR and CNN. In Section 3, the principle of SGIF-CNN and the methodology of the
fault diagnosis method based on AOK-TFR and SGIF-CNN are presented. In Section 4, val-
idations of the proposed method with experimental and engineering datasets are presented
and discussed. Finally, some conclusions are drawn in Section 5.

2. Theoretical Background
2.1. Wigner–Ville Distribution

The Wigner–Ville distribution (WVD) can extract the joint distribution information of
nonstationary signals in the time and frequency domain with an excellent resolution. For a
square-integrable signal x(t), its Wigner–Ville distribution can be defined as:

WVDx(t, f ) =
∫ ∞

−∞
x
(

t +
τ

2

)
x∗
(

t− τ

2

)
e−j2π f τdτ (1)

where x∗(t) is the conjugate of x(t), and j is the imaginary unit. The integrand function
x
(
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2
)

x∗
(
t− τ

2
)

is defined as the Wigner autocorrelation function Kx(t, τ), and the WVD
can be viewed as the Fourier transform of the function Kx(t, τ) to the time delay τ. If the
inverse Fourier transform is performed for time t, the ambiguity function is given by:
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The Wigner–Ville distribution can be derived from a two-dimensional Fourier trans-
form of Ax(τ, υ) function:

WVDx(t, f ) =
x

Ax(τ, υ)e−j2π(tυ+τ f )dυdτ (3)

The WVD has a good time–frequency localization property, but for the multicompo-
nent signals x(t) = ∑
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xi(t), the Wegener autocorrelation function is:
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(4)

where Ka(t, τ) is autocorrelation component of interest, and Kc(t, τ) is the intercorrela-
tion component that causes interference, i.e., the “cross term” problem. Suppressing the
cross term generated by the Wigner–Ville distribution is one of the key problems studied
by scholars.
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2.2. Adaptive Optimal-Kernel Time–Frequency Representation

Linear transforms such as the short-time Fourier transform (STFT) and wavelet trans-
form (WT) are subject to the Heisenberg uncertainty principle for their time–frequency
resolution due to the effect of the window function. The WVD has no windowing operation,
and the product of the time domain and frequency bandwidth reaches the lower bound of
the Heisenberg principle. The time–frequency localization performance of WVD is more
desirable, but its application is more limited due to the cross-interference term problem,
which is a common problem in quadratic algorithms. To suppress the cross-terms and
obtain the time–frequency resolution of the Wigner–Ville distribution, Jones et al. [37]
proposed a signal-dependent adaptive kernel time–frequency analysis method in which
the kernel function can be adaptively adjusted according to the signal characteristics. The
signal-dependent kernel function is called as a 2D radially Gaussian function:

φ(τ, υ) = exp
(
−τ2 + υ2

2σ2(θ)

)
(5)

where σ(θ) is the variance of the Gaussian function along the radial angle θ = arctan(τ/υ).
Then, the optimal kernel function φ(τ, υ) can be obtained by optimizing the following

problem:

maxθ

∫ 2π

0

∫ +∞

0
|A(r, θ)φ(τ, υ)|2rdrdθ (6)

subject to
1

2π

∫ 2π

0

∫ +∞

0
|A(r, θ)φ(τ, υ)|2rdrdθ ≤ c, c ≥ 0 (7)

where A(r, θ) is the polar coordinate representation of the ambiguity function, r =
√

τ2 + υ2,
and c is the volume of the Gaussian kernel function. Equation (6) restricts the scope of the
optimization problem to the Gaussian radial kernels, and Equation (7) restricts the volume
of the optimal kernel. The optimal kernel can be regarded as a low pass filter that keeps the
auto-terms and suppresses the cross-terms in the time–frequency diagram. The adaptive
optimal kernel time–frequency representation (AOK-TFR) can be obtained by using the
solved adaptive optimal kernel function:

TFRAOK(t, f ) =
1

2π

x
Ax(τ, υ)φ(τ, υ)e−j2π(tυ+τ f )dυdτ (8)

2.3. Basic Principle of Convolutional Neural Network

A classical CNN architecture usually consists of three parts: convolutional layers,
pooling layers, and a fully connected layer, as shown in Figure 1. A convolutional layer
usually contains a set of convolution kernels and one trainable bias per feature map. After
the convolutional layer, a pooling layer is usually added between the convolutional layers
to merge the outputs of the previous convolutional layer into a single neuron. The feature
maps from the last pooling layer will be connected to a fully connected structure after being
concatenated into a one-dimensional vector. The fully connected structure may contain one
or more hidden layers. A SoftMax layer is usually posted as the output layer to realize the
classification tasks by mapping the values of the fully connected layer into a probability
distribution that ranges from 0 to 1. Detailed information about convolutional neural
networks can be found in [16,18].
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Figure 1. The structure of a convolutional neural network.

