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Abstract— There are many applications, such as image copy-
right protection, where transformed images of a given test image
need to be identified. The solution to this identification problem
consists of two main stages. In stage one, certain representative
features, such as corners, are detected in all images. In stage
two, the representative features of the test image and the stored
images are compared to identify the transformed images for the
test image. Curvature scale-space (CSS) corner detectors look
for curvature maxima or inflection points on planar curves.
However, the arc-length used to parameterize the planar curves
by the existing CSS detectors is not invariant to geometric
transformations such as scaling. As a solution to stage one,
this paper presents an improved CSS corner detector using
the affine-length parameterization which is relatively invariant
to affine transformations. We then present an improved corner
matching technique as a solution to the stage two. Finally, we
apply the proposed corner detection and matching techniques to
identify the transformed images for a given image and report
the promising results.

Index Terms— corner detection, corner matching, curvature
scale-space, affine-length, transformed image identification.

EDICS: OTH-MAPP Multimedia applications, SRE-OTHR
Other, and OTH-OTHR Other.

I. INTRODUCTION

IN many applications, such as image copyright protection

[1], one common problem is to identify images which may

have undergone unknown transformations. We can define this

common problem as the transformed image identification (TII)

where the goal is to identify geometric transformed and signal

processed images for a given image. So the TII is different

from conventional content-based image retrieval (CBIR) [2],

where all images having the same or similar semantic feature,

e.g., flower, are considered relevant to each other. The TII

consists of two main stages: feature detection and feature

matching. In the feature detection stage, a set of representative

features, e.g., corners, are detected and represented for all

images. In the feature matching stage, the representative

features of the test image and the stored images are compared

to identify the transformed images for the test image. We will

focus on both of the stages of the TII in this paper. In addition,

we will concentrate on the performance evaluation metrics.

*corresponding author.

A. Feature Detection

The most challenging problem in current research on image

copyright protection is to devise a system that would verify

the copyright information in the test image even when the

image has undergone unknown geometric transformations. In

image copyright protection, some pixels in the original image

are used either to calculate the signature [1] or to embed the

watermark [3]. However, geometric transformations change

the location of those pixels. Consequently, the copyright

verifier may fail to track the copyright information in the

transformed (test) image. In such cases, if the locations of

those pixels are defined with respect to some salient features,

e.g., corners which are robust to geometric transformations,

the verifier will be able to locate those pixels. Such salient

features can be denoted as the reference points to those pixels.

Different types of image features, e.g., corners [3], wavelet

maxima points [4], have been extensively used in the last

decade in order to obtain robust watermarking-based copyright

protection systems. Corners are visually distinguishable and

well localized compared to other image features. The wavelet

maxima-based watermarking system in [4] could survive only

on small geometric distortions, e.g., 2◦ rotation. The reason

is that the wavelet features are highly sensitive to geometric

operations. In contrast, the corner-based watermarking system

in [3] was shown robust to large geometric distortions.

The feature-points can also be used to devise blind

signature-based copyright protection system [1]. A corner

matching technique can be used to identify the transformed

images for a given test image. The transformation matrix can

also be estimated to undo the transformation if necessary. In

the identified transformed images the signature area can be

located using the reference points (corners).

A large number of corner and interest-point detectors have

been proposed in the literature [5]–[10]. They can be broadly

classified into three groups: intensity-based [5]–[7], contour-

based [8]–[10], and model-based [11], [12] methods. Intensity-

based methods estimate a measure which is intended to

indicate the presence of an interest-point directly from the

image pixel values. Contour-based methods first obtain planar

curves using some edge detector and then search for the

curvature maxima along those curves. Model or template-

based methods find corners by fitting the image signal into

a predefined model. Corner detectors can also be divided into
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two types: single-scale detectors [5] and multi-scale detectors

[6]–[10]. Single-scale detectors work well if the image has

similar size features, but ineffective otherwise; because either

fine or coarse scale feature is poorly detected, but images may

contain both kinds of features. To improve the effectiveness

of corner detection, multi-scale corner detectors have been

proposed. They are based on the classical scale-space theory

[13]–[16].

In this paper, we will focus on the contour-based multi-scale

corner detectors which are commonly known as curvature

scale-space (CSS) detectors. One of the main reasons why

we choose the contour-based methods is that along with

the detected corners, the contour-based methods make other

information, like the curvature zero-crossing points and edges,

available for later applications. A corner matching technique

based on the available information from the corner detector

can be used to identify the transformed images for a given

test image. The transformation matrix can also be estimated

to undo the transformation if necessary.

The CSS corner detectors look for curvature maxima or

inflection points on planar curves. The original CSS detectors

[8], [9] and the enhanced version [10] parameterize curves

using the arc-length which is not invariant to geometric

transformations. This paper presents an improved CSS corner

detector which is affine-resilient (ARCSS detector). A prelim-

inary version of the ARCSS corner detector was published in

[17]. Here we will detail each step of this corner detector (see

Section II-B) and present the detailed experimental results (see

Section V-B.1). The proposed corner detector parameterizes

curves with the affine-length which is relatively invariant

to affine transformations. A function f is called relatively

invariant to a transformation group G if whenever f is

transformed to F by a transformation g in G, we obtain

F = z.f , where z is a function of g alone. If z ≡ 1 for all

g in G, f is called absolutely invariant [15]. For more detail

and rigorous discussions see [18].

Note that the affine-length has been used for affine invariant

shape recognitions in the literature [19], [20]. The corner

detector and matching technique proposed in this paper are

different from them in two aspects. First, existing techniques

match shapes using the so called CSS image (see [19] and

[20]) and do not explicitly use corner positions for matching.

However, we explicitly obtain corner positions on planar

curves and use them for matching. Second, their formula of

curvature calculation uses up to third order derivatives which

has the undesirable effects, since precise approximation of

higher order derivatives is a difficult task and often causes

instability and errors [19]. In this paper, we will simplify the

formula so that only up to second-order derivatives are used

(see Section II-B.1).

B. Feature Matching

The feature (corner) matching technique is normally com-

putationally intensive and difficult due to following reasons:

first, additional corners may be detected in the test image due

to noise or clutter; second, desirable corners may be missed

in the test image due to noise or occlusion; and finally, the

corner strength represented as some numerical values may

be changed by transformations [21]. Although a significant

number of solutions have been proposed to this problem, none

is general and reliable enough to cope with all possible cases

[22].

Corner matching techniques can be broadly classified into

two groups. In the first group, each corner is associated with

its local neighbourhood and the matching procedure involves

neighbourhood matching [6], [23]. These techniques are robust

but computationally expensive and require large storage for

descriptors. In the second group, each corner is associated with

information like its curvature but do not use neighbourhood

intensity values for matching [22], [24]–[29]. These techniques

are computationally less expensive and require less storage for

descriptors.

This paper presents a corner matching technique which be-

longs to the second category and is robust to geometric trans-

formations, noising, and lossy compression. We first find the

candidate corner matches between two images using absolute

curvature values at corner points and affine-lengths between

corners on the same curve. For each set of three candidate

matches, if they are non-collinear on each image and the ratio

of areas of corresponding triangles in both of the images is

within a specific range, we estimate the transformation matrix

between these triangles. Then we transform all corners in

the database image using the estimated transformation matrix

and match with the test corner set. In rest of the paper, we

will call the proposed matching technique as affine-length

and triangular area (ALTA) matching technique. Note that

a preliminary version of the ALTA matching technique with

some initial experimental results was published in [30]. Here

we improve it by proposing some speed up steps (see Section

III-B.1), discuss detailed matching results on a large database

(see Section V-B.2), and present the TII performance (see

Section V-B.3).

C. Performance Measurements

The existing CSS detectors [8]–[10], [31] did not use

proper evaluation metrics for performance evaluation (see

Section IV-A). They were evaluated based on the human

judgement which is hard to establish. Moreover, existing work

on matching techniques [22], [24]–[29] did not evaluate and

compare their performance using large databases. For the

evaluation of corner detection performance, we propose a

modified corner matching metric (see average repeatability in

Section IV-C.1). We carry out a thorough robustness study

on large databases considering a wide range of geometric

transformations. We evaluate the corner detection performance

using average repeatability and localization error. Corner

matching performance is evaluated using corner correspon-

dence and compared with the performance of the existing most

promising Delaunay triangulations based matching technique

[22]. Finally, the combined performance of the proposed

ARCSS corner detector and the ALTA matching technique

is evaluated when they are applied to TII. Their combined

performance which we call the identification performance in

rest of the paper is evaluated using the precision-recall graph
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and compared with the performance of the existing gray-scale

histogram (GSH) matching technique [2].

