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Abstract

In this work, we propose a method for simultaneously

learning features and a corresponding similarity metric for

person re-identification. We present a deep convolutional

architecture with layers specially designed to address the

problem of re-identification. Given a pair of images as

input, our network outputs a similarity value indicating

whether the two input images depict the same person. Novel

elements of our architecture include a layer that computes

cross-input neighborhood differences, which capture local

relationships between the two input images based on mid-

level features from each input image. A high-level summary

of the outputs of this layer is computed by a layer of patch

summary features, which are then spatially integrated in

subsequent layers. Our method significantly outperforms

the state of the art on both a large data set (CUHK03) and a

medium-sized data set (CUHK01), and is resistant to over-

fitting. We also demonstrate that by initially training on an

unrelated large data set before fine-tuning on a small target

data set, our network can achieve results comparable to the

state of the art even on a small data set (VIPeR).

1. Introduction

Person re-identification is the problem of identifying

people across images that have been taken using differ-

ent cameras, or across time using a single camera. Re-

identification is an important capability for surveillance sys-

tems as well as human-computer interaction systems. It is

an especially difficult problem, because large variations in

viewpoint and lighting across different views can cause two

images of the same person to look quite different and can

cause images of different people to look very similar. See

Figure 1 for some difficult examples. The problem of re-

identification is usually formulated in a similar way to face

recognition. A typical re-identification system takes as in-

put two images, each of which usually contains a person’s

full body, and outputs either a similarity score between the

two images or a classification of the pair of images as same

(if the two images depict the same person) or different (if

Figure 1: Examples of true positives (first row), false posi-

tives (second row), and true negatives (bottom row) for our

trained network on CUHK03. More results can be found in

the supplementary material.

the images are of different people). In this paper, we fol-

low this approach and use a novel deep learning network to

assign similarity scores to pairs of images of human bod-

ies. Our network architecture includes two novel layers: a

neighborhood difference layer that compares convolutional

image features in each patch of one input image to the same

features computed on nearby patches in the other input im-

age, and a subsequent layer whose features summarize each

patch’s neighborhood differences. These novel aspects of

our network lead to large improvements over the previous

state of the art on the CUHK03 and CUHK01 data sets. We

also show that our method is less prone to overfitting on

small training sets. Results on CUHK01 and VIPeR demon-

strate its effectiveness on smaller data sets.

2. Related Work

2.1. Overview of Previous Re-Identification Work

Typically, methods for re-identification include two

components: a method for extracting features from input
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images, and a metric for comparing those features across

images. Research on re-identification usually focuses either

on finding an improved set of features ([26, 28, 31]), finding

an improved similarity metric for comparing features ([12,

14, 20, 17, 29]), or a combination of both ([25, 11, 16]). The

basic idea behind the search for better features is to find fea-

tures that are at least partially invariant to lighting, pose, and

viewpoint changes. Features that have been used include

variations on color histograms [25, 11, 12, 20, 14, 29], lo-

cal binary patterns [25, 11, 12, 20, 14], Gabor features [14],

color names [26], and local patches [28]. The basic idea be-

hind metric learning approaches is to find a mapping from

feature space to a new space in which feature vectors from

same image pairs are closer than feature vectors from dif-

ferent image pairs. Metric learning approaches that have

been applied to re-identification include Mahalanobis met-

ric learning [12], Locally Adaptive Decision Functions [17],

saliency weighted distances [20], Local Fisher Discriminant

Analysis [25], Marginal Fisher Analysis [25], and attribute

consistent matching [11]. Our approach is to learn a deep

network that simultaneously finds an effective set of fea-

tures and a corresponding similarity function.

2.2. Deep Learning for Re-Identification

To our knowledge, there have been two previous papers

that also used a deep learning approach for re-identification:

Yi et al. [27] and Li et al. [16]. In [27], a “siamese” con-

volutional network is presented for metric learning. Their

network architecture consists of three independent convo-

lutional networks that act on three overlapping parts of the

two input images. Each part-specific network consists of

two convolutional layers with max pooling, followed by a

fully connected layer. The fully connected layer produces

an output vector for each input image, and the two output

vectors are compared using a cosine function. The cosine

outputs for each of the three parts are then fused to get a

final similarity score.

