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Machine-learning technology powersmany aspects of modern society. Compared to the conventionalmachine learning techniques
that were limited in processing natural data in the raw form, deep learning allows computational models to learn representations
of data with multiple levels of abstraction. In this study, an improved deep learning model is proposed to explore the complex
interactions among roadways, tra�c, environmental elements, and tra�c crashes. �e proposed model includes two modules,
an unsupervised feature learning module to identify functional network between the explanatory variables and the feature
representations and a supervised �ne tuning module to perform tra�c crash prediction. To address the unobserved heterogeneity
issues in the tra�c crash prediction, a multivariate negative binomial (MVNB)model is embedding into the supervised �ne tuning
module as a regression layer. �e proposed model was applied to the dataset that was collected from Knox County in Tennessee
to validate the performances. �e results indicate that the feature learning module identi�es relational information between the
explanatory variables and the feature representations, which reduces the dimensionality of the input and preserves the original
information.�e proposedmodel that includes theMVNB regression layer in the supervised �ne tuningmodule can better account
for di	erential distribution patterns in tra�c crashes across injury severities and provides superior tra�c crash predictions. �e
�ndings suggest that the proposed model is a superior alternative for tra�c crash predictions and the average accuracy of the
prediction that was measured by RMSD can be improved by 84.58% and 158.27% compared to the deep learning model without
the regression layer and the SVMmodel, respectively.

1. Introduction

Road tra�c injuries are a leading cause of preventable death,
especially, for the young people. In the United States, tra�c
crashes were the number one cause of death among people
from 16 to 24 years old for each year from 2012 to 2014 [1].
In 2015, the nation lost 35,092 people in tra�c crashes, a 7.2-
percent increase from 32,744 in 2014, which is the largest
percentage increase in nearly 50 years [2].�is is an average of
approximately 96 people being killed on the nation’s roadways
every day of the year, and an average ofmore than four people
per hour. In other words, one person dies on roadways every
15 minutes.

To understand the relationship between the in�uence
factors and tra�c crash outcomes, with the extracted data
from police reports and state highway-asset-management
databases, the analyses of tra�c safety estimate and predicate
the likelihood of a tra�c crash.�e number of crashes occur-
ring on a de�ned spatial entity over a speci�c time period
(for example, the number of crashes per year occurring at a
roadway intersection, over a speci�ed roadway segment, or
in a region) would be considered as the dependent variables
and some of the many factors a	ecting the likelihood of
a tra�c crash are analyzed and examined (see [3–5] for a
comprehensive review). �ough more and more factors that
are relevant to the tra�c crashes have been incorporated and
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the proposed models became more and more sophisticated,
there are still some factors that are not available to the
researchers and the models result in bias estimations and
erroneous predictions. In this study, we proposed an innova-
tive approach for tra�c crash prediction, which incorporates
a multivariate regression layer into a dynamic deep learning
model that contains an unsupervised feature learningmodule
and a supervised �ne tuning module governing the state
dynamics to improve the performances of prediction.

2. Literature Review

�e statistical methodologies, such as the Poisson, negative
binomial (NB), and their variants in univariate andmultivari-
ate regression frameworks, have been successfully applied in
crash count analyses [4, 6–8], which attempt to deal with the
data and methodological issues associated with tra�c crash
estimations and predictions, and enhance our understanding
on the relationship between the in�uence factors and tra�c
crash outcomes. However, current research in tra�c safety
indicates that the applied statistical modeling fails when
dealing with complex and highly nonlinear data [9], which
could suggest that the relationship between the in�uence
factors and tra�c crash outcomes is more complicated than
can be captured by a single statistical approach. In addition,
most of the statistical methods are based on some strong
assumptions, such as specifying a priori and the error dis-
tribution. Moreover, a problematic issue is multicollinearity,
i.e., the high degree of correlation between two or more
independent variables. Furthermore, statistical models have
di�culty when dealing with outliers, missing or noisy data
[10].

To deal with the limitations of statistical methodologies,
the machine learning methods, including Arti�cial Neural
Network (ANN), Support Vector Machine (SVM) models,
and deep learning models, have been applied to various
tra�c safety problems and used as data analytic methods
because of their ability to work with massive amounts of
multidimensional data. In addition, because of the modeling
�exibility, learning and generalization ability, and good pre-
dictive ability, the machine learning has been considered as
generic, accurate, and convenientmathematicalmodels in the
�eld of tra�c safety.