Note that corners and edges approximate multiple object

shapes in an image and, therefore, our corner matching tech-

nique using the affine-length between corners on the same

curve is somewhat like a global feature matching technique.

Many existing CBIR techniques [2] may not be applicable to

TII, since the goal of the CBIR is different from that of TII.

The GSH matching, which is a global feature (intensity) based

CBIR technique, is highly robust to geometric transformations

[2], and therefore, is chosen to be compared with the pro-

posed corner matching technique. Moreover, the shape-based

recognition techniques [19], [20] may not be applicable to

TII, since they require automatic, efficient, and reliable image

segmentation techniques to extract closed contours of multiple

objects in the same image. However, it may be impossible

since objects in images may be strongly noised, occluded, or

cluttered.

D. Paper Organization

The rest of the paper is organized as follows. The existing

CSS corner detectors along with the proposed improved corner

detector are presented in Section II. Section III presents the

existing corner matching techniques and the proposed ALTA

matching technique. Section IV presents the performance

evaluation metrics. Section V presents the performance study.

Finally, Section VI concludes the paper.

II. CURVATURE SCALE-SPACE CORNER DETECTORS

The CSS corner detectors, in general, extract planar curves

(open and close contours) from the image using the Canny

edge detector [32] and parameterize each curve using the

arc-length. They then smooth the parameterized curve and

calculate the absolute curvature on each point of the smoothed

curve at either all scales [8], one [9], or more specific scales

[10]. Thereafter, they look for curvature maxima points as

corners based on some constraints. If corners are detected at all

scales, those which survive in most of the scales are selected

[8]. If corners are detected at some specific scales, they are

tracked down to the finest scale to improve localization [9],

[10].

Since the arc-length of a curve is not preserved under

geometric transformations like scaling, the existing CSS de-

tectors [8]–[10], [31] are vulnerable to geometric attacks.

The proposed ARCSS corner detector uses the affine-length

parameterization which is relatively invariant to affine trans-

formations.

A. Existing Corner Detectors

The first CSS corner detector by Rattarangsi and Chin [8]

analyzed the scale-space of the isolated single and double

corners. It had two main drawbacks: high computational

complexity because of involving a tree parsing technique and

false corner detection due to quantization noise.

The next CSS corner detector by Mokhtarian and Suomela

[9] detected corners at a high scale in the CSS using a single

curvature-threshold and tracked them through multiple lower

scales to the lowest scale in order to improve localization.

When corners were detected in a very high scale, this method

showed high robustness to noise but many true corners were

smoothed away. On the other hand, if corners were detected

in a low scale it detected many weak corners. Moreover,

its performance was limited due to the use of the single

threshold with the single smoothing scale, since the curvature

value of a point may change when the image is geometrically

transformed.

To alleviate these problems, Mokhtarian and Mohanna [10]

later proposed the enhanced CSS corner detector where cor-

ners were detected in multiple (three) scales with different

thresholds. In the remaining of this paper, we refer their former

method [9] as the CSS detector and later one [10] as the ECSS

detector. The ECSS detector, though performed better as they

reported in [31], was found less robust than the CSS detector

in our robustness tests (see Section V-B.1). The corner detector

in [33] did not use the scale-space, though the title seemed to

be. In fact, it detected corners at a single low scale and did not

track to the finest scale. Consequently, it might detect weak

corners and suffer from localization problem.

B. Proposed Improved Corner Detector

The arc-length was used to parameterize the planar curves

by both the existing CSS and ECSS detectors [9], [10]. How-

ever, the arc-length is not invariant to affine transformations.

In order to overcome this problem, the arc-length was replaced

by the affine-length which is relatively invariant to affine

transformations [19].

The main difference between the arc-length and the affine-

length parameterizations of planar curves is in sampling. The

arc-length parameterization used by both the existing CSS

and ECSS detectors [9], [10] selects all the points on a

curve when the sample-interval is either 1 (for vertical or

horizontal neighbor points) or
√

2 (for diagonal neighbor

points) pixels. However, as the arc-length of a curve is not

invariant to geometric transformations, a substantially different

set of curve points is selected from the transformed curve when

the arc-length parameterization is used. In contrast, the affine-

length parameterization selects only the important points of a

curve. It selects more points on the curve segments where the

curve makes significant direction changes (e.g., on and near

corners) than on the straight-line like curve segments. Since

the affine-length of a curve is relatively invariant to geometric

transformations, it is expected that the affine-length parameter-

ized curve is more stable and, therefore, leads to more stable

curvature estimation than the arc-length parameterized curve.

Nevertheless, while the arc-length parameterized curvature

involves up to second order derivatives [8]–[10], [31], the

formula used by [19], [20] to calculate the affine-length param-

eterized curvature used third order derivatives. We will show

below using simple mathematical derivation that the affine-

length parameterized curvature can also be implemented using

second order derivatives like the arc-length parameterized

curvature. Therefore, the affine-length parameterized curvature

can be exploited to extract robust corners with the same



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. YY, OCTOBER ZZZZ 4

computational cost as the arc-length parameterized curvature

requires, but with higher accuracy and stability.

1) Affine-Length Parameterized Curvature: In this section,

we first present the affine-length parameterized curvature func-

tion which uses up to third order derivatives of original curve-

point locations. We then simplify it to have only up to second

order derivatives. Lower order derivatives help reducing the

undesirable effects, e.g., instability and inaccuracy in curvature

estimation, associated with higher order derivatives.

For a planar curve Γ(t) = (x(t), y(t)), where t is an arbi-

trary parameter, the affine-length τ between two points P1 and

P2 is [17]

τ =

∫ P2

P1

3

√

ẋ(t)ÿ(t) − ẍ(t)ẏ(t)dt, (1)

where ẋ(t) and ẏ(t) are first and ẍ(t) and ÿ(t) are second

order derivatives with respect to t. We can easily show that

the affine-length τa of an affine transformed curve is

τa = τ0[sxsy(1 − shxshy)]1/3, (2)

where τ0 is the affine-length of the original curve, sx and

sy are scaling factors and shx and shy are shearing factors

along x and y directions respectively. The relation in (2)
shows that the affine-length of a curve is absolutely invariant

to rotation and translation, but relatively invariant to scaling

and shearing. Such a relation does not exist for the arc-length

of a curve. That means the arc-length is not invariant to scaling

and shearing, though it is absolutely invariant to rotation and

translation [19]. The Euclidean curvature is defined as [8]–

[10], [31]:

κ(t) =
ẋ(t)ÿ(t) − ẍ(t)ẏ(t)

[ẋ2(t) + ẏ2(t)]3/2
. (3)

Using (3), the curvature is calculated at all the curve-points.

However, when the curve is parameterized using the affine-

length, the curvature is calculated at a subset of the curve-

points. We select the subset such that the distance between

successive points is affine-length λ. We will discuss more

about this sampling (subset selection) procedure in Section

II-B.3.b. After sampling, the curvature on the affine-length

parameterized curve Γ(τ) = (x(τ), y(τ)) can be calculated

according to (3) using

κ(τ) =
ẋ(τ)ÿ(τ) − ẍ(τ)ẏ(τ)

[ẋ2(τ) + ẏ2(τ)]3/2
. (4)

We can derive first and second order derivatives of x(τ) and

y(τ) in (4) as [19] (Appendix I-A):

ẋ(τ) =
ẋ(t)

[ẋ(t)ÿ(t) − ẍ(t)ẏ(t)]1/3
, (5)

ẍ(τ) =
3ẍ(t)[ẋ(t)ÿ(t) − ẍ(t)ẏ(t)] − ẋ(t)[ẋ(t)ỹ(t) − x̃(t)ẏ(t)]

3[ẋ(t)ÿ(t) − ẍ(t)ẏ(t)]5/3
,

(6)

ẏ(τ) =
ẏ(t)

[ẋ(t)ÿ(t) − ẍ(t)ẏ(t)]1/3
, and (7)

ÿ(τ) =
3ÿ(t)[ẋ(t)ÿ(t) − ẍ(t)ẏ(t)] − ẏ(t)[ẋ(t)ỹ(t) − x̃(t)ẏ(t)]

3[ẋ(t)ÿ(t) − ẍ(t)ẏ(t)]5/3
,

(8)

where x̃(t) and ỹ(t) are third order derivatives with respect to

t.
We see that the second order derivatives of x(τ) and y(τ)

involves up to third order derivatives of x(t) and y(t) as

evident from (6) and (8) above. However, by using (5) to

(8) we can show that

ẋ(τ)ÿ(τ) − ẍ(τ)ẏ(τ) = 1. (9)

Hence, the simplified formula of the affine-length parameter-

ized curvature from (4) using (9) is

κ(τ) =
1

[ẋ2(τ) + ẏ2(τ)]3/2
, (10)

which uses only first and second order derivatives of x(t)
and y(t) as evident from (5) and (7) above. Thus we avoid

problems associated with curvature calculation using higher

order derivatives.