3. Methodology
3.1. Global Pooling Information Fusion CNN

In a traditional CNN architecture, the feature maps of shallow layers are neglected,
and the confidential information of the raw input with different depths is lost. To increase
the amount of information input to the fully connected layer, the feature maps from all the
pooling layers are directly concatenated to the fully connected layer to achieve different
tasks, as shown in Figure 2.

Figure 2. The architecture of a GPIF-CNN.

Compared with a classical CNN structure, the global pooling information fusion
CNN (GPIF-CNN) takes account of the shallow pooling information, and the calculations
performed by a neuron in the fully connected layer can be expressed as:

f c = f

(
M

∑
m=1

ωm ∗
(

L

∑
l=1

Pl

)
+ bm

)
(9)

where Pl is the set of the output feature maps of lth pooling layer, ωm is the weight vector
and bm is the bias value of the mth neuron, M is the number of neurons, and L is the number
of pooling layers. It can be noted that the GPIF-CNN contains more neurons in the fully
connected layer due to shallow feature maps concatenation and has a larger parameter size,
resulting in more computational burden and longer training time.

3.2. Simplified Global Information Fusion-CNN

To reduce parameter size without reducing the amount of input information, the
feature maps from all the convolutional and pooling layers are merged into a feature
sequence through the corresponding global convolution layers before being concatenated
to the fully connected layer to achieve different tasks, as shown in Figure 3.
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Figure 3. Simplified shallow information fusion procedure.

In the simplified global information fusion-CNN (SGIF-CNN) model, the global
convolution kernels have the same dimension as the feature maps from the corresponding
convolutional or pooling layer. As shown in Figure 4, the feature sequences extracted from
the shallow layers are further concatenated into the fully connected layer. The rectangles
with different colors in Figure 4 represent feature vectors outputted by different global
convolution kernels, and the circles with different colors represent different neurons. The
global convolution kernels are used to convolve the feature maps from layer C1, and the
result G1 is a feature sequence with a dimension consistent with the number of the feature
maps from the convolutional layer C1. The global convolution features obtained from all
the convolutional and pooling layers are concatenated before being inputted into the fully
connected layer to achieve different tasks.

Figure 4. The structure of the SGIF-CNN.

The calculations performed by a neuron in the fully connected layer can be expressed as:

f c = f

(
M

∑
m=1

ωm ∗
(

L

∑
l=1

K

∑
k=1

(Cl
k

⊗
Gl

k + Pl
k

⊗
G̃l

k)

)
+ bm

)
(10)

where Cl
k is the kth feature map of lth convolutional layer, Gl

k is the global convolution
kernel with the same dimension as Cl

k, Pl
k is the kth feature map of lth pooling layer, G̃l

k is
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the global convolution kernel with the same dimension as Pl
k, ωm is the weight vector and

bm is the bias value of the mth neuron, M is the number of neurons, and L is the number of
conv–pool blocks.

Parameter simplification can be achieved by replacing the feature map with a feature
value, and different maps can obtain different convolution information due to the special
structure of the global convolution kernel. Therefore, the global convolution kernel has a
better classification performance for different feature maps. Replacing the feature maps
with a feature sequence will not reduce the amount of original data information but can
achieve the purpose of parameter simplification.

3.3. The Proposed Fault Diagnosis Method for the Rotor–Journal Bearing System

The time–frequency representations of the rotor–journal bearing system can reflect
its fault information well, and the fault diagnosis can be achieved by inputting the AOK
time–frequency images into the SGIF-CNN model. As shown in Figure 5, the proposed
method’s modeling procedure follows data acquisition, time–frequency representation
extraction, and deep learning model training and testing.

Figure 5. The fault diagnosis flowchart of the rotor–journal bearing system based on the simplified
shallow information fusion CNN.

(1) Dataset generation. The data acquisition system collects the vibration signals of the
rotor–journal bearing system under different health conditions using the vibration
sensors. The collected vibration data is divided into training and testing datasets
according to the corresponding fault patterns.
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(2) Time–frequency image generation. The adaptive kernel time–frequency analysis is
performed on each data sample to extract the corresponding time–frequency images.