Because the commonly used Poisson or NB regres-
sion models assume the prede�ned underlying relationship
between dependent and independent variables and the viola-
tion of the assumption would lead to erroneous estimation,
ANN and Bayesian neural network (BNN) models have
been employed to analyze the tra�c safety problems for
many years. Although both ANN and BNN models have
similar multilevel network structures, they are di	erent in
predicting the outcome variables. For ANN, the weights
are assumed to �x. However, the weights of BNN follow
a probability distribution and the prediction needs to be
integrated over all the probability weights. Basically, the ANN
can be characterized by three features: network architecture,
model of a neuron, and learning algorithms. Chang [11]
compared the performances of NB regression model and
ANN in crash frequency analyses. �e results showed that

ANN is a consistent alternative method for analyzing crash
frequency. Abdelwahab and Abdel-Aty [12] employed two
well-known ANN paradigms [the multilayer perceptron and
radial basis functions (RBF) neural networks] to analyze
the tra�c safety of toll plazas and evaluate the impacts of
electronic toll collection (ETC) systems on highway safety.
�e performance of ANN was compared with calibrated
logit models. Modeling results showed that the RBF neural
network was the best model for analyzing driver injury
severity. Xie, Lord, and Zhang [13] evaluated the application
of BNN models for predicting tra�c crashes by using data
collected on rural frontage roads in Texas.�e results showed
that back-propagation neural network (BPNN) and BNN
models perform better than the NB regression model in
terms of tra�c crash prediction. �e results also showed
that BNNs could be used to address other issues in high-
way safety, such as the development of crash modi�cation
factors, and enhance the prediction capabilities for evalu-
ating di	erent highway design alternatives. Kunt, Aghayan,
and Noii [14] employed a genetic algorithm (GA), pattern
search, and ANN models to predict the severity of freeway
tra�c crashes. �e results showed that the ANN provided
the best predictions. Jadaan, Al-Fayyad, and Gammoh [15]
developed a tra�c crash prediction model using the ANN
simulation with the purpose of identifying its suitability for
predicting tra�c crashes under Jordanian conditions. �e
results demonstrated that the estimated tra�c crashes are
close to actual tra�c crashes. Akin and Akbas [16] proposed
an ANN model to predict intersection crashes in Macomb
County of the State of Michigan. �e predictive capabil-
ity of the ANN model was determined by classifying the
crashes into these types: fatal, injury, and property damage
only (PDO) crashes. �e results were very promising and
showed that ANN model is capable of providing an accurate
prediction (90.9%) of the crash types. In summary, though
ANN and BNNmodels show better linear/nonlinear approx-
imation properties than traditional statistical approaches,
these models o�en cannot be generalized to other data sets
[3].

�e SVMmodels have recently been introduced for tra�c
safety analyses [17, 18], which are a new class of models that
are based on statistical learning theory and structural risk
minimization [19]. �ese models are supposed to approxi-
mate any multivariate function to any desired degree of accu-
racywith a set of related supervised learningmethods. Li et al.
[17] evaluated the application of SVM models for predicting
motor vehicle crashes. �e results showed that SVM models
predict crash data more e	ectively and accurately than
traditional NB models. In addition, the �ndings indicated
that the SVM models provide better (or at least comparable)
performance than BPNNmodels and do not over-�t the data.
To identify the relationship between severe crashes and the
explanatory variables and enhance model goodness-of-�t,
Yu and Abdel-Aty [20] developed three models to analyze
crash injury severity, which include a �xed parameter logit
model, a SVM model, and a random parameter logit model.
�e results showed that the SVM models and the random
parameter models provide superior model �ts compared to
the �xed parameter logit model. Findings also demonstrate
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that it is important to consider possible nonlinearity and
individual heterogeneitywhen analyzing tra�c crashes. Chen
et al. [21] employed the SVM models to investigate driver
injury severity patterns in rollover crashes using two-year
crash data collected in New Mexico. �e results showed that
the SVM models produce reasonable predictions and the
polynomial kernel outperforms the Gaussian RBF kernel.
Dong, Huang, and Zheng [22] proposed a SVM model to
handle multidimensional spatial data in crash prediction.
�e results showed that the SVM models outperform the
nonspatial models in terms of model �tting and predictive
performance. In addition, the SVM models provide better
goodness-of-�t compared with Bayesian spatial model with
conditional autoregressive prior when utilizing the whole
dataset as the samples. Ren and Zhou [23] proposed a novel
approach that combines particle swarm optimization (PSO)
and SVM for tra�c safety prediction.�e results showed that
the predictions of PSO-SVM are better than that from BP
neural network. Yu and Abdel-Aty [24] proposed the SVM
models with di	erent kernel functions to evaluate real-time
crash risk. �e results showed that the SVMmodel with RBF
kernel outperformed the SVM model with linear kernel and
Bayesian logistic regression model. In addition, the �ndings
showed that smaller sample size could improve the classi�-
cation accuracy of the SVM models and variable selection
procedure is needed prior to the SVM model development.
Overall, it has been found that the SVM models showed
better or comparable results to the outcomes predicted by
ANN/BNN and other statistical models [19]. However, like
ANN and BNN, the SVMmodels o�en cannot be generalized
to other data sets and they all tend to behave as black-
boxes, which cannot provide the interpretable parameters as
statistical models do.