2) Curve Smoothing: Curve smoothing prior to curvature

measurement reduces the effect of noise [9]. To do that, each

coordinate of the affine-length parameterized curve Γ(τ) is

convolved with a Gaussian function gσ of width σ, which is

also known as the smoothing-scale or standard deviation of

the Gaussian distribution. In the continuous form we have

X(τ, σ) = x(τ) ∗ gσ and Y(τ, σ) = y(τ) ∗ gσ, (11)

where ∗ denotes the convolution. After smoothing

we have the parameterized and smoothed curve

Γ(τ, σ) = (X(τ, σ), Y(τ, σ)). The Gaussian convolution

property states that differentiation and convolution are

commutative. So derivatives of the convolved function can be

calculated as

Ẋ(τ, σ) = x(τ) ∗ ġσ and Ẏ(τ, σ) = y(τ) ∗ ġσ. (12)

Since the exact form of ġσ is known, we can calculate the

curvature on the smoothed affine-length parameterized curve

according to (10) as

κ(τ, σ) =
1

[Ẋ2(τ, σ) + Ẏ2(τ, σ)]3/2
. (13)

Since the curvature extrema points describe the fundamental

features of planar curves, the aim of the proposed ARCSS

corner detector is to obtain inflection points using (13) as

corners.

3) Corner Detection: The proposed ARCSS corner detector

first uses the Canny edge detector [32] to extract edges (planar

curves) from gray-scale images. Each edge is parameterized

using the affine-length and then smoothed using a medium

smoothing-scale. On each smoothed curve, candidate corners

are defined as the local maxima of the absolute curvature.

Since the curvature of a strong corner is higher than that of

a weak corner, we remove weak corners on an edge if their

curvature values are lower than the predefined edge curvature-

threshold. False corners are eliminated by comparing each

curvature maximum with its two neighboring minima. If the

curvature of a corner point is less than the double of the

curvature of a neighboring minimum it is removed as a false

corner [9]. The outline of the proposed corner detector is as

follows.
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♦ Find edge image using the Canny edge detector.

♦ Extract edges from the edge image: (i) fill the gaps if

they are within a range and select edges and (ii) find

T-junctions and mark them as T-corners.

♦ Parameterize each edge using its affine-length and smooth

the parameterized curve using one of three smoothing-

scales determined based on the number of points on it.

♦ Compute absolute curvature on each smoothed curve

and find the candidate corners which are the absolute

curvature maxima points.

♦ For each edge, determine corners by comparing the

curvature maxima values to the edge curvature-threshold

and the neighboring minima.

♦ Track corners down to the lowest scale considering a

small neighborhood to improve localization.

♦ Compare T-corners with the tracked corners and add those

T-corners which are far away from the detected corners.

We detail all the above steps in the following subsections.

All the chosen parameter values that we will present below

were decided either from the existing work or based on our

empirical study presented later in Section V-B.1.a.

a. Edge extraction and selection: In the Canny edge

detector [32] too many weak and noisy edges are detected

when the edge strength threshold is set too low. Conversely,

many legitimate edges are missed when the threshold is set

too high. In addition, the edge strength may be changed due to

geometric transformations. Therefore, in our implementation,

we choose the threshold range between 0.2 and 0.7 after

experimentation.

Note that the CSS corner detection technique [9] can detect

corners on both closed and open curves. Therefore, we do not

need to follow any post-processing, like the level set method

in [34], on the extracted curves to obtain close contours. We

simply extract planar curves from the Canny edge detector

output as follows.

The output of the Canny edge detector is a binary image

where ‘1’ represents edge-pixel and ‘0’ represents non-edge-

pixel. Only the edge-pixels are tracked to extract curves

from the binary image. Initially, all the edge-pixels are kept

unmarked. If an edge-pixel is found while scanning the binary

image, it is marked and added to an initially empty curve

(length 0). To extend the curve, an unmarked edge-pixel is

searched in the 3 × 3 neighborhood of each end-point. If only

one unmarked edge-pixels are found, it is selected. If more

than one such unmarked pixel is found, the one having the

lowest Euclidean distance from the curve-end is selected. The

selected pixel is marked and added to the respective curve-end.

This process continues until none of the ends can be extended

anymore with the remaining unmarked edge-pixels. Once the

construction of a curve is completed, the rest of the unmarked

edge-pixels are tracked similarly to construct another curve.

Some of the curves obtained as above are either natural short

edges or detected due to strong noises. It is difficult to smooth

short curves due to the restriction of the smoothing window

size (window size should be smaller than the curve length).

Moreover, since the affine-length of a curve is much smaller

than its arc-length, we need to select edges of reasonable

lengths. Thus in our implementation, curves are selected only

when their lengths np meet the following condition:

np > (w + h)/α, (14)

where w and h are width and height of the image and α
is called the edge-length controller. If α is small, only long

curves are selected; if it is large, short curves are also selected.

In our experiments, we set α = 25, and therefore, for an image

of size 512 × 512, the minimum np is 42. The above edge

extraction setup also helps speeding up the later steps by

avoiding a large number of weak and very short edges which

may not contain strong corners. If an edge runs through any

point within 2 pixels away from an end of another edge, we

select that end as a T-junction and add to the T-corner set [9].

b. Affine-length parameterization and corner detection:

We calculate the affine-length τ of each selected edge Γ(t) and

obtain ns = ⌊τ/λ⌋ equally distant sample points which con-

stitute the parameterized curve Γ(τ), where λ is the sample-

interval in affine-length. Therefore, the distance between two

successive points on Γ(τ) is affine-length λ on Γ(t). The

gap (in number of pixels) between the sample points mainly

depends on the nature of the curve. It is large on almost

straight-line like curve segments, but small on those segments

where the curve makes significant direction changes (e.g., on

and near corners). In order to reduce the gap, one may suggest

using a small λ for not missing any important corners. We used

λ = 0.25, 0.5, 0.75, 1.0 in our experiments and found that all

of them gave almost the same corner detection performance

(see Section V-B.1.a).

Localization of the detected corners is better with smoothing

using low sigma values. However, the stability (robustness) of

the detected corners is better with smoothing using high sigma

values. Moreover, a long curve requires higher smoothing-

scale than a short curve [10]. In order to make a trade off,

we smooth the parameterized curve at one of three medium

smoothing-scales and corners detected at the smoothed curves

are tracked down to the finest scale to improve the localization.

We smooth each parameterized curve using one of three

medium smoothing-scales determined based on the number of

sample points (ns) on it. We set the three smoothing-scales

as σm = 3, σm+1 = 4, and σm+2 = 5 for short, medium, and

long edges respectively and edge curvature-threshold t = 0.03
for all types of curves. The short, medium, and long edge

definitions of parameterized curves are defined by the con-

straints ns ≤ 60, 60 < ns ≤ 120, and ns > 120, respectively.

We compute curvature at all points on the smoothed Γ(τ) and

absolute curvature maxima points are taken into the candidate

corner set. A local maximum point of the absolute curvature

function is likely to be a strong corner, but it could also be a

weak corner (also called ‘round’ corners in the literature [9])

or a false corner [9] as explained below.

The strong corners are very sharp in nature and visually

prominent features on curves. Their localization is very good

and curvature values are usually very high. In contrast, the

weak corners are flat in nature and visually less significant

features on curves. Their localization is very poor since it may

be very difficult to point out their exact locations. Furthermore,

their curvature values are usually smaller than the strong

corners. The false corners are due to noise or high local
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variation on the curve. They are usually detected on those

curves where there may be no visually prominent corners,

for example, on circles. Note that although the notion of

corner seems to be intuitively clear, no generally accepted

mathematical definition exists, at least for digital curves [35].

Therefore, it is hard to give formal definitions for strong, weak,

and false corners and we define them using their apparent

characteristics as discussed above.

In the candidate corner set we may have all three types

of corners – strong, weak, and false. The later two should

be removed from the candidate corner set. We follow the

same technique as the CSS detector [9] to remove weak and

false corners. Since the curvature of a strong corner should

be greater than that of a weak corner, a candidate corner

is removed from the candidate corner set if its curvature

value is lower than t. To remove false corners, the curvature

value of each candidate corner is compared with two of its

neighboring minima on the same curve. If the curvature value

of a candidate corner is not at least twice of its two neighboring

minima, this candidate corner is removed from the candidate

corner set [9].