(3) Diagnosis model training. The normalized time–frequency images of the training
sample are input into the SGIF-CNN designed in Section 3.2 to train the fault diagnosis
model. The model is adjusted using the error backpropagation method, and model
training can be completed when the error function converges.

(4) Diagnosis model testing. The time–frequency maps of the testing samples are input
into the pretrained fault diagnosis model based on the SGIF-CNN to realize the fault
diagnosis of the rotor–journal bearings system.

With a practicable Gaussian kernel volume, the AOK time–frequency images of the
sample sets can be obtained effectively before being reshaped to the required size of the
input layer of the SGIF-CNN. The mean square error is chosen as the loss function, and
the network parameters can be optimized by using the stochastic gradient descent method.
The model training ends when the network converges or reaches the specified iteration
termination condition.

The architecture designs of the three CNN models—general CNN, GPIF-CNN, and
SGIF-CNN—are shown in Tables 1–3. The input layer size of these three CNN models
is 128× 128× 3, and all the CNN models contain four conv–pool blocks. The general
CNN inputs the feature maps of the last pooling layer into the fully connected layer. The
GPIF-CNN inputs the feature maps of all the pooling layers into the fully connected layer
together. The SGIF-CNN inputs the global convolutional information of the feature maps
of all the convolutional and pooling layers into the fully connected layer together. A batch
normalization layer is added after each pooling layer to ensure that the inputs and outputs
of each conv–pool block have the same distribution as input images. The ReLU function is
selected as the activation function, the downsampling method is the max pooling, and the
padding option is set to “VALID”.

Table 1. T The structure design of the general CNN.

Layer Parameter Setting Output Size Activation Function

Input layer - 3@128 × 128 -
C1 64@5 × 5 kernels, stride: 1 × 1 64@124 × 124 ReLU
P1 2 × 2 max pool, stride: 2 × 2 64@62 × 62 ReLU
C2 128@3 × 3 kernels, stride: 1 × 1 128@60 × 60 ReLU
P2 2 × 2 max pool, stride: 2 × 2 128@30 × 30 ReLU
C3 256@3 × 3 kernels, stride: 1 × 1 256@28 × 28 ReLU
P3 2 × 2 max pool, stride: 2 × 2 256@14 × 14 ReLU
C4 512@3 × 3 kernels, stride: 1 × 1 512@12 × 12 ReLU
P4 2 × 2 max pool, stride: 2 × 2 512@6 × 6 ReLU

Fully connected layer 18,432 neurons 1 × 18,432 ReLU
Classifier hidden layer 1024 neurons 1 × 1024 ReLU

Classification layer n neurons 1 × n sigmoid
Note: C and P denote the convolutional layer and the pooling layer, respectively. n is the number of rotor–journal
bearing system faults.

Table 2. T The structure design of the general CNN.

Layer Parameter Setting Output Size Activation Function

Input layer - 3@128 × 128 -
C1 64@5 × 5 kernels, stride: 1 × 1 64@124 × 124 ReLU
P1 2 × 2 max pool, stride: 2 × 2 64@62 × 62 ReLU
C2 128@3 × 3 kernels, stride: 1 × 1 128@60 × 60 ReLU
P2 2 × 2 max pool, stride: 2 × 2 128@30 × 30 ReLU
C3 256@3 × 3 kernels, stride: 1 × 1 256@28 × 28 ReLU
P3 2 × 2 max pool, stride: 2 × 2 256@14 × 14 ReLU
C4 512@3 × 3 kernels, stride: 1 × 1 512@12 × 12 ReLU
P4 2 × 2 max pool, stride: 2 × 2 512@6 × 6 ReLU

Fully connected layer 429,824 neurons 1 × 429,824 ReLU
Classifier hidden layer 1024 neurons 1 × 1024 ReLU

Classification layer n neurons 1 × n sigmoid
Note: C and P denote the convolutional layer and the pooling layer, respectively. n is the number of rotor–journal
bearing system faults.
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Table 3. T The structure design of the general CNN.