Li et al. [16] use a different network architecture that

begins with a single convolutional layer with max pooling,

followed by a patch-matching layer that multiplies convo-

lutional feature responses from the two inputs at a variety

of horizontal offsets. (The response to each patch in one in-

put image is multiplied separately by the response to every

other patch sampled from the same horizontal strip in the

other input image.) This is followed by a max-out grouping

layer that keeps the largest response from each horizontal

strip of patch-match responses, followed by another con-

volutional layer with max pooling, and finally a fully con-

nected layer and softmax output.

Our architecture differs substantially from these previ-

ous approaches. Our network begins with two layers of

convolution and max pooling to learn a set of features for

comparing the two input images. We then use a novel

layer that computes cross-input neighborhood difference

features, which compare the features from one input im-

age with the features computed in neighboring locations of

the other image. This is followed by a subsequent novel

layer that distills these local differences into a smaller patch

summary feature. Next, we use another convolutional layer

with max pooling, followed by two fully connected layers

with softmax output. Along with our new layers which have

learnable parameters in them, our network has three convo-

lutional layers as compared to just two in [16] and [27],

making our network deeper than previously presented net-

works for re-identification in the literature. In addition, our

network introduces a more powerful way to compare the

features learned in the early layers.

Our deep network’s re-identification performance ex-

ceeds that of all previous approaches on both the large

CUHK03 [16] data set and the smaller CUHK01 [15] data

set. In addition, even though small data sets can make effec-

tive training of large networks difficult or impossible [16],

our network performs comparably with the state of the art

on the much smaller VIPeR data set.

3. Our Architecture

In this paper, we propose a deep neural network architec-

ture that formulates the problem of person re-identification

as binary classification. Given an input pair of images, the

task is to determine whether or not the two images repre-

sent the same person. Figure 2 illustrates our network’s ar-

chitecture. As briefly described in the previous section, our

network consists of the following distinct layers: two lay-

ers of tied convolution with max pooling, cross-input neigh-

borhood differences, patch summary features, across-patch

features, higher-order relationships, and finally a softmax

function to yield the final estimate of whether the input im-

ages are of the same person or not. Each of these layers is

explained in the following subsections.

3.1. Tied Convolution

To determine whether two input images are of the same

person, we need to find relationships between the two

views. In the deep learning literature, convolutional features

have proven to provide representations that are useful for a

variety of classification tasks. The first two layers of our

network are convolution layers, which we use to compute

higher-order features on each input image separately. In or-

der for the features to be comparable across the two images

in later layers, our first two layers perform tied convolution,

in which weights are shared across the two views, to ensure

that both views use the same filters to compute features. As

shown in Figure 2, in the first convolution layer we pass

input pairs of RGB images of size 60 × 160 × 3 through

20 learned filters of size 5 × 5 × 3. The resulting feature

maps are passed through a max-pooling kernel that halves
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Figure 2: Proposed Architecture. Paired images are passed through the network. While initial layers extract features in the

two views individually, higher layers compute relationships between them. The number and size of convolutional filters that

must be learned are shown. For example, in the first tied convolution layer, 5 × 5 × 3 → 20 indicates that there are 20

convolutional features in the layer, each with a kernel size of 5 × 5 × 3. There are 2,308,147 learnable parameters in the

whole network. Refer to Section 3 for more details. [Note that all of the figures in this paper are best viewed in color.]

the width and height of features. These features are passed

through another tied convolution layer that uses 25 learned

filters of size 5 × 5 × 20, followed by a max-pooling layer

that again decreases the width and height of the feature map

by a factor of 2. At the end of these two feature computation

layers, each input image is represented by 25 feature maps

of size 12× 37.