Note corners detected on the smoothed curve obviously

suffer from some absolute localization error with respect to

the actual corner locations on the non-smoothed curve. This

error can be mitigated in two ways. First, the smoothing-scale

should be as low as possible. Since, the affine-length of a

curve is usually small, the ARCSS detector selects the low

sigma value (sigma = 3) for most of the curves. Second, a

corner tracking step, which tracks the detected corners in the

lower scales, is followed to improve the error. Like other CSS

detectors, we also follow a corner tracking step as discussed

below.

c. Corner tracking and adding T-corners: As corners are

detected at coarse scales, their localization may not be good.

We track the corners on Γ(t) down to the lowest scale by

considering a neighborhood of size 3 on each side of each

corner. For example, if a corner is detected at the p-th point on

Γ(τ) at σ = 3, first we track this corner at σ = 2 considering

7 consecutive points, where the p-th point is the midpoint. The

point having the maximum absolute curvature among these 7
points is the tracked position of that corner at σ = 2 and the

next tracking is executed at σ = 1.

In the above corner tracking no threshold is used in the

tracking system which only changes the corner positions, not

the number of corners. However, corners do not move dramati-

cally during tracking and only six (neighbors) curvature values

around each of the detected corners need to be computed

during tracking [9]. As a consequence, corner localization is

improved without increasing the computational cost.

Note that in the above multi-scale corner tracking, we follow

a linear decreasing of smoothing-scale. Because we observed

that when corners are detected using a small sigma value,

the non-linear decreasing made the procedure expensive by

increasing the number of iterations, but did not give better

localization performance than the linear decreasing which

requires less number of iterations. However, if one uses a large

smoothing-scale for corner detection, the linear decreasing

of sigma in multi-scale corner tracking may cause a high

localization error.

Finally, we add T-corners to the final corner set when there

are intersections of curves. There may be an already detected

corner on any of the intersecting curves (i.e., at or near a T-

corner point). A T-corner is added to the final corner set if

there is not an already detected corner in the 5 × 5 pixels

neighborhood around it [9]. Such an use of the Euclidean

neighborhood should not be a problem because in practice

there may be no or only a few of such points in real world

images. Ideally, T-corners should be detected in the affine

space. But this is not possible for two reasons. First, the affine-

length cannot be calculated between points on different curves.

Second, at the corner detection stage we need to detect T-

corners regardless of whether the image has been transformed

or not.

III. CORNER MATCHING

The successful application of a corner detector in many

applications depends on how to match corners between im-

ages. The proposed matching technique is robust to both

geometric transformations and signal processing attacks. It can

be used with contour-based corner detectors. Particularly, here

we will use it with our proposed ARCSS corner detector which

provides useful information such as curvatures and affine-

lengths between corners.

A. Existing Matching Techniques

In the second group of corner matching techniques (see

Section I-B), the matching problem was first formulated as the

sub-graph isomorphism problem to find the maximal clique

[26]. Nevertheless, finding the maximal clique is an NP-

complete problem [21]. The problem was later formulated

as an optimization problem and either a relaxation technique

[29] or a binary Hopfield network [27] was applied for cost

minimization. A similar approach based on the fuzzy inference

procedure was proposed in [28]. Optimization techniques

were robust to rotation, translation, and partial occlusion of

the object; however, were vulnerable to small scale change

and computationally expensive. The solution in [25] used

the Hausdorff distance to determine the degree of mismatch

between two sets of feature points. However, the Hausdorff

distance is too sensitive to noises or outliers and is not

invariant to geometric transformations. The method in [24]

used a similarity measure based on the corner strength. It first

matched local feature groups and then estimated the affine

transformation by global matching. But it was vulnerable to

down-scaling and computationally expensive.

Zhou et al. [22] proposed a novel corner matching technique

based on the Delaunay triangulations (DT) which were formed

among the detected corners. The corner correspondence was

established based on the observation that the interior angles of

the Delaunay triangles completely and uniquely characterized

the corners and their values were not affected much by rota-

tion, uniform scale change, and translation. At the matching

stage, the most similar triangle pairs were obtained and then

their edges were extended circularly until all matching corners

were triangulated and mismatching corners were discarded.
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Fig. 1: Block diagram for the proposed matching technique.

The DT matching was very much promising; however, it

would fail under aspect-ratio change (non-uniform scaling)

and other geometric transformations such as shearing where

interior angles of the Delaunay triangles are affected.

B. Proposed Matching Technique

We observed that the absolute curvatures of corners may

change due to geometric transformations; however, for many

corners they only change slightly (see Fig. 2 and explanation

in Section III-B.1.b). Moreover, the affine-length between two

corners on the same curve (see (2) in Section II-B.1) and

the triangular area consisting of any three corners as vertices

(see (32) in Appendix I-C) are relatively invariant to affine

transformations. Therefore, in addition to corner positions,

the proposed matching procedure uses the affine-length and

triangular area invariances and curvature value to establish

corner correspondences between two images.

Fig. 1 shows the block diagram for the proposed ALTA

matching technique. For two given corner sets A and B of

images IA and IB respectively, we first obtain candidate corner

matches using curvature values and affine-lengths. For each

combination of any three candidate matches, if the corners

are non-collinear on the respective image plane, we have

two triangles – one in each image plane. If the areas of

these two triangles are similar (the difference is within the

certain threshold), we estimate the transformation matrix g′

that transforms the triangle in IA into the triangle in IB .

Finally, we transform the corners in A using g′ and find

matches within B. We keep track of g′ over all iterations.

The g′ which gives the highest number of corner matches

corresponds to the transformation matrix g we are looking

for. The corner matching performance is calculated for this

best matching case.

In the above procedure, the candidate corner matches are

obtained in two steps. In the first step, we obtain candidate

matches (PA, PB) within a specific curvature difference. In the

second step, if there are a total of two or more detected corners

on both of the curves where PA and PB are detected, we

add more candidate corner matches (QA, QB) from the same

pair of curves by matching the affine-lengths between corners.

This means that the affine-length between corners PA and QA

on a curve in IA is compared with the affine-length between

corners PB and QB on a curve in IB . Notice that PA and

Fig. 2: Minimum number of repeated corners by the ARCSS

(affine-resilient curvature scale-space) detector in geometric

transformations (using the image database mentioned in Sec-

tion V-A.1).

QA denote corners in A and PB and QB denote corners in B.

Further notice that both of the similarity measurements (affine-

length using (2) and triangular area using (32)) depend on

the considered ranges of scaling and shearing transformation

factors.

We need only three true matching corners to estimate the

original transformation matrix g. However, finding true corner

matches is the aim of the matching procedure and is not

straightforward. The worst case is to consider every possible

combination of three corner pairs between IA and IB with

the complexity of O(m3n3), where m = |A| and n = |B| (see

Appendix I-B). Therefore, we apply some strategies to reduce

the computational cost.

1) Speeding up the Matching Procedure: If the two images

IA and IB are originated from the same image due to some ge-

ometric transformations or signal processing attacks, the above

matching procedure finds the maximum number of true corner

matches. The estimated transformation matrix g′ that causes

the highest number of corner matches is an approximation

of the original transformation matrix g. This process will be

expensive in TII where one test image is compared with all

database images to find possible transformed images. We apply

the following strategies to reduce the cost:

a. Limiting the number of candidate corner matches: A

maximum of three candidate corners are used from each pair

of curves between two images. Because we need only three

true corner matches to estimate g. If there are two or more

corners on the same curve, we obtain maximum two more

candidate matches (QA, QB) using the affine-length, for each

candidate match (PA, PB) determined previously using the

curvature value. The reason is if (PA, PB) is a true match,

then we need only two more true matches to determine the

transformation; but if it is a false match, we do not want to

obtain more false matches based on it.

b. Setting the curvature difference threshold: We need to

obtain at least 3 repeated corners to estimate g′. The absolute

curvature value of a corner should not change significantly

under geometric transformations. For the transformations con-
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sidered in Section V-A.1, the ARCSS detector offered min-

imum 3 repeated corners when the curvature difference was

greater than 0.06 (see Fig. 2). However, in order to provide

a safe margin, we set a threshold Td = 0.2 for the curvature

difference when we have minimum 7 repeated corners. Conse-

quently, two corners will be considered a candidate match only

when the difference between their curvature values is within

0.2.

c. Using hash tables: We do not need to obtain a candidate

corner match more than once. But the addition of candidate

matches based on the affine-length may produce duplicates.