Layer Parameter Setting Output Size Activation Function

Input layer - 3@128 × 128 -
C1 64@5 × 5 kernels, stride: 1 × 1 64@124 × 124 ReLU
G1 64@124 × 124 global kernels 1 × 64 -
P1 2 × 2 max pool, stride: 2 × 2 64@62 × 62 ReLU
G2 64@62 × 62 global kernels 1 × 64 -
C2 128@3 × 3 kernels, stride: 1 × 1 128@60 × 60 ReLU
G3 128@60 × 60 global kernels 1 × 128 -
P2 2 × 2 max pool, stride: 2 × 2 128@30 × 30 ReLU
G4 128@30 × 30 global kernels 1 × 128 -
C3 256@3 × 3 kernels, stride: 1 × 1 256@28 × 28 ReLU
G5 256@28 × 28 global kernels 1 × 256 -
P3 2 × 2 max pool, stride: 2 × 2 256@14 × 14 ReLU
G6 256@14 × 14 global kernels 1 × 256 -
C3 512@3 × 3 kernels, stride: 1 × 1 512@12 × 12 ReLU
G7 512@28 × 28 global kernels 1 × 512 -
P3 2 × 2 max pool, stride: 2 × 2 512@6 × 6 ReLU
G8 512@6 × 6 global kernels 1 × 512 -

Fully connected layer 1920 neurons 1 × 1920 ReLU
Classifier hidden layer 1024 neurons 1 × 1024 ReLU

Classification layer n neurons 1 × n sigmoid
Note: C and P denote the convolutional layer and the pooling layer, respectively. n is the number of rotor–journal
bearing system faults.

4. Experimental Verification

In this section, the performance of the proposed method is verified through two
case studies. Case 1 analyzes the experimental data obtained from a rotor test rig in the
laboratory. Case 2 focuses on the measured data of an ultralarge air separator from a
chemical fertilizer plant. The proposed models are implemented on a computer where
the CPU is an i7-6700K, the memory is 16 GB, and the programming environments are
MATLAB R2016 and Python 3.7. The learning rate and the maximum number of iterations
are set to 0.001 and 2000, respectively, where the CPU is set to 364 iterations.

4.1. Experimental Data Validation
4.1.1. Experimental System and Data Description

As shown in Figure 6, the test rig consists of a motor, a rigid cylindrical shaft with two
disks, and two hydrodynamic journal bearings. The rigid shaft has two parts: a short part
with a diameter of 24 mm and a length of 40 mm is supported by the left oil film journal
bearing, and the right journal bearing supports the long part with a diameter of 12 mm and
a length of 480 mm. Two disks are placed on the shaft close to the middle plane between the
two journal bearings. Two proximity sensors (OD-Y911801 by OuDuo Inc) were mounted
on the center disk’s right side to collect the rotor’s horizontal and vertical vibration data at
that position. A small mass was attached to each rotating disc to simulate an unbalanced
mass in the experiment.

Figure 6. Test bench and its main components.
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Using the rotor test platform mentioned above, the displacement signals of the test
rig running at eight operating conditions were collected by the signal acquisition card
(PCI-4472 by NI) on the PXI slot at a sampling rate of 2048 Hz. Table 4 shows the information
of the experimental data sets. For each operating condition, the sizes of the training and
testing sample set were both 200 samples, and each sample contains 2048 data points with
a time span of 0.1 s. The size of the training and testing sample sets are both 1600 (200 × 8).

Table 4. Description of the sample distribution.

Experiment Operating Speed
(RPM)

Observed Operating
Condition

Fault
Pattern

Size of Training Sample/
Testing Sample

A 2000 Normal 1 200/200
B 3000 Resonance 2 200/200
C 5000 Oil whirl 3 200/200
D 6500 Oil whip 4 200/200
E 2000 Unbalance 5 200/200
F 3000 Resonance and imbalance 6 200/200
G 5000 Oil whirl and imbalance 7 200/200
H 6500 Oil whip and imbalance 8 200/200

Figure 7 shows the waveform, spectra and AOK time-frequency distribution of the
normal state, first-order resonance state, oil whirl state and oil whip state. The vibration re-
sponses of the rotor–journal bearings system in the normal state, first-order resonance state,
and oil whip state are relatively similar in that only one major frequency component can
be found in both the spectra and the time–frequency distributions. When the rotor system
is operating in the oil whirl state, the waveform of the vibration signal fluctuates greatly,
and there are two major frequency components—fundamental frequency and the oil whirl
“half” frequency component—in both the spectrum and the time–frequency distribution.

