
VLSI Design
1994, Vol. 2, No. 3, pp. 259-265
Reprints available directly from the publisher
Photocopying permitted by license only

(C) 1994 Gordon and Breach Science Publishers S.A.
Printed in the United States of America

An Improved Data Flow Architecture for Logic
Simulation Acceleration

A. MAHMOOD
Washington State University at Tri-Cities, Richland, WA 99352

J. HERATH
Drexel University, Philadelphia, PA 19104

A. JAYASUMANA
Colorado State University, Fort Collins, CO 80523

(Received August 31, 1991, Revised April 11, 1992)

The high degree of parallelism in the simulation of digital VLSI systems can be utilized by a data flow architecture
to reduce the enormous simulation times. The existing logic simulation accelerators based on the data flow principle
use a static data flow architecture along with a timing wheel mechanism to implement the event driven simulation
algorithm. The drawback in this approach is that the timing wheel becomes a bottleneck to high simulation
throughput. Other shortcomings of the existing architecture are the high communication overhead in the arbitration
and distribution networks, and reduced pipelining due to a static data flow architecture. To overcome these, three
major improvements are made to the design of a classical data flow based logic simulation accelerator. These
include:

1) A novel and efficient technique for implementing a pseudo-dynamic data flow architecture to increase
pipelining.

2) Implementation of a modified distributed event driven simulation algorithm.
3) Localized processors for fast evaluation of small primitives.

Key Words: Simulation accelerator, Logic simulation, Event driven simulation, Distributed simulation, Data flow

1 INTRODUCTION

he parallelism in logic Simulation is irregular in
nature (especially in the case of event driven

simulation), thus a data flow architecture is a good
candidate for the simulation accelerator. In a data
flow computer [1], there is no single control of ex-
ecution of a program like a program counter in a
Von Neumann architecture. Instead, the instructions
are enabled when they receive their required data
operands. The data flow programs thus implicitly
draw out the concurrent operations according to the
availability of hardware resources. For logic simu-
lation, the programming on a data flow computer
is further simplified when implementing an event
driven simulation, since the implementation of event

driven simulation already requires a data flow graph
to be generated for the circuit under simulation.
Some of the popular commercial logic simulation

accelerators based on the data flow architecture in-
clude Megalogician [2] from Daisy Systems (now
Dazix) and the ZSE [3, 4] by Zycad. The Megalo-
gician uses a classical static data flow architecture for
event driven logic simulation. The drawbacks of this
architecture are elaborated in the next section. The
ZSE (Zycad Simulation EngineLE series) by
Zycad uses parallel busses for communication, in-
stead of multi-stage arbitration and distribution net-
works, in a data flow design. These busses impose
an upper limit for achieving a maximum throughput.
The purpose of this paper is to identify the inherent

problems in the architecture of a classical static data

259

260 A. MAHMOOD, J. HERATH, and A. JAYASUMANA

flow based logic simulation accelerator and to im-
prove upon these. The classical design will be ex-
plained in the next section and the throughputs of
the improvements made will be compared to this
classical design.

2 CRITIQUE OF THE CLASSICAL
DATA FLOW ARCHITECTURE FOR
LOGIC SIMULATION ACCELERATION

The architecture of a classical static data flow based
event driven logic simulation accelerator is shown in
Figure 1. The host computer initializes the memory
cells according to the elements in the circuit under
simulation. It also downloads the input test vectors
and receives output signals after processing. The ar-
bitration and distribution networks are self-routing
buffered delta networks. The timing wheel block im-
plements the functions of a timing wheel as in a con-
ventional event driven software simulator [5]. It con-

tains sequential slots each of which emulates a
simulation time step. The parallel events in a given
time step are indicated by placing the events in the
partitions of a time slot. The timing wheel increments
to the next time slot (simulation time step) when all
partitions have been handled in the current (active)
slot.