We use a hash table to store the candidate corner matches

obtained so far. If a new candidate corner match is found

and if it is not in the hash table, we store it in the hash table.

Moreover, in a later iteration we do not need to consider those

combinations of (three) candidate corner matches that we have

considered in an earlier iteration to estimate g′. That means

while estimating g′ in each iteration, at least one of three

considered candidate matches should be new. To ensure it,

we store the iteration number in which a candidate match is

obtained and entered into the hash table. We use the division

method [36] for implementing the hash table.

d. Selecting possible transformed images: The number

of detected corners between the original and transformed

images may differ, but it does not change dramatically. For

the database in Section V-A.1, the maximum difference in

number of detected corners by the ARCSS detector was 31.

Consequently, when we apply the matching procedure to TII,

we only compare images if the difference in corner numbers

between the query and database images is within 40.

e. Selecting top corners: If all the detected corners are con-

sidered, it may make the procedure too expensive depending

on the number of corners in IA and IB . Considering that the

corners with the highest curvature values should be the most

important and robust, we can speed up the matching process

without compromising accuracy by using only a few corners

with the highest curvature values. In fact, by selecting only the

top few corners based on curvature values, it not only speeds

up the iteration but also offers better performance, as discussed

later in Section V-B.3.

IV. PERFORMANCE EVALUATION METRICS

In this section we will briefly describe some performance

evaluation metrics used by the existing corner detectors and

matching techniques along with their merits and demerits.

Then we will present the metrics that we have used for fair

performance comparison. We will also present the metrics

which were used for evaluating the TII performance.

A. Existing CSS Corner Detector Evaluation

The performance evaluation of existing CSS corner detec-

tors [8]–[10], [31] is based on the human judgement. The

measurement of consistency of corner numbers and accuracy

proposed in [31] were flawed. Moreover, they used only a few

of test images, some of which were artificial block images. As

a result, their performance measurement may not be suitable

for large databases consisting of real world images.

1) Human Visual Inspection: In [8]–[10], [31], both the

false positive and false negative probabilities were evaluated

by differentiating the set of detected corners from the set

of corners pointed out by human visual inspection (HVI).

This kind of evaluation is not very much useful for proper

robustness tests due to several reasons. First, it is very hard

to point out all corner locations by human intuition in natural

images containing many corners. Second, human visual system

is unable to measure the strength of corners. Consequently, it

fails to distinguish between different corners and to sort them

out according to their strength. Thirdly, the volume of work

with a large image database for HVI prohibits its adoption.

Finally, there is no standard procedure e.g., how many people

should be involved and how to assess their decisions.

Mokhtarian and Mohanna [31] calculated accuracy by

matching corners identified by human eyes to those detected

by a corner detector. As accuracy usually indicates the lo-

calization of the detected corners, such a metric based on

the number of the detected corners is flawed. In order to

measure accuracy, the locations of the detected corners should

be considered instead [37] (see Section IV-B.2).

2) Consistency of Corner Numbers: Consistency of corner

numbers (CCN) measures the similarity in corner numbers

between the original and transformed images. Mokhtarian and

Mohanna [31] defined CCN as:

CCN = 100 × 1.1−|Nt−N0|, (15)

where N0 and Nt are numbers of detected corners in original

and transformed images respectively. This metric is severely

flawed for the robustness test because if a corner detector

detects N points in the original image as corners and com-

pletely different N points in the transformed image, then

N0 = Nt = N and CCN will be 100%. Moreover, it does not

consider whether the detected corners are repeated or not. As a

result, CCN could not be accepted as a fair and unambiguous

metric for the robustness evaluation.

Mokhtarian and Mohanna [31] used both the accuracy and

CCN to compare the performance of their CSS and ECSS

corner detectors [9], [10]. Therefore, though they showed

that the ECSS corner detector performed better than the CSS

detector, we found the reverse in our performance study (see

Section V-B.1.b).

3) Preferred Metrics: In fact, the performance evaluation

of corner detectors should be automated and without using

any human intuition. For example, they could be evaluated

in terms of repeatability and localization error which were

previously used for evaluating other types of feature detectors

and matching techniques [37]–[39]. We present them in the

following section. However, one of them had problems and

we propose to modify it to eliminate problems (see Section

IV-C.1).

B. Existing Corner Matching Evaluation

Many existing corner or interest-point matching techniques

used the repeatability and localization error to evaluate their

performance.
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1) Repeatability: Repeatability indicates how stable the

detected corners are under different geometric transformations

and signal processing attacks. It is defined as the percentage

of the total observed corners repeated between the original

and transformed (and/or signal processed) images. Trajkovic

and Hedley [38] estimated repeatability as the ratio R0 of

the number of corner matches (between the original and

transformed images) Nm to the number of corners in the

original image N0. Schmid et al. [39] used the ratio Rt of Nm

to the number of detected corners in the transformed image,

Nt. Both R0 and Rt are shown in (16).

R0 =
Nm

N0

and Rt =
Nm

Nt
. (16)

The potential problem with R0 and Rt alone is that they are

highly sensitive to false corners. If a corner detector detects

all points in the original image as corners, then Nt = Nm and

Rt will be 100%. In contrast, if a corner detector detects all

points in the transformed image as corners, then N0 = Nm and

R0 will be 100%. Consequently, the performance evaluation

based on R0 and Rt alone could be ambiguous.

2) Localization Error: Due to the error introduced by the

edge detection, corner detection, and pixel value interpolation

during transformations, a particular location (corner-point) in

an original image may not be accurately detected in the

transformed image. Therefore, we need to allow some error

while estimating the repeatability.

Localization error shows how accurately a detected corner

is localized by the detector. Lower localization error indicates

the better accuracy. It was measured using the root-mean-

square-error (RMSE) of corresponding positions of matching

corners in the original and transformed images [6], [37]:

Le =

√

√

√

√

1

Nm

Nm
∑

i=1

[(x0i − xti)2 + (y0i − yti)2], (17)

where (x0i, y0i) and (xti, yti) are the positions of i-th match-

ing corner in original and transformed images respectively.

An RMSE value of maximum 3 pixels was allowed to find the

corner matches [37]. If less than 3 pixels error is allowed, then

some true corners may be missed leading to low repeatability.

However, allowing a high error may consider some neighbor-

ing corners as repeated corners.

Note the localization error using (17) measures the rela-

tive error (between the detected corners in the original and

transformed images), rather than the absolute localization error

which is measured between the actual corner location (ob-

tained using the ground truth from humans) and the detected

corner location in an image. However, as discussed in Section

II-B.3.b if a corner detector uses a low smoothing-scale and

follows a corner tracking step after the corner detection on the

smoothed curve, the relative error as well as the absolute error

can be minimized.

C. Proposed Evaluation Metrics

We want to measure three types of performance: corner

detection performance, corner matching performance, and TII

performance. For evaluating detection performance, we modify

existing repeatability metric and use localization error metric

directly. For evaluating matching performance, we use the sim-

ilar metrics as for the detection performance. For evaluating

identification performance, we use the precision-recall graph.

1) Corner Detection Performance Measurement: The per-

formance of a corner detector is evaluated using repeatability

and localization error [37], [39]. For many applications, e.g.,

image copyright protection, once we have the required number

of repeated corners, localization of the repeated corners is very

important. The reason is, with the lower localization error the

copyright verifier will be able to better localize the target pixel

positions by using the repeated corners as reference points.

Moreover, in the case of TII, the lower localization error

helps estimating the geometric transformation matrix more

accurately resulting in better identification performance.

To determine the corner detection performance, we first

detect corners in each pair of original and test (geometric

transformed and signal processed) images using a corner

detector. We know the original transformation matrix. We

transform the original corners using the known transformation

matrix, prior to finding their repetitions in the test corner set.

An RMSE value of maximum 3 pixels was allowed to find a

repetition. In Section IV-A, we presented the problems with

the performance evaluation metrics of existing CSS corner

detectors [8]–[10], [31]. For fair and unambiguous comparison

we employed the average of R0 and Rt as the average

repeatability Ravg defined as

Ravg =
R0 + Rt

2
=

Nr

2

(

1

N0

+
1

Nt

)

. (18)

where N0 and Nt are the number of corners in the original

and test images, respectively, and Nr is the number of repeated

corners between them. Note that Ravg is free from drawbacks

associated with R0 and Rt alone. We used the same evaluation

metric, defined in (17) where Nm = Nr, for evaluating the

localization error Le of the repeated corners.