Figure 7. The waveform, spectra and AOK time–frequency distribution of (a) normal; (b) resonance;
(c) oil whirl; (d) oil whip.
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4.1.2. Effect of Sample Size on Training Performance

A sufficient training sample is needed to avoid overfitting and to improve the proposed
CNN model’s generalization capability. After normalizing and mixing up the training
samples, training samples with different sizes are inputted into the SGIF-CNN model for
training. Ten repeated trials were conducted using different training sample sizes to verify
the SGIF-CNN model’s robustness.

Figure 8 illustrates the effect of sample size on the training performance of the SGIF-
CNN model with the average accuracy of the ten training trials and the boxplot. With the
increase in the training sample size, the classification accuracy of the SGIF-CNN model is
gradually improved, and even with a small training sample size, the SGIF-CNN model can
still achieve high diagnostic accuracies. The average training times to handle one sample of
the SGIF-CNN model for different training sample sizes are shown in Figure 7b. As the
training sample size increases, the average time the SGIF-CNN model takes to process a
sample decreases. When the sample number exceeds 560, the SGIF-CNN model takes an
average of about 0.18 s to process one training sample.

Figure 8. The effect of training sample size on (a) training accuracy; (b) time to process one sample.

4.1.3. Results and Discussion

The normalized and mixed-up training and testing samples are used to train and test
the proposed fault diagnosis method for ten repeated trials. The training accuracies with
the iterations of the three proposed CNN models in the first trial are displayed in Figure 9.

Figure 9. Training accuracies of proposed CNNs with iterations on the experimental dataset.

The traditional CNN’s training accuracy converged after 471 iterations with an accu-
racy of 91.18%. Compared with the traditional CNN, the training accuracy of GPIF-CNN is
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greatly improved due to the fusion of information from the shallow pooling layers, reach-
ing 99.69% after 551 iterations. Due to the fusion of shallow convolutional and pooling
information and a smaller parameter size in the fully connected layer, the training accuracy
of SGIF-CNN reached 100% after 201 iterations, which is faster than the convergence rate
of the traditional CNN and GPIF-CNN.

The fault diagnosis accuracies of these three CNN models in the first trial are detailed
in Tables 5 and 6. Table 5 gives the detailed classification results for the training samples,
and Table 6 gives the same thing for the test samples. For the training samples, the training
accuracies of the traditional CNN are just 88% and 58.5% for fault pattern 2 and fault pattern
8, respectively. The GPIF-CNN achieves 100% training accuracy for all the fault patterns
except fault pattern 8, for which the training accuracy is 98%. The training accuracies of the
SGIF-CNN for all the fault modes are 100%. In the testing phase, the testing accuracies of
these three CNN models fail to achieve 100%. The traditional CNN achieves the lowest
testing accuracy of 88.31%, with fault mode 2 and mode 8 achieving only 75% and 36.5%,
respectively. GPIF-CNN achieves a 92.75% test accuracy, with fault 2 and fault 8 achieving
91.5% and 50.5%, respectively, significantly improving compared to the traditional CNN.
Compared to the traditional CNN and GPIF-CNN, the SGIF-CNN achieves a much higher
accuracy of 96.69% with a testing accuracy of 76.5% for fault mode 8 due to the fusion
of shallow information and the reduction of the parameter size in the fully connected
layer parameters.

Table 5. The classification accuracies for the training samples.

Model
Accuracy

(%)
Accuracy for Each Category (%)

1 2 3 4 5 6 7 8

CNN 91.18 100 88 100 100 100 100 100 58.5
GPIF-CNN 99.69 100 100 100 100 100 100 100 98
SGIF-CNN 100 100 100 100 100 100 100 100 100

Table 6. The classification accuracies for the testing samples.

Model
Accuracy

(%)
Accuracy for Each Category (%)

1 2 3 4 5 6 7 8

CNN 88.31 100 75 100 100 100 99.5 100 36.5
GPIF-CNN 92.75 100 91.5 100 100 100 100 100 50.5
SGIF-CNN 96.69 100 100 100 100 100 100 100 76.5