Other than the ANN/BNN and SVM models, other
machine learning methods have been introduced in
tra�c safety analyses. Abdel-Aty and Haleem [25]
introduced a recently developed machine learning
technique—multivariate adaptive regression splines (MARS)
to predict vehicle angle crashes using extensive data collected
on unsignalized intersections in Florida. �e results showed
that MARS outperformed the NB models. �e proposed
MARS models showed promising results a�er screening
the covariates using random forest. �e �ndings suggested
that MARS is an e�cient technique for predicting crashes at
unsignalized intersections.

Deep learning is a recently developed branch of machine
learning method and has been successfully applied in speech
recognition, visual object recognition, object detection, and
many other domains such as drug discovery and genomics
[26, 27]. Compared to the conventional machine learning
techniques that were limited in their ability to process natural
data in their raw form, deep learning constructs compu-
tational models aiming to extract inherent features in data
from the lowest level to the highest level. �ough the deep
learning methods have shown outstanding performances in
many applications [26], the applications of deep learning
in the �eld of transportation are relatively few and only
focusing on the topic of tra�c �ow prediction [28–30]. In
this study, we proposed an improved deep learning model

for tra�c crash prediction. �e proposed model includes
two modules: an unsupervised feature learning module and
a supervised �ne tuning module. To discover nonlinear
relationship between the investigated variables and identify
the impacts of in�uence factors on tra�c crashes for roadway
network, a DAE model is proposed in the unsupervised
feature learning module to learn the features of explana-
tory variables. In addition, a multivariate negative binomial
(MVNB) regression is embedding into the supervised �ne
tuning module to address the heterogeneity issues. �e
proposed model performances are evaluated by comparing
to the deep learning model without the MVNB layer and
SVM models by using �ve-year data from Knox County in
Tennessee.

3. The Modeling Framework Formulation

A novel model is proposed for the tra�c crash prediction
and Figure 1 illustrates the modeling framework. �e pro-
posed model includes two modules. One is the unsuper-
vised feature learning module and another is the super-
vised �ne tuning module. �e obtained encoded feature
representations from the unsupervised feature module are
used as the input for the supervised �ne tuning mod-
ule.

3.1. Unsupervised Feature Learning Module. Compared to
the commonly used deep learning architectures including
deep belief network [31], stacked autoencoder [32], and
convolutional neural networks [27], the symmetrical neural
networks in an unsupervised manner have shown better
performances, which can automatically learn an appropriate
sparse feature representation from the raw data [33]. �e
unsupervised feature learning module includes a denoising
autoencoder (DAE) model to learn the underlying struc-
ture of the dynamic pattern among the characteristics of
roadway, tra�c, and environment. With the explanatory
variables, such as roadway geometric design features, tra�c
factors, pavement factors, and environmental characteristics
as the input, the designed DAE model can identify the
nonlinear relationship between the investigated variables in
an unsupervised and hierarchical manner and the robust
feature representations can be obtained. In addition, the
designed DAE model can encode the explanatory variables
into an embedding low-dimensional space. �e proposed
DAE model contains a visible layer, a hidden layer, an output
layer, and a reconstruction layer. Unlike the conventional
DAE model with K hidden layers [34], the proposed model
uses a reconstruction error optimizing the output layer and
the noisy input layer to generate higher level representa-
tions.

Assume Φ = {[k�, u�]}��=1 is a training set that contains

n roadway entities, where k� ∈ R
� is the explanatory

variable vector with dimension D and ui is the multi-
variate tra�c safety outcomes for roadway entity i. Given
the training set, the proposed DAE model is trained to
develop a robust feature representation by reconstructing the
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Figure 1: Flowchart of the proposed model for tra�c crash prediction.

input vi from its noisy corrupted version Ṽ�, as shown in
Figure 1.

�ere are D units in the visible layer and F units in the
hidden layer and the proposed model can be de�ned by a

parameter set Θ = {W, a, b, c}, where W = [���] ∈ R
�×� is

the interlayer connection weights, a = [��] ∈ R� is the visible
self-interactions or biases, b = [��] ∈ R� is the hidden biases,
and c = [	�] ∈ R

� is the reconstruction error. �e joint
probability distribution between the noisy input variables and

hidden variables is de�ned as


 (k, h; Θ) = 1� (Θ) exp [−� (k, h; Θ)] (1)

where �(k, h; Θ) is an energy function de�ned by symmet-
ric interactions between the noisy input variable, hidden
variables, and a set of interaction parameters Θ; Z(Θ) is a
normalized factor.
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For a binary variable, a Bernoulli-Bernoulli energy func-
tion [34, 35] and the conditional distribution of a single
stochastic hidden variable are given by

� (k, h; Θ) = k
	
Wh − a	k − b	h


 (ℎ� = 1 | k; Θ) = 1
1 + exp [− (�� + ∑��=1���V�)]