2) Corner Matching Performance Measurement: To deter-

mine the corner matching performance, we first detect corners

in each pair of the original and test (geometric transformed and

signal processed) images using the proposed ARCSS detector.

The original transformation matrix is not known in this case.

However, the proposed corner matching technique provides us

an estimated transformation matrix. We transform the original

corners using the estimated transformation matrix prior to

finding their matches in the test corner set. Again, an RMSE

value of maximum 3 pixels was allowed to find a match. We

used the same metric like the average repeatability as corner

correspondence (CC) between original and test images:

CC =
Nm

2

(

1

N0

+
1

Nt

)

, (19)

where Nm is the number of corner matches between them. For

a pair of images when one is a transformed version of other,

Nr ≥ Nm, i.e., Ravg ≥ CC. We also evaluate the localization

error Le of the matched corners using the metric in (17).
3) Transformed Image Identification Performance Measure-

ment: In TII there are many groups of images and each group

contains only geometric transformed and signal processed
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images of a particular image. Only images belonging to the

same group are considered relevant (true positive match) to

each other. In contrast, in the CBIR system all the images

having the same or similar semantic features, e.g., red car,

are considered relevant to each other and reside in the same

group. We use precision and recall [2] collectively to measure

the identification performance. Recall measures the system

capacity to retrieve the relevant images from the database. It

is defined as the ratio between number of retrieved relevant

images R and total number of relevant images Rt in the

database:

Recall =
R

Rt
. (20)

Precision measures the retrieval accuracy. It is defined as the

ratio between R and number of retrieved images Rn:

Precision =
R

Rn
. (21)

In practice, the performance of an information retrieval system

is presented using the precision-recall graph, where the higher

the precision and recall values the better the performance is

considered.

V. PERFORMANCE STUDY

We carried out the following three performance studies and

in each study we compare the proposed technique with one or

more existing techniques by using different evaluation metrics

discussed in Section IV-C:

♦ For evaluating corner detection performance we imple-

mented the proposed ARCSS and existing CSS and ECSS

(which were set at their default parameters mentioned

in [9], [10], [31]) corner detectors and compare their

performance using average repeatability and localization

error.

♦ For evaluating corner matching performance, we imple-

mented proposed ALTA and existing DT [22] matching

techniques with the proposed ARCSS corner detector and

compare their performance using corner correspondence.

♦ For evaluating identification performance we apply the

proposed ARCSS detector and ALTA matching technique

for TII. Their identification performance is compared with

that of the existing GSH matching technique using the

precision-recall graph.

A. Databases

We had two datasets of 23 and 100 original images re-

spectively [40]. The first database was built using the first

dataset and used for evaluating corner detection and matching

performance. The second database was built using the second

dataset and their transformed images and used for evaluating

the TII performance. The use of two different databases of

different sizes eliminated the bias of the proposed corner

detection and matching technique to a particular database.

1) Corner Detection and Matching Database: There were

a total of 23 different original 512 × 512 gray-scale images

[40], including ‘Lab’, ‘Block’, and ‘House’ images used by

the CSS and ECSS detectors, in this database. We obtained a

total of 8694 transformed images of seven categories as test

images:

♦ rotation at 18 different angles θ in [−90◦,+90◦] at 10◦

apart, excluding 0◦;

♦ uniform (U) scaling factors sx = sy in [0.5, 2.0] at 0.1
apart, excluding 1.0;

♦ non-uniform (NU) scaling factors sx in [0.7, 1.3] and

sy in [0.5, 1.8], at 0.1 apart, excluding the cases when

sx = sy;

♦ combined transformations (rot.-scale): θ in [−30◦,+30◦]
at 10◦ apart, excluding 0◦, followed by uniform or non-

uniform scaling factors sx and sy in [0.8, 1.2] at 0.1 apart;

♦ JPEG lossy compression at 20 quality factors in [5, 100],
at 5 apart;

♦ zero mean white Gaussian noise at 10 variances in

[0.005, 0.05] at 0.005 apart; and

♦ shearing factors shx and shy in [0, 0.012] at 0.002 apart,

excluding the one when shx = shy = 0.0.

Therefore, we had a total of 414 rotated, 345 uniform

scaled, 2691 non-uniform scaled, 3450 rotated and scaled

images. We also had 460 JPEG compressed, 230 Gaussian

noised, and 1104 sheared images. Note that transformations

comprising rotations were also followed by cropping such

that the outer black parts were discarded. Consequently, many

detected corners in the original images were cropped off

in the transformed images for the transformations involving

rotations.

2) TII Database: In this database, there were a total of 100

different original 512 × 512 gray-scale images [40] and their

1600 transformed images of five categories:

♦ rotation at 4 different angles θ in [5◦, 20◦] at 5◦ apart;

♦ uniform scale factors sx = sy in [0.85, 1.15] at 0.05 apart,

excluding 1.0;

♦ combined transformations: [θ, sx, sy] = [5◦, 0.8, 1.2] and

[10◦, 0.7, 1.1],
♦ JPEG lossy compression at quality factors 20 and 25; and

♦ zero mean white Gaussian noise with noise variances

0.005 and 0.01.

We had 5 queries for each original image: rotation 10◦, uni-

form scale factor 1.05, combined transformation [5◦, 0.8, 1.2],
lossy JPEG compression with quality factor 20, and Gaussian

noise with variance 0.005. Therefore, we had a total of 100

groups of images in this database, each group consists of 17

relevant images (16 transformed and 1 original) for a corre-

sponding query, and a total of 1700 images in the database.

Like the previous database we also cropped the rotated images

so that the outer black parts were disappeared. This diminishes

the bias of large black regions in the rotated images for GSH

matching technique. Note that the transformations we used

are similar to those provided by the stirMark benchmark [41],

which is commonly used for identifying copyright infringe-

ments.
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Fig. 3: Effects of Canny edge detection thresholds changes

on the ARCSS (affine-resilient curvature scale-space) corner

detector: (a) average repeatability and (b) localization error.

At each data label the values within the square brackets are

low and high thresholds of Canny edge detector and the value

outside the bracket is the average number of detected corners

by the ARCSS detector. The selected edge detection thresholds

are shown using the grey background.

B. Results and Discussions

We present results and discussions of the three performance

studies in this section: corner detection, corner matching, and

transformed image identification. Due to space limitation we

will present the average results for each of the performance

study over the whole respective database. Please see the

detailed results on each type of attacks in [40].

1) Corner Detection Performance: In this section, we first

summarize the experimental results of some parameter setting

for the proposed ARCSS detector. We then present the com-

parative results between the proposed ARCSS and existing

CSS [9] and ECSS [10] detectors. To present the performance

comparison, we first show an example and then present the

average results on the whole database discussed in Section

V-A.1.

a. Summary of ARCSS parameter setting: Many of the

parameters used by the ARCSS detector had been originally

set by the existing detectors, e.g., 2 pixel gap for detecting

T-junctions by the CSS detector [9]. We have carried out

experiments for setting the rest of the parameter values,

e.g., Canny edge detection thresholds, edge-length controller,

smoothing scale, sample-interval, and curvature-threshold. We

summarize and discuss the results below. Note that these

thresholds can be used for different image sets and need not

be changed once determined.

Fig. 3 shows the effect of Canny edge detection thresholds

changes on the ARCSS corner detector. When both the low

and high thresholds were set small, the average number of

detected corners by the ARCSS detector was quite high,

but its robustness was low (low average repeatability and

high localization error). The reason is, at lower thresholds

the Canny edge detector obtains too many edges, many

of which may be weak and noisy. In contrast, when the

thresholds were increased, only strong edges were detected;

therefore, the robustness of the ARCSS detector increased.

However, when the thresholds were increased above low = 0.2
and high = 0.7, the robustness (average repeatability) of the

ARCSS detector decreased. Moreover, when higher threshold

values were used it missed some legitimate edges (hence,

corners). Therefore, we have chosen the Canny edge detection

thresholds at low = 0.2 and high = 0.7 as default for the

ARCSS detector.

Fig. 4 shows the effect of different parameter changes (edge-

length controller α, Gaussian smoothing-scale σ, sampling

interval λ, and curvature-threshold t) on the ARCSS corner

detector. We considered four or five different sets of values

for each parameter.

We observed that the localization error increased with the

increase of the value of α. Because many short and com-

paratively weak edges were detected when high values of α
were used. Since the average repeatability was the highest at

α = 15, we selected this value as default.

When the value of σ was increased, the robustness of the

ARCSS detector slightly increased (higher average repeata-

bility and lower localization error) slightly, as shown in Fig.