3.2. Cross-Input Neighborhood Differences

The two tied convolution layers provide a set of 25 fea-

ture maps for each input image, from which we can learn

relationships between the two views. Let fi and gi, respec-

tively, represent the ith feature map (1 ≤ i ≤ 25) from the

first and second views. A cross-input neighborhood differ-

ences layer computes differences in feature values across

the two views around a neighborhood of each feature loca-

tion, producing a set of 25 neighborhood difference maps

Ki. Since fi, gi ∈ R
12⇥37, Ki ∈ R

12⇥37⇥5⇥5, where

5 × 5 is the size of the square neighborhood. Each Ki is

a 12 × 37 grid of 5 × 5 blocks, in which the block indexed

by (x, y) is denoted Ki(x, y) ∈ R
5⇥5, where x, y are inte-

gers (1 ≤ x ≤ 12 and 1 ≤ y ≤ 37). More precisely,

Ki(x, y) = fi(x, y) (5, 5)−N [gi(x, y)] (1)

where

(5, 5) ∈ R
5⇥5 is a 5× 5 matrix of 1s,

N [gi(x, y)] ∈ R
5⇥5 is the 5× 5 neighborhood of gi

centered at (x, y).

In words, the 5× 5 matrix Ki(x, y) is the difference of two

5× 5 matrices, in the first of which every element is a copy

of the scalar fi(x, y), and the second of which is the 5 × 5
neighborhood of gi centered at (x, y). The motivation be-

hind taking differences in a neighborhood is to add robust-

ness to positional differences in corresponding features of

the two input images. Since the operation in (1) is asymmet-

ric, we also consider the neighborhood difference map K 0

i,

which is defined just like Ki in (1) except that the roles of

fi and gi are reversed. This yields 50 neighborhood differ-

ence maps, {Ki}
25
i=1 and {K 0

i}
25
i=1, each of which has size

12 × 37 × 5 × 5. We pass these neighborhood difference

maps through a rectified linear unit (ReLu).



3.3. Patch Summary Features

In the previous layer, we have computed a rough rela-

tionship among features from the two input images in the

form of neighborhood difference maps. A patch summary

layer summarizes these neighborhood difference maps by

producing a holistic representation of the differences in each

5 × 5 block. This layer performs the mapping from K ∈

R
12⇥37⇥5⇥5⇥25 → L ∈ R

12⇥37⇥25. This is accomplished

by convolving K with 25 filters of size 5 × 5 × 25, with a

stride of 5. By exactly matching the stride to the width of

the square blocks, we ensure that the 25-dimensional fea-

ture vector at location (x, y) of L is computed only from the

25 blocks Ki(x, y), i.e., from the 5×5 grid square (x, y) of

each neighborhood difference map Ki (where 1 ≤ i ≤ 25).

Since these are in turn computed only from the local neigh-

borhood of (x, y) in the feature maps fi and gi, the 25-

dimensional patch summary feature vector at location (x, y)
of L provides a high-level summary of the cross-input dif-

ferences in the neighborhood of location (x, y). We also

compute patch summary features L0 from K 0 in the same

way that we computed L from K. Note that filters for the

mapping K → L and K 0 → L0 are different, not tied as in

the first two layers of the network. Both L and L0 are then

passed through a rectified linear unit (ReLu).

3.4. Across-Patch Features

So far we have obtained a high-level representation of

differences within a local neighborhood, by computing

neighborhood difference maps and then obtaining a high-

level local representation of these neighborhood difference

maps. In the next layer, we learn spatial relationships across

neighborhood differences. This is done by convolving L
with 25 filters of size 3 × 3 × 25 with a stride of 1. The

resultant features are passed through a max pooling ker-

nel to reduce the height and width by a factor of 2. This

yields 25 feature maps of size 5 × 18, which we denote

M ∈ R
5⇥18⇥25. We similarly obtain across-patch features

M 0 from L0. Filters for the mapping L → M and L0 → M 0

are not tied.

3.5. Higher-Order Relationships

We apply a fully connected layer after M and M 0. This

captures higher-order relationships by a) combining infor-

mation from patches that are far from each other and b)

combining information from M with information from M 0.

The resultant feature vector of size 500 is passed through

a ReLu nonlinearity. These 500 outputs are then passed to

another fully connected layer containing 2 softmax units,

which represent the probability that the two images in the

pair are of the same person or different people.