In the conventional data flow based hardware ac-
celerator, the timing wheel is the foremost bottleneck
to the system throughput as the scheduling of every
circuit element has to be controlled by it. A multiple
bank implementation of the timing wheel can im-
prove the performance, however, this gain may be
limited due to the unbalanced distribution of events
in the different timing wheel banks. Another short-
coming of the static data flow architecture is the lack
of pipelining for sequential stream of instructions.
This is because in a static data flow machine, only
one token is allowed to exist on the input arc of an
instruction. Hence simulation performance can be
severely affected if a circuit contains many sequential

WHEEL UNIT

HOST
(General Purpose Computer)

EVALUATION UNIT
(Processors)

Self
Routing
Distribution
Network

MEMORYCELLS Self
Routing
Arbitration
Network

FIGURE Architecture of a Data Flow Accelerator for Logic Simulation.

LOGIC SIMULATION ACCELERATION 261

paths relative to the number of parallel paths. One
more drawback of the data flow based hardware ac-
celerator is the overhead in the evaluation of prim-
itives. Two passes through the routing networks are
required for elements with a change in output; i.e.,
one pass for evaluation of output and the other for
distribution of result packets to the fanout elements.
The static data flow architecture for logic simula-

tion acceleration is modified to improve upon these
drawbacks in Section 3. In order to compare the
improvements in the architecture to the conventional
design, a detailed static data flow accelerator model
is simulated which has a total of 64K memory cells,
each of which can contain a logic element with a
maximum of four inputs and a maximum fanout of
three. There are a total of 256 processors connected
to the memory cells by a 48 28 buffered delta
arbitration network. In order to improve parallelism,
the timing wheel is implemented as multiple banks.
A 256 256 cross-bar switch connects the processors
to 256 timing wheel banks which are in turn con-
nected to the memory cells by a 28 48 buffered
delta distribution network.

3 IMPROVED DATA FLOW
ARCHITECTURE FOR LOGIC
SIMULATION ACCELERATOR

Three major improvements have been made to the
design of a conventional data flow based simulation
accelerator. These include a novel pseudo-dynamic
data flow architecture for improved pipelining, im-
plementation of the modified distributed simulation
algorithm of Chandy and Misra [6-7], and the design
of localized processors in the memory cells for fast
evaluation of small primitives. The design of each of
these modifications is explained in the following sub-
sections.

3.1 Pseudo-Dynamic Data Flow Architecture

A dynamic data flow architecture [1] can improve
the pipelining of data by allowing multiple data to-
kens to exist on the inputs of an instruction. The
dynamic architecture utilizes a matching unit to for-
ward the appropriate input tokens for the evaluation
of a primitive. The drawback of this dynamic archi-
tecture is that the matching unit requires the use of
an associative memory which is very expensive. Fur-
ther, the associative memory introduces its own bot-

tleneck as all packets have to pass through it. Hence
the dynamic data flow architecture is not practical
for logic simulation acceleration.

In order to improve the pipelining of data in logic
simulation, an efficient pseudo-dynamic data flow ar-
chitecture is implemented. This pseudo-dynamic ar-
chitecture does not utilize an associative matching
unit but instead, it provides buffers (queues) at the
inputs of each memory cell. Thus, multiple tokens
(upto the buffer depth) can be allowed to exist on
an input. The buffer depth in the current design is
five. The self routing networks in the pseudo-dy-
namic architecture are designed such that there is
always a predetermined path from a source memory
cell to a destination cell. This feature guarantees that
the tokens generated by a source will always maintain
proper order. Hence, an associative match is not
required in the input buffers for correct ordering of
inputs.
A demand driven scheme is implemented to avoid

deadlock and the overflow of input buffers. A mem-
ory cell will transmit an output to its fanout list only
if a demand exists from each of the elements in the
fanout list. Every cell maintains a demand count for
the elements in the fanout list. The initial demand
count is five (maximum buffer depth) for the ele-
ments in the fanout list. A demand is sent to the
fanin element when a data value is consumed in the
input buffer of an element. The demand count for
the element in the fanout list is decremented when-
ever a value is sent to it. To further improve the
event driven simulation scheme, the input buffers
check for redundant data values i.e., identical logic
values on an input are absorbed. Thus, these buffers
are referred to as RCIBs (Redundancy Check Input
Buffer).