(2)

For a continuous variable, a Gaussian-Bernoulli energy
function [31] and the conditional distribution of a single
stochastic hidden variable are given by

� (k, h; Θ) = −k
	Wh + a
	a
 − b	h

 (ℎ� = 1 | k; Θ) = 1

1 + exp [− (�� + ∑��=1 (���V�/��))]
(3)

where k
 = (V1/�1, V2/�2, ⋅ ⋅ ⋅ , V�/��, ⋅ ⋅ ⋅ V�/��)	, a
 = ((V1 −�1)/�1, (V2−�2)/�2, ⋅ ⋅ ⋅ , (V�−��)/��, ⋅ ⋅ ⋅ , (V�−��)/��), and ��
is the standard deviation of the i-th visible variable vi centered
on the bias ai.

�e conditional distribution over hidden units can be
factorized and computed by


 (h | k; Θ) = �∏
�=1

 (ℎ� | k; Θ) (4)

To estimate the parameters, the method proposed by
Hjelm et al. [35], which maximizes the log-likelihood of
the marginal distribution of the hidden units to �nd the
gradient of the log-likelihood, is employed in this research.
To simplify the estimation process, the free energy in terms
of the probability at a data point vn can be used to replace the
energy function and the gradient has the following form:

��Θ ∑
k∈�

log� (k) = −∑
k∈�
⟨ ��Θ� (k, h; Θ)⟩

�(h|k;Θ)

+ ∑
k∈�
⟨ ��Θ� (k, h; Θ)⟩�(k,h|Θ)

(5)

where �(k, h; Θ) = − log∑ℎ exp[−�(k = k�, h; Θ)], and the
conditional distribution over hidden units should be replaced
by a loss function.

� (h | k�) =
{{{{{{{{{{{

−a	k� − �∑
�=1

log [1 + exp (k	��� + ��)] k� is binary

− """"a − k�""""2 −
�∑
�=1

log [1 + exp (k	��� + ��)] k� is continuous

(6)

Considering the hidden layer as the input layer for the
outcome layer and outcome layer as the hidden layer, the
joint probability distribution between the hidden variables
and outcome variables, energy function, the conditional dis-
tributions of the outcome variables and units, and parameter
estimation process can be obtained as those for hidden
layer. �e model will stop training when ck satis�es the
reconstruction error requirements or the dimension of the
feature representation achieves the designed goals.

3.2. Supervised Fine Tuning Module. �e supervised �ne
tuning module is a supervised �ne tuning procedure that
includes a regression layer on the top of the resulting hidden
representation layers to estimate the likelihood of the crash
occurrences, as shown in Figure 1. �e obtained encoded
feature representations from the unsupervised feature mod-
ule are used as the input for the supervised �ne tuning
module. To jointly estimate the occurrence likelihood for
more than one type of crashes simultaneously and address
the potential heterogeneity issues in the interdependent crash
data, amultivariate negative binomial (MVNB)model is used
in the supervised �ne tuning module to estimate and predict
the tra�c crashes across injury severities. Assume yi=(yi1,
yi2,. . ., yim)
 is a vector of crash occurrence likelihood for
roadway entities i, which includes m types of crashes. �e

particular NB regression model employed in this study has
the following form:

� (#��)
= Γ (%��/� + #��)
Γ (%��/�) Γ (#�� + 1) (

11 + �)
���/� ( �1 + �)

��� (7)

where Γ(⋅) is the gamma function, yij is the crash number of
crash type j for roadway segment i and E[yij]=%ij=exp(��X��+���). exp(�*-) is a multivariate gamma-distributed error term

with mean 1 and variance 0−1.
As described in Shi and Valdez [36] and Anastasopoulos

et al. [37], with the expected number of crashes%ij , theMVNB
model has a joint probability function:

� (#1�, #2�, ⋅ ⋅ ⋅ , #��)
= min(�1� ,�2�,⋅⋅⋅ ,���)∑

�=0
� (2) �∏

�=1
� (#�� − 2)

(8)

�e model parameters can be estimated by maximizing the
log-likelihood function:
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3 = ∑
�,�

{{{
log [Γ (�−1 + #��)] − log [Γ (�−1)] − log (#��!)

−�−1 ln [1 + � exp (��X��)] − #�� log [1 + �−1 exp (��X��)]
}}}

(9)

�e MVNB regression layer is added on the top of
the resulting hidden representation layers to perform tra�c
crash prediction. �is yields a deep learning model tailored
to a task-speci�c supervised learning. �en we �ne tune
the module 2 using backpropagation by minimizing the
following cost function:

8 (�)
= −19

�∑
�=1

�∑
�=1
: (#
�� = #��) log[ exp (ℎ� (>�))∑��=1 exp (ℎ� (>�))]

+ 02� ["""""�����������"""""
2
� +
�∑
�=1

""""��""""2�]
(10)

where s(⋅) is an indicator function, if yij’=yij, then s(⋅)=1;
otherwise, s(⋅)=0, 0 is a regularization parameter, and ‖‖� is
the Frobenius norm.�e �rst term refers to the cross entropy
loss for the regression layer, the second term is the weight
decay penalty, and ℎ�(>�) is the output of deep learning for
an input >�’.