4. Visualization of Features

Figure 3 gives a visualization of feature responses at each

layer (L1–L6) of the network. The left and right sides of

the figure display responses to a positive (same) and nega-

tive (different) input pair, respectively. The response maps

labeled L1 for the positive pair show the response of one of

the 20 features after the first tied convolution layer (see Sec-

tion 3.1). This feature responds strongly to bright white re-

gions of the image, highlighting shirt regions of the person

in both views. The maps labeled L1 for the negative pair

show the response of a different one of the 20 first-layer

features. This feature responds strongly to black regions,

highlighting the shirt of the person in view 1 and the pants

of the person in view 2. The label L2 indicates feature re-

sponses after the second tied convolution layer, which show

a pair of feature maps fi and gi. The L2 feature shown for

the positive pair captures tan and skin-color regions, giving

higher responses to the legs, hands, and face of the person.

Since this is a positive pair, similar parts of the image are

highlighted in the two views. In contrast, the L2 feature for

the negative pair activates for different portions of the im-

age across the two views: the legs (pink shorts and pinkish

skin) of the person in view 1, versus the torso (pink shirt

and pinkish arms) of the person in view 2.

The images labeled L3 are responses of a feature from

the cross-input neighborhood differences layer (see Sec-

tion 3.2). Recall from (1) that this layer computes the differ-

ences of feature maps across the two views in a neighbor-

hood. The resultant feature difference map is then passed

through a ReLu, which clips all negative responses to zero.

For a positive pair, ideally the neighborhood difference map

should be close to zero. Nonzero values should be small

and relatively uniform across the map, mainly because the

two feature maps compared are very similar. This is illus-

trated in the L3 map on the left in the positive pair (one

of the Ki maps), which has small but non-zero values dis-

tributed throughout the map. The image just to its right,

which is its complement K 0

i, has values that are all zero

or close to zero. For the negative pair, different regions

are highlighted by fi than by gi, so Ki gives a strong re-

sponse to legs but zeros elsewhere, whereas K 0

i responds

only to the person’s torso. A similar pattern is observed in

the patch summary feature for the negative pair (see Sec-

tion 3.3), labeled L4. Higher-order relations across summa-

rized neighborhood difference maps are captured in L5 (see

Section 3.4). Finally, L6 shows features after the first fully

connected layer (section 3.5). Notice that this feature rep-

resentation of a positive pair is quite different than that of

a negative pair. This top-layer feature is discriminative and

can be used as input to an off-the-shelf classifier.

Figure 4 shows a visualization of the weights learned by

the first tied convolution layer. The weights shown were

learned on the CUHK03 data set. In addition to capturing



Figure 3: Visualization of features learned by our architecture. Initial layers learn image features that are important to

distinguish between a positive and a negative pair. Deeper layers learn relationships across the two views so that classification

performance is maximized. For details, see Section 4.

some low-level texture information, several of these learned

filters exhibit a strong color specialization.

5. Comparison with Other Deep Architectures

In Figure 5c, we compare our presented network with

other variations to gain insights into how much each of our

network’s novel features contributes to its overall perfor-

mance. We describe some of these variations here. More

details about these architectures can be found in the supple-

mentary material.

Element-wise difference: This architecture illustrates the

benefit of comparing with the neighborhood in cross-image

comparisons. In this architecture, we perform two layers

of tied convolution followed by max pooling. We then

compute a cross-input element-wise difference (rather than

cross-input neighborhood differences) of the corresponding

feature maps. This difference is passed through another

layer of convolution followed by a fully connected layer and

then softmax.

Disparity-wise convolution: This architecture illustrates

the benefit of computing patch summary features. As

in our presented network, this architecture performs two

tied convolutions followed by max pooling, after which

cross-input neighborhood differences are computed. But in

this network, the 50 neighborhood difference maps of size

R
12⇥37⇥5⇥5, are rearranged to give 25 groups of 50 feature

maps, where each feature map has size R
12⇥37. A convo-

lution is then applied to each of these groups. This is then

passed through a fully connected layer and then softmax.

Rather than explicitly summarizing neighborhood differ-

ences, this architecture instead directly learns across-patch

relationships.