To further identify the detailed classification results of the testing phase, the confusion
matrix diagrams of the testing results of these three CNN models are listed in Figure 10,
where the vertical axis is the actual sample label while the horizontal axis is the predicted
label of the sample. The confusion matrix gives both the classification and misclassifica-
tion information, and the confusion matrix’s main diagonal represents the classification
result for each fault pattern. As shown in Figure 10a, the traditional CNN misclassifies the
testing samples of fault pattern 2 and fault pattern 8 as fault pattern 6 and fault pattern 4,
respectively, in which 127 samples out of 200 of fault pattern 8 are mislabeled as fault
pattern 4. Similar to the traditional CNN, the GPIF-CNN and SGIF-CNN incorrectly diag-
nose samples of fault pattern 2 as fault pattern 6 and identify the samples of fault pattern 8
as fault pattern 4, with a lower number mislabeled, as shown in Figure 10b,c. To further
compare the performance of these three CNN models, the t-distributed stochastic neighbor
embedding [38] (t-SNE) technique is applied to analyze the extracted deep features in
the hidden classifier layer of these three CNN models. The two-dimensional scatter plot
distributions of the testing results of these three CNN models are shown in Figure 10d–f,
in which the scatters of fault pattern 8 and pattern 4 are very close together and partially
mixed. Compared to the traditional CNN and GPIF-CNN, the scatter distributions of fault
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pattern 8 and pattern 4 of the SGIF-CNN testing results are farther apart with a smaller
mixed part, indicating that the SGIF-CNN can effectively identify the fault categories of the
rotor–journal bearing system.

Figure 10. The confusion matrix of (a) traditional CNN, (b) GPIF-CNN, and (c) SGIF-CNN and 2D
visualization of the learned features of (d) traditional CNN, (e) GPIF-CNN, and (f) SGIF-CNN.

Figure 10 indicates that all the three CNN models misclassify a portion of the samples
of fault pattern 2 and fault pattern 8 as fault pattern 6 and fault pattern 4, respectively;
that is, a part of the testing samples of resonance condition and oil whip with imbalances
are mislabeled as resonance with unbalance and oil whip, respectively. The oil whip is
essentially the vibration caused by the coincidence of oil whirl frequency and first-order
natural frequency. When the rotor system runs in the resonance and oil whip conditions,
the violent vibration will restrain the effect on the rotor system due to the preloaded
eccentric mass, making their vibration responses similar and reducing the classifiability of
the corresponding time–frequency diagrams.

To further verify the effectiveness of the proposed method, the state-of-the-art im-
proved CNN-based methods, multi-information flow CNN (MIF-CNN) and multibranch
deep neural network (MB-DNN) presented in reference [35,36] are also compared. The
parameters of MIF-CNN and MB-DNN can be found in the corresponding reference, and
the comparison results listed in Table 7 are the average of ten repeated trials. Compared to
the MIF-CNN and MB-DNN, the mean training and testing accuracies of SGIF-CNN are
both higher, indicating that the SGIF-CNN can effectively obtain the in-depth information
of engineering datasets with different fault patterns.
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Table 7. The mean training and testing accuracies of the five models for ten trials.

Model Training Accuracy (%) Testing Accuracy (%)

CNN 91.81 84.75
GPIF-CNN 98.81 90.81
SGIF-CNN 99.56 95.06

MIF-CNN [35] 98.25 88.31
MB-DNN [36] 97.94 92.75

4.2. Engineering Data Verification
4.2.1. Experimental System and Data Description

The engineering datasets are collected for an ultralarge air separator with two operat-
ing units in a production plant. Unit A contains four tilting pad journal bearings, while unit
B contains only two tilting pad journal bearings. As shown in Figure 11, the accelerometers
(Brüel & Kjær 4397) are positioned directly above each journal bearing. The rotating speed
of Bearing 4 is 4370 r/min, and other bearings have a rotating speed of 11,670 r/min.
The vibration data measured by the accelerometers are collected and stored by the data
acquisition system (NI PXIe-1078) with a sampling rate of 50 kHz.

Figure 11. Overview of unit A and accelerometer locations.

The six tilting pad journal bearings in the ultralarge air separator are tested and
determined to contain five health conditions. Bearing 1 and Bearing 4 function normally.
Bearing 3, Bearing 6, and Bearing 2 run in oil whirl conditions with initial, moderate, and
severe severities, respectively. Bearing 2 works in the conditions of severe oil whirl and
wear fault. Table 8 shows the details of the engineering datasets selected to establish the
fault diagnosis model for the ultralarge air separator. For each fault mode, the sizes of
the training sample set and testing sample set are 200 samples, and each sample contains
5000 data points with a time span of 0.1 s. The training and testing sample sizes are both
1000 (200 × 5).

Table 8. Description of engineering datasets.