�e cost function isminimized with amin-batch gradient
descent algorithm [27]. �e parameters in module 2 � ={W�, b,W����������} are estimated by initializing the weights
W���������� of the regression layer to small random values
and the weights of the F hidden layers are initialized by
the encoding weights obtained in the unsupervised feature
learning module.

4. Data

�edata are obtained from the Tennessee Roadway Informa-
tion Management System (TRIMS) and the Pavement Man-
agement System (PMS), which are maintained by the Ten-
nessee Department of Transportation (TDOT). �e dataset
includes crash data, tra�c factors, geometric design features,
pavement factors, and environmental characteristics. �e
tra�c, geometric, pavement, and environmental characteris-
tics are linked to the crash data through the common variable
id number. An extensive and comprehensive data screening
that includes cleaning, consistency, and accuracy checks is
processed and performed to ensure the data are useable,
reliable, and valid for the analyses. A�er the initial data
screening, in total 635 roadway segments in Knox County are
chosen for the analyses. For the selected roadway segments,
each of them has a completed dataset that links to the
crash data. In other words, the dataset contains detailed
information on tra�c factors, geometric design features,
pavement characteristics, and environment factors.

In TRIMS, the crash data have been classi�ed into �ve
categories, fatal crashes, incapacitating injury crashes, nonin-
capacitating injury crashes, possible-injury crashes, and PDO

crashes. Because the category of fatal crashes has only a few
observations, the categories of fatal crashes and incapacitat-
ing injury crashes have been combined and referred to as
major injury crashes. �e possible-injury crashes and PDO
crashes have been combined and referred to as no-injury
crashes. �e nonincapacitating injury crashes are referred to
as minor injury crashes. A few of pervious literature [38–40]
has used a similar classi�cation for injury outcomes. For those
selected 635 roadway segments, from 2010 to 2014, a total of
5365 tra�c crasheswere reported by the police o�cers, which
include 135 (2.51%)major injury crashes, 1312 (24.46%)minor
injury crashes, and 3917 (73.02%) PDO crashes. Individual
roadway segment experienced from 0 to 23 crashes per
year with a mean of 1.54 and a standard deviation of 1.89.
As expected, a signi�cant amount of zeros is observed.
�e dependent variables and their descriptive statistics are
shown in Table 1. �e descriptive statistics of continuous
independent variables and categorical independent variables
are shown in Tables 1 and 2, respectively.

�e considered tra�c factors include the logarithm of
annual average daily tra�c (AADT) per lane, truck traf-
�c percentage, and posted speed limits. Roadway segment
AADT per lane from 2010 to 2014 varies from 851 to 32,359
vehicles with a mean of 3,388.44 and a standard deviation
of 5495.41. Other than the TRIMS dataset maintained by the
DDOT, tra�c �ow information can be obtained from https://
www.tdot.tn.gov/APPLICATIONS/tra�chistory, which is an
AADT map providing tra�c volumes based on a 24-hour,
two-directional count at a given location. �e website also
provides the tra�c history of any speci�c count station. �e
variable of posted speed limit has a mean of 38.65 and a
standard deviation of 6.69 with a minimum value of 30 and
a maximum value of 70. �e truck tra�c percentage varies
from 1 to 33 with a mean of 6.71 and a standard deviation of
4.98.

Important measurements of geometric design features
considered in this study include segment length, degree
of horizontal curvature, median widths, outsider shoulder
widths, number of through lanes, lane widths, number of
le�-turn lanes, median types, and shoulder type. Among
them, the segment length, degree of horizontal curvature,
median widths, and outsider shoulder widths are considered
as the continuous variables and the others are considered
as the categorical variables. Other than the tra�c factors
and geometric design features, the impacts of pavement
surface characteristics are considered to better address tra�c
safety issues for roadway design and maintenance. �e
considered pavement surface characteristics include inter-
national roughness index (IRI) and rut depth (RD). �e
analyzed IRI varies from 25.45 to 182.58 with a mean of
65.85 and a standard deviation of 27.75, which is calculated

https://www.tdot.tn.gov/APPLICATIONS/traffichistory
https://www.tdot.tn.gov/APPLICATIONS/traffichistory
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Table 1: Summary statistics of analyzed continuous variables.

Variable Mean Std. Dev. Min. Max.