4. However, at high σ value it missed some strong corners.

Therefore, we have selected the set of σ values 3, 4, and 5,

where most of the curves are smoothed using σ = 3.

The affine-length parameterization used by the ARCSS

corner detector selects more points on the curve segments

where the curve makes significant direction changes (e.g., on

and near corners) than on the straight-line like segments. A

high sampling interval λ selects less number of points on a

curve than a low λ value does. To investigate whether λ affects

the corner detection performance, we used four different λ
values: 0.25, 0.50, 0.75, and 1.00. Fig. 4 shows the average

repeatability and localization error in above four cases. Though

the average repeatability was slightly increased (better) in the

lowest λ value, the localization error also increased slightly

(worse). Since, all the four cases offered almost the same

average repeatability and λ = 1 offered the lowest localization

error, the rest of the experimental results presented hereafter

is with λ = 1.0.

The robustness of the ARCSS detector also slightly in-

creased with the increase of curvature-threshold t, as shown

in Fig. 4, since only the stronger corners are detected with

higher t. Since at high t value it missed some strong corners,

we have selected t = 0.03 as a trade off.

Fig. 4 also shows that the average repeatability was quite
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Fig. 4: Effects of different parameter changes (edge-length

controller, Gaussian smoothing scale, sampling interval, and

curvature-threshold on the ARCSS (affine-resilient curvature

scale-space) corner detector. For each parameter, we had 4

or 5 different sets of values and we showed them in the

square brackets above the corresponding bar. The value outside

the square bracket above each bar is the average number of

detected corners by the ARCSS detector. The selected values

for each parameter are shown using the grey background.

low and the localization error was quite high without using

different Gaussian smoothing-scale and curvature-threshold.

Thus these results show the importance of curve smoothing

before corner detection and of using the curvature-threshold

to remove the weak corners.

b. Comparative results: Fig. 5 shows corner detection

examples by the existing CSS and ECSS and the proposed

ARCSS detectors in ‘Lena’ and ‘Lab’ images. On the curves

inside the dotted ellipses in Fig. 5, we see that the ARCSS

detector detected fewer weak corners than the CSS and the

ECSS detectors.

Fig. 6 shows the average repeatability and localization

error under geometric transformations, JPEG compression, and

Gaussian noise. It was observed that the ARCSS detector

performed the best among the three in terms of both average

repeatability and localization in geometric attacks. This is be-

cause during corner detection while the ARCSS detector uses

the affine-length parameterization, both of the CSS and ECSS

detectors use the arc-length parameterization. Nevertheless, it

showed lower average repeatability than the CSS detector but

better localization than both of the CSS and ECSS detectors

in JPEG compression and noising. The possible reason is

that the CSS detector obtains corners at a higher scale than

the other two and, therefore, gains higher noise immunity to

signal processing attacks. But as a consequence, it may miss

some true corners. In contrast, since the ECSS and ARCSS

detectors detect corners at one of the three medium smoothing-

scales determined based on the parameterized curve length,

they may detect some weak corners. However, the ARCSS

detector detects fewer weak corners than the ECSS detector,

since the former uses the affine-length parameterization.

Although the performance improvement in terms of

localization-error (Fig. 6) by the proposed ARCSS corner

detector is not great, it can be considered important in real

applications such as copyright protection. The bar chart in Fig.

6(b) shows the average localization error. Some error could be

zero pixels (minimum), some could be 3 pixels (maximum),

and some could be in between the minimum and maximum.

The lower average localization error indicates there were fewer

corners with large errors (close to 3 pixels). In a copyright

protection system, lower localization error helps minimizing

the effect of synchronization error. The lower localization error

also leads to more precise estimation of the transformation

matrix during corner matching.

Note that in our experiments we found the CSS detector

[9] to be more robust than the ECSS detector [10]. However,

the opposite was found by Mokhtarian and Mohanna [31] and

He and Yung [33]. The reasons of this conflict are as follows.

First, the use of higher smoothing-scale by the CSS detector

makes it more robust than the ECSS detector. While the

former uses σ = 4 for all the curves, the ECSS detector uses

σ = 3 for most of the curves. Second, the smoothing-scale

selection according to the arc-length by the ECSS detector

makes it more sensitive to the geometric transformations

under which the arc-length of a curve is not preserved [19].

Third, Mokhtarian and Mohanna [31] used the flawed metrics

(accuracy and CCN) as we discussed in Sections IV-A.1

and IV-A.2. Fourth, to measure accuracy they [31] used the

ground truth from humans and did not consider the geometric

transformed images. Finally, He and Yung [33] also used the

ground truth from humans and did not consider the image

transformations at all.

2) Corner Matching Performance: In this section, we first

present the matching time with and without the speed up

procedures for the proposed ALTA matching technique. We

then present the detailed comparative results between the

ALTA and DT matching techniques.

We observed that the implementation of the speed up

procedures significantly improved the running time of the

proposed ALTA matching technique (using Intel Pentium

3GHz Processor, 1GB RAM, Windows XP). Without applying

the speed up procedures, the running time was 2.016 second

for each pair of original and transformed images. By applying

all the proposed speed up procedures, other than the selection

of the top 15 corners, the matching time was 0.327 second.

When we applied all the speed up procedures including the
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Fig. 5: Corner detection in original ‘Lena’ and ‘Lab’ images by different corner detectors. Edges were detected using Canny

edge detector where Low and High edge-detection thresholds were set at 0.2 and 0.7 respectively and choosing those extracted

edges whose length were at least 68 pixels. CSS = curvature scale-space, ECSS = enhanced CSS, ARCSS = affine-resilient

CSS.
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Fig. 6: Overall performance comparison of different corner detectors. CSS = curvature scale-space, ECSS = enhanced CSS,

ARCSS = affine-resilient CSS, U = uniform, NU = non-uniform, G = Gaussian.

Fig. 7: Overall corner correspondence. ALTA = affine-length

and triangular area, DT = Delaunay triangulations, U = uni-

form, NU = non-uniform, G = Gaussian.

selection of top 15 corners the running time was 0.046 second

only. Note that this gain in matching speed was achieved

without compromising the matching accuracy.

Fig. 7 shows the overall corner correspondence by the ALTA

and DT matching techniques under different geometric trans-

formations and signal processing attacks. The ALTA method

offered significantly higher corner correspondence than the DT

method. The maximum corner correspondence by a matching

technique will be the average repeatability of the involved

detector as discussed in Section IV-C.2. By comparing the

ARCSS repeatability in Fig. 6 and the corner correspondence

in Fig. 7, we see that by estimating the transformation in

advance the corner correspondence by the ALTA matching

is very close to the average repeatability of the ARCSS

detector. In contrast, the DT matching offers a very limited

performance.

The significant performance difference in terms of corner

correspondence between ALTA and DT methods is due to

the following reasons. First, the ALTA matching estimates

the affine transformation matrix and transforms the corners

of the database image prior to matching with the test corner

set. Table I shows the estimated transformation parameters by

the proposed ALTA matching technique under some geometric

transformations on ‘Lena’ image. Second, the Delaunay trian-

gulation is very sensitive to outliers. It is unique for a given set

of corners but a corner detector often offers a different set of

corners under geometric transformations as well as in noising

and lossy compression. Therefore, the sets of triangles between

the original and test images differ considerably. Third, the

interior angles of Delaunay triangles, used for the similarity

measurement by the DT method, change according to the

strength of the involved geometric transformation, especially

when the image is non-uniformly scaled and sheared (see NU

scale, Rot.-scale, Shear in Fig. 7). Fourth, true triangle matches

may be missed in DT matching if they are not adjacent to

any of the already obtained triangle matches. Finally, the DT

matching would fail if the initial triangle match is false.

For example, Fig. 8 shows the corner matching examples by

the proposed ALTA and existing DT [22] matching techniques.

A total of 17 and 12 corners were detected in the original (Figs.

5(a) and 5(e)) and transformed (10◦ rotation, 80% scaling,

1.2% shearing, and cropping to 348 by 356 pixels, Figs. 8(a)

and 8(c)(right)) images respectively by the ARCSS detector.

The ALTA matching technique estimated the transformation

matrix very precisely and found all the 8 true corner matches,

as shown in Fig. 8(c). However, the first five most similar

triangle matches by the DT matching technique were false, as

shown in Fig. 8(d). The sixth most similar triangle match was

true, but the DT matching could not find other true matches

(as indicated by m in Fig. 8(d)) adjacent to this true match.