Bearing Operating Speed
(RPM)

Observed Operating
Condition

Fault
Pattern

Size of Training Sample/
Testing Sample

1 11,670 Normal 1 200/200
3 11,670 Oil whirl (initial) 2 200/200
6 11,670 Oil whirl (moderate) 3 200/200
2 11,670 Oil whirl (severe) 4 200/200
5 11,670 Oil whirl (severe) and wear 5 200/200
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Figure 12 shows the waveforms, spectra, and AOK time–frequency distributions of
the vibration datasets of the journal bearings in the ultralarge air separator. Compared with
the clean vibration responses of the test rig, the vibration signals collected at the production
site are significantly more complex due to the impact of environmental noise. As the degree
of failure increases, the amplitude of the vibration response of the journal bearing becomes
larger. The time–frequency diagrams of the normal condition are relatively clean, whereas
the time–frequency diagrams in the oil whirl and wear condition are very messy, with
various frequency components appearing.

Figure 12. The waveform, spectra, and AOK time–frequency distribution of (a) normal; (b) initial oil
whirl; (c) moderate oil whirl; (d) severe oil whirl; (e) severe oil whirl and wear.

4.2.2. Results and Discussion

The normalized and mixed-up training and testing samples are used to train and test
the proposed fault diagnosis method for ten repeated trials. The training results of these
three proposed CNN models in the first trial are displayed in Figure 13. The traditional
CNN achieves a training accuracy of 97.4% after 501 iterations, while the GPIF-CNN and
SGIF-CNN achieve 100% training accuracy after 121 and 251 iterations, respectively. Due
to the fusion of the shallow layer’s information and a fully connected layer with a smaller
parameter size, the convergence rate of SGIF-CNN is the fastest.
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Figure 13. Training accuracies of proposed CNNs with iterations on the engineering dataset.

Tables 9 and 10 show the training and testing accuracies of the three CNN models for
the engineering datasets, respectively. The traditional CNN’s training accuracies for fault
pattern 2 and pattern 8 are 92.5% and 94.5%, respectively, resulting in the lowest training
accuracy. The GPIF-CNN and SGIF-CNN can correctly identify all the training samples.
Due to the recognition accuracies of fault pattern 2 and pattern 3 being 83.5 % and 90.5%,
respectively, the testing accuracy of the traditional CNN is 93.8%. The GPIF-CNN achieves
99.9% test accuracy, with one misclassified sample in fault mode 2. The SGIF-CNN achieves
100% testing accuracy due to the fusion of shallow information and the reduction of the
parameter size in the fully connected layer parameters.

Table 9. The classification accuracies for the training samples of the engineering dataset.

Model
Accuracy

(%)
Accuracy for Each Category (%)

1 2 3 4 5

CNN 97.4 100 92.5 94.5 100 100
GPIF-CNN 100 100 100 100 100 100
SGIF-CNN 100 100 100 100 100 100

Table 10. The classification accuracies for the testing samples of the engineering dataset.

Model
Accuracy

(%)
Accuracy for Each Category (%)

1 2 3 4 5

CNN 93.8 100 83.5 90.5 100 100
GPIF-CNN 99.9 100 99 100 100 100
SGIF-CNN 100 100 100 100 100 100

Figure 14 shows the confusion matrix diagrams and the two-dimensional scatter plot
distributions of the testing results of these three CNN models. Figure 14 indicates that
the SGIF-CNN has excellent performance in fault pattern recognition compared with the
traditional CNN and GPIF-CNN.

4.2.3. Application Framework of the Proposed Model

This work aims to develop a practical online fault diagnosis method for an ultralarge
air separator in a plant and integrate it into the intelligent maintenance system of the
enterprise. The application framework of the SGIF-CNN-based fault diagnosis method
proposed in this paper is shown in Figure 15. The framework consists of three main
phases: data acquisition and model construction, online monitoring system service and
maintenance decision, and model update.
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Figure 14. The confusion matrix of (a) traditional CNN, (b) GPIF-CNN, and (c) SGIF-CNN and 2D
visualization of the learned features of (d) traditional CNN, (e) GPIF-CNN, and (f) SGIF-CNN.