Independent variable

�e number of major injury crashes per year per roadway segment 0.04 0.32 0 3

�e number of minor injury crashes per year per roadway segment 0.41 0.54 0 9

�e number of no injury crashes per year per roadway segment 1.23 1.74 0 22

Tra�c factors

�e logarithm of AADT per lane 3.53 3.74 2.93 4.51

Truck tra�c percentage 6.71 4.98 1 33

Posted speed limits 38.65 6.69 30 70

Geometric design features

Segment length (miles) 0.81 1.03 0.02 12.31

Degree of horizontal curvature 1.51 3.23 0 14.00

Median widths 1.12 2.02 0 12

Outside shoulder widths 3.06 1.88 3.52 8

Pavement factors

International roughness index 65.85 27.75 25.45 182.58

Rut depth (in.) 0.13 0.05 0.06 0.41

Table 2: Summary statistics of analyzed categorical variables.

Variable Category Frequency Percent

Geometric design features

Number of through lanes 3 585 18.43

2 1660 52.28

1 930 29.29

Lane widths (�) 12 915 28.82

11 1650 51.97

10 610 19.21

Number of le�-turn lanes 2 920 28.98

1 650 20.47

0 1605 50.55

Median type 1 for non-traversable median 1185 37.32

0 for traversable median 1990 62.68

Shoulder type 2 for pavement 760 23.94

1 for gravel 1595 50.24

0 for dirt 820 25.83

Environmental factors

Terrain type 1 for mountainous 1206 37.97

0 for rolling 1969 62.03

Land use type 2 for residential 1622 51.10

1 for commercial 775 24.41

0 for rural 778 24.49

Indicator for lighting 1 for lighting exists on the roadway segments 1304 41.06

0 for others 1871 58.94

using a quarter-car vehicle math model and the response is
accumulated to yield a roughness index with units of slope
(in/mi). Another pavement condition indicator is the RD,
which is measured at roadway speeds with a laser/inertial
pro�lograph. �e analyzed RD varies from 0.06 to 0.41 with
a mean of 0.13 and a standard deviation of 0.05.

�e environmental factors, including terrain types, light-
ing condition, and land use type, are considered. Two terrain
types are examined, which include rolling terrace (62.03%)
and mountainous terrace (37.97%). Lighting condition was
considered as a category variable, which indicated whether
lighting devises are provided at the roadway segments.
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�ree types of land use are considered, including commer-
cial (24.41%), rural (24.49%), and residential (51.10). �ese
variables are considered because they might have potential
signi�cant e	ects on tra�c safety.

5. Modelling Results

�e MATLAB was employed for model development. Four-
year data, from 2010 to 2013, were used as the training set
and one-year data, the year of 2014, were used as the testing
set. In order to obtain the model with superior performance,
module 1 was developed using 9 Gaussian visible units, 13
binary visible units, and a number of hyperbolic tangent
hidden units ranging from 32 to 128 in steps of 2. �e
number of hidden units was setting based on two rules,
greater than the input data dimensionality and the powers of
two. �e parameters for learning rate and weight decay were
selected to optimize reduction of reconstruction error over
training. Module 1 was trained with a sample size of 2540
(four-year crash data) to allow for full convergence of the
parameters.�e input data were processed by using module 1
to capture the relationship between tra�c factors, geometric
design features, pavement conditions, and environmental
characteristics. Module 2 was developed using 4 Gaussian
visible units and a number of hyperbolic tangent hidden
units. �e initial number of hyperbolic tangent hidden
units ranging from 8 to 32 was tested and examined. �e
learning procedure will stop when the number of feature
representations is achieved to four or the reconstruction error
is less than 0.01.

5.1. Results of Unsupervised Feature Learning Module. For
the �nal model, the reconstruction error is less than 0.01
and four hidden layers are included. �e weights between
the input layer and output layer can be calculated as
W32×16W16×8W8×4=W32×4. �e results are shown in Table 3.
�e negative sign represents a crash-prone condition and a
positive sign represents a safe-prone condition. �e valued
number indicates an evaluation score. Because the feature
learning module identi�es relational information between
input variables and output feature representations, the con-
nection weights between visible units and hidden units can
be interpreted as the functional networks [35]. �e results
show that each of the output units is signi�cant associated
with tra�c factors, geometric factors, pavement factors, and
environmental factors.

Since the proposed feature learning module has sym-
metric connection between visible and hidden layers and
the units in both layers have the probabilistic characteristics,
the proposed feature learning module also can be called as
an auto-encoder. �us, the values of output units can be
interpreted as a feature representation and the results are
shown in Table 4. �e number of output units is smaller
than the number of visible units, which indicates the feature
representation with the values of output units has reduced the
dimensionality of the input, but still preserving the original
information. Hence the four output units are de�ned as traf-
�c feature representation, geometric feature representation,

pavement feature representation, and environmental feature
representation.

�e results show that the signs of themeans of four feature
representations are negative, which indicate that the feature
representations are associated with crash-prone condition. In

other words, the current tra�c, geometric, pavement, and
environmental features are the main factors that attribute to
the risk of crash occurrences. �e �ndings indicate that the
tra�c, geometric, pavement, and environmental factors have
a direct in�uence on tra�c safety and need to be improved.