3.2 Distributed Event Driven
Simulation Algorithm

A distributed simulation algorithm has been devel-
oped by Chandy and Misra [6-7]. In this algorithm,
each token carries a time stamp, known as the time
tag, which indicates the time up to which the logical
value is valid. Hence by using this algorithm, the
timing wheel is no longer needed as the data values
carry the time information themselves. The distrib-
uted simulation algorithm can run into deadlock sit-
uations for circuits containing feedback loops. There
are two popular approaches to deadlock avoidance:
one is a conservative scheme proposed by Chandy
and Misra and uses NULL messages; the other is an
optimistic scheme, known as Time Warp [8]. For

262 A. MAHMOOD, J. HERATH, and A. JAYASUMANA

hardware accelerators, the conservative approach to
deadlock avoidance is more economical.
A modified version of the distributed algorithm of

Chandy and Misra using NULL messages to avoid
the deadlock has been implemented. This algorithm
is modified to include event driven simulation both
on the inputs and the outputs, and improve pipelin-
ing by using RCIBs. Whenever an element has at
least one token on each of its inputs, it is enabled
for execution and uses the data on each input port
to evaluate the output. The input tokens with the
lowest time tag are absorbed while the other input
tokens remain on their input port. If after absorbing
the lowest time tagged inputs, an input buffer be-
comes empty, the output signal should be passed to
the elements in the fanout list regardless of a change

in its output. This is necessary to avoid deadlock in
the simulation. If the input buffers are not empty,
then the output is propagated only if there is a change
in its value implementing the event driven scheme.
Two processes are being executed concurrently in

each memory cell. One is the RCIB process which
handles receiving of the input tokens in the buffer
and performs redundancy checks. If an input is dis-
carded or absorbed, a demand signal is sent to the
corresponding fanin element. The second process is
the evaluate process which computes the output to-
kens and implements the event driven scheme on the
output. The pseudo code for the modified distributed
algorithm using RCIBs is described below. The code
is hard-wired into each memory cell controller in the
accelerator.

RCIB PROCESS:
If a token arrives

then
If logical value of incoming token previous token

then
.Previous token incoming token
.Discard the previous token
.Send demand signal to the source element

else
.Insert the incoming token in the buffer queue

EVALUATE PROCESS:
If all input buffers have at least one token

then {
.Compute the logical output based on the inputs in the front of the queue.
.Absorb the input(s) with the lowest time tag.
(The computed output known as the new output has
a time tag time tag of absorbed input(s) + delay of the element)
.Send demand signal(s) to the input(s) absorbed

If (logical value of new output present output) & (transmit_flag FALSE)
then{

.Transmit present token if demand > 0 for all the fanout elements and decrement the demand
count.
.Present token new token
if (at least one input buffer is empty)

then {
.Transmit present token if demand > 0 for fanout elements and decrement the demand
count.
.Transmit_flag true }

else
.Transmit_flag FALSE }
else {

LOGIC SIMULATION ACCELERATION 263

If at least one input buffer is empty
then {

.Present token new token

.Transmit present token to the fanout list if demand > 0 for fanout elements and decrement
the demand count.
.Transmit_flag TRUE }