Figure 15. The application framework of the fault detection model based on SGIF-CNN.
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The detection results output by the trained SGIF-CNN model would be uploaded to
the enterprise’s operation and maintenance system via the network when an abnormality is
detected. Then, the decision support system makes maintenance recommendations for the
air separator based on the health information given by the online monitoring system. As
testing data accumulates, the trained SGIF-CNN model can be updated as more complete
fault information becomes available. Implementing the proposed application framework
would significantly improve the safe operation level of the air separator and reduce the
economic losses caused by unplanned downtime.

5. Conclusions

This work proposes a novel CNN architecture to improve the classification ability
of CNN-based fault diagnosis methods to meet the challenge of the complex industrial
production scene by increasing the information input to the classification layer using
information from the shallow layers. This work presents two ways to utilize the information
from shallow layers. One is to concatenate the feature maps of all pooling layers and then
input them into the fully connected layer, and the other is to reduce the dimensionality of
the feature maps of all layers by global convolution operations and input them into the
fully connected layer after concatenating them. The following conclusions can be drawn
based on the experimental results:

(1) The fusion of information from the shallow pooling layers can increase the amount
of information input into the fully connected layer. However, the GPIF-CNN model
converges slowly due to a large parameter size in the fully connected layer.

(2) Reducing the dimension of the feature maps of all layers by globally convolving the
feature map into a feature value would not reduce the amount of practical information
input into the fully connected layer, and the SGIF-CNN model converges faster due
to the smaller parameter size in the fully connected layer.

(3) The experimental data and engineering data analysis results indicate that the GPIF-
CNN and SGIF-CNN can both improve fault recognition accuracy and speed up
convergence compared to the traditional CNN. Integrating the SGIF-CNN-based fault
diagnosis model into the online monitoring system of the air separator can identify
faults accurately and quickly.

The proposed fault diagnosis method based on the SGIF-CNN model can monitor
the operating state of the ultralarge air separator, identify faults in an accurate and timely
manner, provide data support for the company’s operation and maintenance system, and
improve the safety and economy of the ultralarge air separator.

Author Contributions: Conceptualization, L.B.; methodology, H.L.; software, H.L.; validation, L.B.
and C.P.; formal analysis, H.L. and D.H.; investigation, H.L. and D.H.; resources, H.L. and C.P.; data
curation, H.L. and C.P.; writing—original draft preparation, H.L. and C.P.; writing—review and
editing, H.L.; visualization, H.L.; supervision, L.B.; project administration, L.B.; funding acquisition,
L.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in this paper is available from the corresponding
author upon request.

Acknowledgments: This work is supported by the National Natural Science Foundation of China
under Grant No. 52175077.

Conflicts of Interest: The authors declare no conflict of interest.



Machines 2022, 10, 503 20 of 22

Nomenclature

Ax(τ, υ) Ambiguity function of x(t)
bm Bias value of the mth neuron
c Volume of the φ(τ, υ)

Cl
k The kth feature map of lth convolutional layer

f Frequency in Wigner–Ville distribution
f c Parameters in the fully connected layer
Gl

k Global convolution kernel with the same dimension as Cl
k

G̃l
k Global convolution kernel with the same dimension as Pl

k
k Index of an observed feature map
Ka(t, τ) Autocorrelation component of Kx(t, τ)
Kc(t, τ) Intercorrelation component of Kx(t, τ)
Kx(t, τ) Wigner autocorrelation function of x(t)
L Index of observed pooling layer
L Number of pooling layers
M Index of neuron in a fully connected layer.
M Number of neurons in fully connected layer.
Pl

k The kth feature map of lth pooling layer
Pl Set of feature maps of lth pooling layer
r Products magnitude of τ and υ

t Time
x(t) a square-integrable signal

Greek Symbols

θ Radial angle of τ and υ

υ Doppler frequency in ambiguity function
σ(θ) Variance of the Gaussian function
τ Time delay
φ(τ, υ) 2D radially Gaussian function
ωm Weight of the mth neuron

Abbreviations

ANN Artificial neural networks
AOK-TFR Adaptive Optimal Kernel Time–Frequency Representation
BM Breakdown maintenance
CBM Condition-based maintenance
CNN Convolution neural network
GPIF-CNN Global information fusion-CNN
MB-DNN Multibranch deep neural Nnetwork
MIF-CNN Multi-information flow CNN
SGIF-CNN Simplified global information fusion CNN
SM Scheduled maintenance
STFT Short-time Fourier transform
SVM Support vector machines
t-SNE t-distributed Stochastic neighbor embedding
WT Wavelet transform
WVD Wigner–Ville distribution
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