Consequently, the DT matching technique obtained only 3 true

corner matches (vertices of true triangle match 6).

Notice that we also estimated localization error of matching

corners. Both of the ALTA and DT matching techniques had

almost the same localization error since they were executed

with the same corner detector.

3) Identification Performance: In this study, we investi-

gated the TII performance of the proposed corner detector

and matching technique. We compared their identification

performance with that of the existing GSH matching technique

[2] using the precision-recall graph.

Therefore, in TII for each query image we need to compare
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Fig. 8: Corner matching by proposed ALTA (affine-length and triangular area) and existing DT (Delaunay triangulations)

matching techniques. ARCSS = affine-resilient curvature scale-space.
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TABLE I: Estimated transformation parameters by the proposed ALTA (affine-length and triangular area) matching technique

on ‘Lena’.

Attacks sizes θ(◦) sx sy tx ty
Rotation-crop (θ = 10◦) 442 × 442 10.29 1.00 1.01 0.41 0.42
Uniform scale (sx = sy = 0.7) 359 × 359 00.36 0.71 0.71 −0.31 −0.09
Non-uniform scale (sx = 0.9, sy = 1.1) 461 × 564 −0.10 0.89 1.10 −0.01 0.78
Rotation-scale (θ = 10◦, sx = 0.9, sy = 0.9) 398 × 398 09.87 0.88 0.87 1.02 −0.82
Rot.-scale-trans. (θ = 10◦, sx = sy = 0.9, tx = 10, ty = −5) 388 × 393 09.87 0.88 0.88 3.52 −5.82

Fig. 9: The TII (transformed image identification) performance

(average on five queries mentioned in Section V-A.2). ALTA =

affine-length and triangular area, GSH = gray-scale histogram.

with all of the images in the database. As discussed in Section

III-B.1.e, we can reduce the computational cost by only using

the top few corners according to the curvature values. In our

experiments, we considered two cases – when all the detected

corners were considered and when only top 15 corners with

the highest curvature values were considered. We selected top

15 corners based on two observations. First, if more than

15, say 20 or more, were selected, the procedure became

more expensive. Second, if less than 15, say 10 or less, were

selected, almost the same number of corner matches were

found for both relevant and irrelevant images in the database.

Fig. 9 presents the average identification performance on

five different queries (mentioned in Section V-A.2) by the

proposed ALTA matching and the existing GSH matching [2]

techniques. While the ALTA matching used the corner cor-

respondence between query and database images to rank the

retrieved images, the histogram matching used the normalized

L-1 distance [2].

We observed that the ALTA matching procedure offered

better performance than the GSH matching technique in most

of the cases. Nevertheless, for lower recall values, the GSH

matching outperformed the ALTA matching, especially in

queries comprising scaling. However, for higher recall values

while the precision of the ALTA matching decreased slightly,

that of GSH matching dropped significantly in all queries.

This might be due to two reasons. First, scaling may preserve

the ratio of gray-scale intensities but in higher recall values

different images may have the similar histogram. Second,

when the number of corners was high, there might be many

false matches between the irrelevant images.

Instead of considering all the detected corners, when we

considered only the top 15 corners the identification per-

formance increased considerably. Fig. 9 shows that for top

15 corner matching the precision of the ALTA matching

procedure is above 90% which is almost the same for all the

recall values but that of GSH matching dropped to 40% at

100% recall.

VI. CONCLUSIONS

The arc-length parameterized curvature [31] used by the

existing CSS [9] and ECSS [10] detectors uses second-order

derivatives of curve-point locations. In contrast, the proposed

ARCSS corner detector used the affine-length parameterized

curvature which usually uses third order derivatives. The

higher order derivatives involve more computational cost and

cause unstable curvature estimation [19]. However, by math-

ematical derivations we have shown that the affine-length pa-

rameterized curvature can also be implemented using second-

order derivatives. Therefore, the ARCSS detector extracts

more robust corners with the similar computational cost as

the existing detectors. It outperforms the existing detectors

in terms of both average repeatability and localization under

geometric transformations. It also possesses better localization

than the existing detectors in JPEG compression and Gaussian

noise.

The proposed ALTA corner matching technique uses infor-

mation like curvature values and affine-length between corners

on the same curve to obtain candidate corner matches. Then

it reduces the search-space by matching the triangular areas

of each combination of any three candidate corner matches

before estimating the possible geometric transformation ma-

trix. Finally, it transforms all the corners in one image using

the estimated matrix before finding their matches in the other

image. We have compared the proposed method with one of

the most promising corner matching methods based on the

Delaunay triangulation [22] using a wide range of transformed

images. In experiments, the ALTA matching offered signif-

icantly higher corner correspondence than the DT matching

and reached the highest performance of the involved ARCSS

corner detector.

The TII performance of the proposed ARCSS corner de-

tector and ALTA matching procedure was compared with that

of the GSH matching technique [2] using the precision-recall

graphs. The average precision (see Fig. 9) by the proposed

corner detector and matching technique was always above

90% under all recall values. However, we observed that in

spite of taking measures discussed in Section III-B.1, the

proposed ALTA matching technique required more time than

the existing GSH technique. Future work will investigate
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more time-efficient matching technique and apply both the

detector and matching technique along with some copyright

protection technique (watermarking [3] or signature-based [1])

for ownership establishment.

APPENDIX I

SOME MATHEMATICAL DERIVATIONS

A. Derivatives of x(τ) and y(τ)

By differentiating (1) we have

dτ

dt
= [ẋ(t)ÿ(t) − ẍ(t)ẏ(t)]1/3. (22)

So we have

dt

dτ
=

1

[ẋ(t)ÿ(t) − ẍ(t)ẏ(t)]1/3
, (23)

from which we can derive the first order derivative of x(τ) as

ẋ(τ) =
dx(τ)

dt
= ẋ(t)

1

[ẋ(t)ÿ(t) − ẍ(t)ẏ(t)]1/3
. (24)

Again differentiating (23) with respect to τ

d2t

dτ2
= −1

3

ẋ(t)ỹ(t) − x̃(t)ẏ(t)

[ẋ(t)ÿ(t) − ẍ(t)ẏ(t)]5/3
, (25)

where x̃(t) and ỹ(t) are third order derivatives with respect

to t. Therefore, by differentiating (24) with respect to τ and

using (23) and (25), the second order derivative of x(τ) is

ẍ(τ) =
3ẍ(t)[ẋ(t)ÿ(t) − ẍ(t)ẏ(t)] − ẋ(t)[ẋ(t)ỹ(t) − x̃(t)ẏ(t)]

3[ẋ(t)ÿ(t) − ẍ(t)ẏ(t)]5/3

(26)

Similarly, we have first and second order derivatives of y(τ)
with respect to τ as

ẏ(τ) = ẏ(t)
1

[ẋ(t)ÿ(t) − ẍ(t)ẏ(t)]1/3
and (27)

ÿ(τ) =
3ÿ(t)[ẋ(t)ÿ(t) − ẍ(t)ẏ(t)] − ẏ(t)[ẋ(t)ỹ(t) − x̃(t)ẏ(t)]

3[ẋ(t)ÿ(t) − ẍ(t)ẏ(t)]5/3

(28)

Using (24), (26)-(28) we can easily derive

ẋ(τ)ÿ(τ) − ẍ(τ)ẏ(τ) = 1. (29)

B. Estimating g′ and the worst case complexity of ALTA

matching

To estimate the transformation matrix g′ between two given

corner sets A and B of cardinalities m = |A| and n = |B|, we

need to solve the following equation:
[

xB

yB

]

=

[

a b
c d

] [

xA

yA

]

+

[

e
f

]

, (30)

where (xA, yA) is a point in A and (xB , yB) is a point in

B. As g′ comprises six unknowns (transformations parameters

a, b, c, d, e, and f as shown in (30)), we need at least 3 corners.

In the worst case, we need to consider all possible cases and,

therefore, the complexity is mC3×nC3 ≈ O(m3n3).

C. Affine invariance of triangular area

The area of a triangle with vertices v1 = (x1, y1),
v2 = (x2, y2), and v3 = (x3, y3), when v1 is shifted to the

origin, is

∆(v1, v2, v3) =
1

2
‖(x2 − x1)(y3 − y1)− (x3 −x1)(y2 − y1)‖.

(31)

Similar to (2), we can obtain the area of an affine transformed

triangle as

∆(v1a, v2a, v3a) = ∆(v1, v2, v3)[sxsy(1 − shxshy)], (32)

which implies that the triangle area is also absolutely invariant

to rotation and translation, but relatively invariant to scaling

and shearing.
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