Four-layer convnet: This architecture illustrates the bene-

fit of having a total of four convolutional layers, rather than

Figure 4: Visualization of the weights learned in the first

tied convolution layer. Each filter has size 5× 5× 3.

two as in previous deep approaches to re-identification. We

implemented a siamese type network similar to [27], but

built the network with 4 layers of convolution rather than 2.

FPNN: We also created our own implementation of

FPNN [16] to facilitate comparisons with their results.

6. Training the Network

We pose the re-identification problem as binary classi-

fication. Training data consist of image pairs labeled as

positive (same) and negative (different). The optimization

objective is average loss over all pairs in the data set. As

the data set can be quite large, in practice we use a stochas-

tic approximation of this objective. Training data are ran-

domly divided into mini-batches. The model performs for-

ward propagation on the current mini-batch and computes

the output and loss. Backpropagation is then used to com-

pute the gradients on this batch, and network weights are

updated. We perform stochastic gradient descent [3] to per-

form weight updates. We start with a base learning rate of

η(0) = 0.01 and gradually decrease it as the training pro-

gresses using an inverse policy: η(i) = η(0)(1 + γ · i)�p

where γ = 10�4, p = 0.75, and i is the current mini-batch

iteration. We use a momentum of µ = 0.9 and weight de-

cay λ = 5× 10�4. With more passes over the training data,

the model improves until it converges. We use a validation

set to evaluate intermediate models and select the one that

has maximum performance. See the supplementary mate-



rial for performance on the validation set as a function of

mini-batch iterations.

6.1. Data Augmentation

There are not nearly as many positive pairs as negative

pairs, which can lead to data imbalance and overfitting. To

reduce overfitting, we artificially enlarge the data set us-

ing label-preserving transformations [13]. We augment the

data by performing random 2D translation, as also done

in [16]. For an original image of size W × H , we sample

5 images around the image center, with translation drawn

from a uniform distribution in the range [−0.05H, 0.05H]×
[−0.05W, 0.05W ]. For the smallest data set (see Sec-

tion 7.3), we also horizontally reflect each image.

6.2. Hard Negative Mining

Data augmentation increases the number of positive

pairs, but the training data set is still imbalanced with many

more negatives than positives. If we trained the network

with this imbalanced data set, it would learn to predict every

pair as negative. Therefore, we randomly downsample the

negative set to get just twice as many negatives as positives

(after augmentation), then train the network. The converged

model thus obtained is not optimal since it has not seen all

possible negatives. We use the current model to classify

all of the negative pairs, and identify negatives on which

the network performs worst. We retrain the fully connected

(top) layer of the network using a set containing as many of

these difficult negative pairs as positive pairs1.

6.3. Fine-tuning

For small data sets that contain too few positives for ef-

fective training, we initialize the model by training on a

large data set. After hard negative mining on the large set,

the parameters of the converged model are then adapted

on the new, small data set. For this new network learn-

ing, we begin stochastic gradient descent with learning rate

η(0) = 0.001 (which is 1/10th the initial pre-training rate).

7. Experiments

We implemented our architecture using the Caffe [10]

deep learning framework, adapting various layers from the

framework and writing our own layers that are specific to

our architecture. Network training converges in roughly

12–14 hours on NVIDIA GTX780 and NVIDIA K40 GPUs.

We present a comprehensive evaluation of our approach

by comparing it to the state-of-the-art methods on various

data sets. The experiments are conducted with five random

splits, and all of the Cumulative Matching Characteristics

1We also tried retraining the entire network, but retraining just the top

layer was more effective.

(CMC) curves are single-shot results. We first report re-

sults on the largest re-identification data set in the litera-

ture, CUHK03 [16]. We then report results on the CUHK01

data set [15], using two distinct settings: a) 100 identities in

the test set, as reported in [16], and b) 486 identities in the

test set, as reported in most previous work on the CUHK01

data set. We also report results on the VIPeR data set [8].

VIPeR and the 486-identities setting of CUHK01 are small

data sets, making it difficult for deep networks to learn their

parameters without overfitting. Because of this, [16] does

not report results on these two data sets.