�e tra�c feature representations have a wide range with
a minimum value of -4.420 and a maximum value of 6.650,
which indicate the tra�c factors have a signi�cant impact
on tra�c safety. �e pavement factors have comparative
impacts on tra�c safety with a minimum value of -12.076
and a maximum value of 6.753. �e ranges of geometric
and environmental feature representations are from -1.386 to
1.280 and from -1.805 to 0.847, respectively, which indicate
that the geometric and environmental feature representations
have comparative e	ects on tra�c safety. Compared to those
crash modeling techniques that use only geometric design
features as the input factors, the current research reveals
new insights that would bene�t the development of updated
guidelines.

5.2. Results of the Supervised Fine Tuning Module. For the
supervised �ne tuning module, the visible units of the
input layer use the feature representations as the input and
the crash counts across injury severities are used as the
training target. �e aggregate weights between the input
layer and output layer are shown in Table 5. �e results
show that the tra�c and geometric feature representations
have positive e	ects and pavement and environmental feature
representations have negative e	ects on tra�c crashes across
injury severities. �e �ndings indicate that decreasing the
values of tra�c and geometric feature representations will
increase the likelihood of crashes and increasing the values
of geometric and environmental feature representations will
increase the likelihood of crashes. �e comparison results
show that tra�c feature representation and geometric feature
representation have signi�cant impact on PDO crashes. �e
pavement feature representation and environmental feature
representation have signi�cant impact on minor injury
crashes. Among four feature representations, the geometric
feature representation, pavement feature representation, and
tra�c feature representation have most direct impacts on
major injury, minor injury, and PDO crashes, respectively.

Considering the data in the year of 2014 as the input
variables, the developed deep learning model is used to
predict the crash counts for the year of 2014. To validate
the superiority of the proposed models, the predicted results
are compared to the observed values. In addition, a deep
learning model without the regression layer and a support
vector machine (SVM) model are also developed to predict
crash counts across injury severities. �ere are two key issues
related to the development of SVR models, kernel selection,
and parameters optimization. To address the nonlinear rela-
tionship between the outcomes and attributes, the commonly
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Table 4: Summary statistics of feature representations.

Statistics Mean Std. Dev. Min. Max.

Tra�c feature representation -0.697 1.464 -4.420 6.650

Geometric feature representation -1.620 0.521 -1.386 1.280

Pavement feature representation -5.388 2.441 -12.076 6.753

Environmental feature representation -2.167 0.442 -1.805 0.847

Table 5: �e functional network between the feature representation and di	erent crash types.

Variable Major injury crashes Minor injury crashes PDO crashes

Tra�c feature representation -0.109 -0.421 -1.535

Geometric feature representation 0.129 0.261 0.539

Pavement feature representation -0.033 -0.872 -0.315

Environmental feature representation 0.113 0.298 0.146

used RBF kernel is chosen to develop the SVM model. To
precisely re�ect the performance on regressing unknown
data and prevent the over�tting problem, the k-fold cross-
validation approach is employed for optimizing the two
parameters in RBF kernels—C and � [41, 42]. �e optimized
parameters are (42.30, 37.09) and the optimized SVM model
yields to a training mean absolute error (MAE) less than
0.01 and a training root-mean-squared deviation (RMSD) less
than 5%.

To evaluate the accuracy and reliability of the prediction
results, the predicted means for each injury severity level by
the proposed model, the deep learning model without the
regression layer, and the SVM model are compared to the
observedmeans and two evaluationmeasures are used, which
include MAE and RMSD. �e comparison and validation
results are shown in Table 6. Results in Table 6 indicate that
the predicted means from the proposed model (0.110, 0.573,
1.335, and 2.019 for major injury, minor injury, no-injury,
and all crashes, respectively) are very close to the observed
means (0.096, 0.556, 1.306, and 1.986). We believe that a
very importation feature of the proposed model is that the
included regression layer can provide a good estimate of the
chance that the roadway segment is in the crash-free state or
some crash-prone propensity states.

For all the observed samples, the proposed model results
in a MAE of 0.030, 0.080, 0.071, and 0.150 and a RMSD of
17.298%, 29.961%, 27.206%, and 43.652% for major injury,
minor injury, PDO, and all crashes, respectively. �e deep
learning mode without the regression layer results in a MAE
of 0.043, 0.202, 0.405, and 0.520 and a RMSD of 20.620%,
51.741%, 65.086%, and 82.862% for major injury, minor
injury, PDO, and all crashes, respectively. �e SVM model
results in a MAE of 0.055, 0.257, 0.471, and 0.660 and a
RMSD of 26.022%, 61.350%, 72.416%, and 96.636% for major
injury, minor injury, PDO, and all crashes, respectively. �e
results suggest that the proposed model predicts better than
the deep learning model without the regression layer and the
SVM model. In summary, compared to the deep learning
model without the regression layer and the SVM model, the

proposed model results in the smallest prediction MAE and
RMSD, no matter for the crash types across injury severities.
We hypothesize that the proposed model better addresses the
issue of heterogeneity and allows for excess zero counts in
correlated data.