else {
.Present token new token
.Transmit flag false }

3.3 Localized Processors

In the conventional design, the evaluation of a circuit
element requires the transmission of an operation
packet to the processing unit. This extra pass through
the routing networks can reduce the throughput con-
siderably. However, by providing each basic memory
cell with a small lookup table, the evaluation of out-
put can be done locally without having to go through
any routing network. For a four input gate with four
state simulation (high, low, undefined, or high
impedance), a total of 44 256 entries are required
in the lookup table. Using two bits to represent the
four states, it requires 64 bytes for the lookup table
in each cell. The lookup table in each cell is initialized
by the host according to the type of gate it will con-
tain during a simulation. Since memory availability
is improving in size and cost each year, the design
of localized processors with a memory lookup table
is practically feasible.
The overall design of the improved data flow based

simulation accelerator is shown in figure 2. In the
improved design, out of the total 64K memory cells,
4K are of complex type such as flip flops, multiplexers
etc. These cells are connected to 64 external pro-
cessors through a 46 26 buffered delta arbitration
network and a 26 46 buffered delta distribution
network. The remaining 60K cells are basic cells
which have localized processors in the form of a
lookup table. Since the output from a basic cell (e.g.,
a gate) may need to be routed to a complex cell (a
function level primitive) or vice versa, the basic cells
and the complex cells can communicate to each other
through a 48 28 buffered delta arbitration network
and a 28 48 buffered delta distribution network.

4 RESULTS

Five versions of the accelerator were simulated to
study the effects of different modifications. These

include:

model A: The static data flow accelerator based
on a timing wheel as shown in figure 1.

model B" The improved data flow architecture im-
plementing the distributed simulation
algorithm but without using any buffers
on the inputs.

model C" The improved data flow architecture im-
plementing the distributed simulation
algorithm using RCIB’s, but not the
event driven output implementation.

model D: The improved data flow architecture im-
plementing the distributed simulation
algorithm with five deep input buffers
without redundancy checking capability
and event driven output implementa-
tion.

model E: The improved data flow architecture im-
plementing the distributed simulation
algorithm with RCIBs and event driven
output implementation.

The design of similar units is kept identical for the
different models. As an example, all models use ex-
actly the same kind of routing networks i.e., a 4 x
2 size buffered delta arbitration network and a 2
x 4 size distribution network. All of the five ar-
chitecture models were simulated in detail at the be-
havioral level using the "C" language. A basic gate
delay of 10 nanosecond was assumed in the modelling
of all accelerator designs. Table I gives the perfor-
mance of different circuits on these five models. All
circuits were simulated at the gate level (except the
4 bit binary counter and the 8 bit microprocessor
employed behavioral flip flop models) in the simu-
lations in Table I using the localized processors
within the cells in models B, C, D and E. Figure 3
shows the average simulation times of the six differ-
ent circuits from Table I on the five accelerator
models. It can be seen that the model E which uses

264 A. MAHMOOD, J. HERATH, and A. JAYASUMANA

HOST

/

Processor
Distribution
Network

61440 Basic Cells
with Lookup Table

4096 Complex Cells

26x46 Memory Cells 4Sx26
Buffered Buffered
Delta Delta
Network NetworkExternal

Evaluation Unit
(64 Processom)

red

/L’ Arbitration

// Network

Processor
Arbitration
Network

FIGURE 2 Design of the Improved Data Flow Accelerator.

distributed simulation algorithm with RCIBs on the
inputs and event driven output, has the best overall
performance. An improvement of more than 300%
is obtained over the conventional timing wheel based
static data flow model (model A). An improvement
of about 35% comes from the use of localized pro-
cessors in the execution time.