7.1. Experiments on CUHK03

The CUHK03 data set contains 13,164 images of 1,360

pedestrians, captured by six surveillance cameras. Each

identity is observed by two disjoint camera views. On av-

erage, there are 4.8 images per identity in each view. This

data set provides both manually labeled pedestrian bound-

ing boxes and bounding boxes automatically obtained by

running a pedestrian detector [6]. We report results on both

of these versions of the data (labeled and detected).

Following the protocol used in [16], we randomly divide

1360 identities into non-overlapping train (1160), test (100),

and validation (100) sets. This yields about 26,000 positive

pairs before data augmentation. We use a mini-batch size

of 150 samples and train the network for 210,000 iterations.

We use the validation set to design the network architecture.

We compare our method against KISSME [12],

eSDC [30], SDALF [5], ITML [4], logistic distance met-

ric learning (LDM) [9], largest margin nearest neighbor

(LMNN) [24], metric learning to rank (RANK) [21], and di-

rectly using Euclidean distance to compare features. When

using metric learning methods and Euclidean distance,

dense color histograms and dense SIFT are used [30]. We

also compare against the deep network FPNN [16], which

is the current state of the art on this data set.

Figure 5a plots the CMC curves of all these methods

on the CUHK03 labeled image data set. We outperform

the previous deep learning method, FPNN, by a large mar-

gin. Our rank-1 accuracy is more than double that of

the previous state of the art (54.74% vs. 20.65%). Fig-

ure 5b plots performance on the CUHK03 detected im-

age data set. Although the performance of our method on

CUHK03-detected is less than on CUHK03-labeled, mainly

due to misalignment caused by the detector, our method

still greatly outperforms the state of the art (44.96% vs.

19.89%). Figure 1 shows some true positive, false positive,

and true negative example results of our system. More qual-

itative results can be found in the supplementary material.

We also implemented a variety of other deep network

architectures, explained in Section 5, to illustrate the ben-

efits of various features of our architecture. We compare

with these methods in Figure 5c. The top two performing
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Figure 6: CMC curves on CUHK01 and VIPeR data sets: a) CUHK01 data set with 100 test IDs: Our method outperforms

the state of the art by more than a factor of 2. b) CUHK01 data set with 486 test IDs: Our method outperforms all previous

methods on this data set with this protocol, as well. c) VIPeR: Our method beats all previous methods individually, although

a combination of mFilter + LADF performs better than us. Note that (b) and (c) are especially challenging for deep learning

methods since there are very few positive pairs. See Sections 7.2 and 7.3 for more details

methods are our architecture with and without hard nega-

tive mining (HNM). Note that other than FPNN, none of

the methods in Figure 5c has been previously discussed in

the literature.

7.2. Experiments on CUHK01

The CUHK01 data set has 971 identities, with 2 images

per person in each view. We report results for two different

settings of this data set: 100 test IDs, and 486 test IDs.

a) 100 test IDs: In this setting, 100 identities are used for

testing, with the remaining 871 identities used for training

and validation. This protocol is better suited for deep learn-

ing because it uses 90% of the data for training. FPNN [16]

uses this setting on this data set. Figure 6a compares the

performance of our network with previous methods. Our

method outperforms the state of the art in this setting by

a wide margin, with a rank-1 recognition rate of 65% (vs.

29.40% by the next best method). Notice that the second-

best method on this data set is KISSME, and not the deep

network FPNN. This can be attributed to a decrease in train-

ing data as compared to CUHK03, causing FPNN to overfit.

In contrast, our method is able to generalize even with this

smaller data set.

b) 486 test IDs: Most previous papers report results on

the CUHK01 data set by considering 486 identities for

testing. We compare our approach against mid-level fil-

ters (mFilter) [31], saliency matching (SalMatch) [29],

patch matching (PatMatch) [29], generic metric [15],

ITML [4], LMNN [24], eSDC [30], SDALF [5], l2-norm,

l1-norm [31], and co-occurrence model using visual word

(visWord) [28]. With 486 identities in the test set, only 485
identities are left for training. This leaves only 1940 posi-