�e �ndings indicate that the predictions from the pro-
posed model have signi�cant improvements over all com-
parison models, in both accuracy and robustness. �e best-
performing result of the proposed model for major injury
crashes has a MAE of 0.030, which indicates an 42.105% and
84.211% improvement from the deep learning model without
the regression layer and the SVM model, respectively. �e
proposedmodels performworse for theminor injury crashes,
with a 0.080 RMSD for all observed samples. However, it
is still better than the evaluation measurements from the
deep learning model without the regression layer and the
SVM model, which are 0.202 and 0.257, respectively. �is
represents a MAE improvement of 150.980% and 219.608%
for minor injury crash prediction. For the PDO crashes,
the MAE improvements of the proposed models over the
comparison models range from 471.111% to 564.444%. For
all the observed samples, the MAE improvements range
from 247.368% to 341.053%. Clearly, the improvement is
signi�cant for the tra�c crash predictions. �erefore, the
proposed model seems to be a better alternative for crash
count predictions.

�e proposed model has better performances in terms
of small error variances than the comparison models, since
the regression model is imbedding into the proposed model.
�e overall performances of the proposed model for all
crashes show an 89.824% RMSD improvement over the deep
learning mode without regression layer and an 121.378%
RMSD improvement over the SVMmodel. It is clear that the
predictions obtained from the proposed models are superior
to those obtained from the comparison models. �e greatest
di	erence is demonstrated for the PDO crashes where the
proposed model yields a RMSD of 27.206% compared to a
65.086% RMSD value from the deep learning model without
the regression layer and a 72.416% RMSD value from the
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Table 6: Results of roadway segment crash count prediction.

Major injury Minor injury No injury Total

Observation mean 0.096 0.556 1.306 1.986

Proposed model

Estimated mean 0.110 0.573 1.335 2.019

MAE 0.030 0.080 0.071 0.150

RMSD (%) 17.298 29.961 27.206 43.652

Deep learning model without the regression layer

Estimated mean 0.101 0.556 1.332 1.989

MAE 0.043 0.202 0.405 0.520

RMSD (%) 20.620 51.741 65.086 82.862

SVMmodel

Estimated mean 0.101 0.513 1.329 1.943

MAE 0.055 0.257 0.471 0.660

RMSD (%) 26.022 61.350 72.416 96.636

SVM model. �e di	erences in the proposed model and the
SVM model for the minor injury crashes are also signi�cant
(29.961% versus 61.350%).

6. Conclusions

Because tra�c crashes are a big concern of the public,
agencies, and policy makers and result in countless fatalities
and injuries, there is a need to perform a comprehensive
analysis that aims to understand the relationship between the
in�uence factors and tra�c crash outcomes. In this study, we
presented an innovative approach for tra�c crash prediction.
Methodologically, we demonstrated a novel deep learning
technique embedded within a multivariate regression model
can be used to identify relationship between the examined
variables and the tra�c crashes. Future applications of this
approach have the potential to provide insights into basic
questions regarding roadway spatial and temporal dynamic
function and practical questions regarding countermeasures.
�e investigation results provide su�cient evidence for the
following conclusions:(1) �e results show that the feature learning module
identi�es relational information between input variables and
output feature representations. �e �ndings indicate that the
feature representations have reduced the dimensionality of
the input, but still preserving the original information.(2)�eproposedmodel that includes aMVNB regression
layer in the supervised �ne tuning module can better account
for di	erent patterns in crash data across injury severities
and provide superior tra�c crash predictions. In addition,
the proposed model can perform multivariate estimations
simultaneously with a superior �t.(3) �e proposed model has superior performances in
terms of prediction power compared to the deep learning
model without a regression layer and the SVM model. �e
overall performances of the proposed model for all crashes
show an 89.824%RMSD improvement over the deep learning
model without a regression layer and an 121.378% RMSD
improvement over the SVM model.

(4) �e �ndings suggest that the proposed model is a
superior alternative for tra�c crash predictions. �e pro-
posed model can better account for heterogeneity issues in
tra�c crash prediction.

�eproposedmodels can perform tra�c crash prediction
for a given facility. �e proposed methodology could be
applied to other roadway networks if appropriate attribute
variables are available. Tra�c and transportation engineering
agencies can employ the proposed models with relative cases
and develop them to their needs to obtain tra�c crash
predictions for various time periods. Further investigation
of the proposed models includes the predictions of spatial-
temporal dynamic pattern in crash data.
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