5 CONCLUSIONS

Three main improvements were made to a conven-
tional implementation of a data flow based acceler-
ator for logic simulation. These include a novel
pseudo-dynamic data flow architecture for improving
the pipelining, the implementation of the modified

TABLE
Comparison of Different Accelerator Models (Times are in micro-seconds)

CIRCUIT

Chain of 64 Inverters

4 Bit Binary Counter

4x4 Array Multiplier

8x8 Array Multiplier

8 Bit Serial Multiplier

8 Bit Microprocessor

NUMBER
OF GATES

64

53

192

768

642

3266

MODEL
A B C D

305

370

527

868

785

1621

285

198

238

340

315

705

185

162

265

208

564

185

132

155

223

176

450

185

127

149

211

172

434

LOGIC SIMULATION ACCELERATION 265

800

= 600-

400-

E
1.7. 200-

260.05pS

Timing Wheel Model

Distributed Model
(Chandy and Misra’s Algorithm)

Distributed Model with RCIBs

Distributed Model with Event
Driven Implementation
Distributed Model with RCIBs and
Event Driven Implementation

213.66pS

FIGURE 3 Comparison of Different Accelerator Designs.

distributed event driven simulation algorithm, and
the design of localized processors for fast evaluation
of small primitives. Variations of the accelerator
model were simulated to study the design improve-
ments. The simulation results on several different
circuits indicate that the modified design is on the
average three times more time efficient than the con-
ventional timing wheel based design. The scheme
with RCIBs and event driven implementation on the
output yields the highest performance. The RCIBs
provide absorption of redundant input tokens and
also improve the pipelining of data thereby giving
the most efficient simulation.

References

[1] Hwang, K., and F.A. Briggs, "Computer Architecture and
Parallel Processing," NY: McGraw-Hill, 1984, pp. 732-763.

[2] Siegel, S., and M.E. Kaszynski, "The Design of a Logic
Simulation Accelerator," VLSI Systems Design, Oct. 1985,
pp. 76-80.’

[3] Paseman, W.G., "Data Flow Concepts Speed Simulation in
CAE Systems," Computer Design, Jan. 1985, pp. 131-140.

[4] Catlin, G. and B. Paseman, "Hardware Acceleration of
Logic Simulation Using a Data Flow Architecture," Pro-
ceedings of the 1985 IEEE International Conference on
Computer Design (ICCD), 1985, pp. 130-132.

[5] Mahmood, A., "An Extensible Multilevel Logic Simulator
with Model Abstraction Capabilities," Progress in Computer
Aided VLSI Design, (editor G. Zobrist), Norwood, NJ:
ABLEX Publishing Corp., 1989, pp. 137-190.

[6] Chandy, K.M., and J. Misra, "Distributed Simulation: A

Case Study in Design and Verification of Distributed Pro-
grams," IEEE Transactions on Software Engineering, vol.
SE-5, no. 5, September, 1979, pp. 440-452.

[7] Chandy, K.M., and J. Misra, "Asynchronous Distributed
Simulation via a Sequence of Parallel Computations," Com-
munications of the ACM, vol. 24, no. 11, April, 1981, pp.
198-206.

[8] Jefferson, D.R., "Virtual Time," ACM Transactions on Pro-
gramming Languages and Systems, vol. 7, no. 3, July 1985,
pp. 404-425.

Biographies

AUSIF MAHMOOD received the B.Sc. degree in Electrical En-
gineering from the University of Engineering and Technology,
Lahore, Pakistan in 1979, and the M.S. and Ph.D. degrees in
Electrical Engineering from Washington State University, Pull-
man, in 1982 and 1985 respectively.
He is currently an Assistant Professor in the Department of

Electrical Engineering, Washington State University at Tri-Cities.
His research interests include simulation of VLSI systems, parallel
computer architectures, and digital signal processing.

J. HERATH has been a Japanese government researcher from
1981-1987. From 1987 to 1989, he was with George Mason uni-
versity. He, is currently working as an assistant professor at Drexel
University. His research interests include application-specific high
performance dependable computing systems, and parallel and dis-
tributed processing.

A. JAYASUMANA is currently an associate professor at Colo-
rado State University, Fort Collins. He holds a B.Sc. in Elec-
tronics from University of Sri-Lanka, M.S. and PH.D. degrees
from Michigan State University, East Lansing in Electrical En-
gineering. His research interests are in computer-aided design of
VLSI systems.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