tive samples for training, which makes it practically impos-

sible for a deep architecture of reasonable size not to over-



fit if trained from scratch on this data. One way to solve

this problem is to use a model trained on CUHK03, then

test on the 486 identities of CUHK01. This is unlikely to

work well since the network does not know the statistics of

the test data set, and in fact, our model trained on CUHK03

and tested on CUHK01 gave rank-1 accuracy of around 6%,

which is far below the state of the art. Instead, we pre-train

a network on CUHK03 and adapt it for CUHK01 by fine-

tuning (see Section 6.3) it on CUHK01 with 485 training

identities (non-overlapping with the test set). The perfor-

mance of the network after fine-tuning for 210K iterations

increases dramatically, to a rank-1 accuracy of 40.5%. Us-

ing this model, we search for hard negatives and use them to

retrain the top layer of the network (see Section 6.2). After

210K iterations, we achieve a rank-1 accuracy of 47.5%,

beating the state of the art. See Figure 6b for a comparison

with other methods.

7.3. Experiments on VIPeR

The VIPeR data set contains 632 pedestrian pairs in two

views, with only one image per person in each view. The

testing protocol is to split the data set into half, 316 for

training and 316 for testing. In addition to the methods

listed in section 7.2 and 7.1, we compare our method against

local Fisher discriminant analysis (LF) [23], PCCA [22],

aPRDC [18], PRDC [32], eBiCov [19], LMNNR [1],

PRSVM [2], and ELF [7]. This data set is extremely chal-

lenging for deep network architectures for two reasons: a)

there are only 316 identities for training with 1 image per

person in each view, giving a total of just 316 positives, and

b) the resolution of the images is lower (48 × 128 as com-

pared to 60 × 160 for CUHK01). We train a model using

the CUHK03 and CUHK01 data sets, then adapt the trained

model to the VIPeR data set by fine-tuning on 316 training

identities. Since the number of negatives is small for this

data set (90K), hard negative mining does not improve re-

sults after fine-tuning because most of the negatives were

already used during fine-tuning. Figure 6c compares per-

formance of our approach with other methods. Our method

obtains 34.81% rank-1 accuracy, beating all other meth-

ods individually, although a combination of two approaches

(mFilter [31] + LADF [17]) performs better than ours with

a rank-1 accuracy of 43.4% as reported in [31]. The deep-

metric-learning-based method [27] also reports results on

the VIPeR data set, with a lower rank-1 accuracy of 28.2%.

7.4. Analysis of different body parts

To understand the contribution of different body regions

to identification, we trained 5 different networks on differ-

ent body parts, as shown in Figure 7a. The experiment was

performed on the CUHK03 labeled data set, and the per-

formance of each part is shown in Figure 7b. The part that

performs best is part 1: the upper region of the body includ-
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Figure 7: Analysis of different body parts: a) Left column

shows parts 1 to 4 (from top to bottom). Right column

shows full pedestrian image and part 5. b) Shows perfor-

mance of different parts on the CUHK03 data set. Refer to

Section 7.4 for more details.

ing the face. As we move down the body, the performance

decreases, with legs capturing the least discriminative in-

formation. This experiment suggests a direction for future

work in which different models can be trained for different

parts of the body, and the scores from different part pairs

can then be accumulated to reach a final decision. Such a

system may be helpful in handling severe occlusions and to

identify people in images that have been taken across time

(e.g., sitting in one view and standing in the other).

8. Conclusion

We have presented a novel deep architecture for person

re-identification. We have designed two novel layers for

capturing relationships between two views: a cross-input

neighborhood differences layer, and a subsequent layer that

summarizes these differences. We demonstrate the effec-

tiveness of our method by performing a comprehensive

evaluation of our approach on various data sets. On the

large CUHK03 data set, our method outperforms the state

of the art by a huge margin. On the smaller CUHK01 data

set (100 test IDs setting), whereas other deep methods over-

fit [16], our method is able to generalize and produce state-

of-the-art results. We also show that models learned by our

method on a large data set can be adapted to new, smaller

data sets. We demonstrate this by evaluating our method on

two small data sets. On CUHK01 (486 test IDs setting), we

outperform all previous methods, and on VIPeR, our results

are comparable to the state of the art.
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