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An improved density matrix functionalfcorrection to Buijse and Baerends functionalsBBCdg is
proposed, in which a hierarchy of physically motivated repulsive corrections is employed to the
strongly overbinding functional of Buijse and BaerendssBBd. The first correction C1 restores the
repulsive exchange-correlationsxcd interaction between electrons in weakly occupied natural
orbitalssNOsd as it appears in the exact electron pair densityr2 for the limiting two-electron case.
The second correction C2 reduces the xc interaction of the BB functional between electrons in
strongly occupied NOs to an exchange-type interaction. The third correction C3 employs a similar
reduction for the interaction of the antibonding orbital of a dissociating molecular bond. In addition,
C3 applies a selective cancellation of diagonal terms in the Coulomb and xc energiessnot for the
frontier orbitalsd. With these corrections, BBC still retains a correct description of strong
nondynamical correlation for the dissociating electron pair bond. BBC greatly improves the quality
of the BB potential energy curves for the prototype few-electron molecules and in several cases
BBC reproduces very well the benchmarkab initio potential curves. The average error of the
self-consistent correlation energies obtained with BBC3 for prototype atomic systems and molecular
systems at the equilibrium geometry is only ca. 6%. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1906203g

I. INTRODUCTION

Starting from the pioneering work of Heitler and
London,1 one of the paradigmatic problems of quantum
chemistry has been the correct description of electron corre-
lation in the electron pair bond. The correct description of
left-right correlation manifests itself in the occurrence of cer-
tain orbital products in the pair densitysdiagonal two-
electron reduced density matrixd r2s1,2d. In particular, the
double excitations that are well known to provide the pri-
mary correlating configurations in the wave function, lead to
orbital product terms in the pair density that are crucial for
the left-right correlation. The proper dissociation wave func-
tion for H2 at R→`, C=cgusgs1ds̄gs2du+cuusus1ds̄us2du,
wheresg=1/Î2sa+bd andsu=1/Î2sa−bd sa andb are the
atomic orbitalsd, leads in the pair densityr2s1,2d
=2Cs1,2dCs1,2d* to diagonal terms such as
ucgu2sgs1ds̄gs2dsg

*s1ds̄g
*s2d and ucuu2sus1ds̄us2dsu

*s1ds̄u
*s2d.

These diagonal terms do not, for a reference electron at one
site, differentiate between the probabilities of finding the
other electron at the same site or the other site. If, for in-
stance, electron 1 is at a position in the neighborhood of
nucleusa with spin a, i.e., r 1PVa,s1=a, then the condi-
tional probabilityr2

absr 1,r 2d /r1
asr 1d of finding electron 2 at

position 2=r 2,s2 is, when electron 2 hasb spin,

1/2uasr 2du2+1/2ubsr 2du2, i.e., an even distribution over the
two sitessof course there is zero probability for the second
electron to be anywhere witha spind. However, the cross
productscgcu

*sgs1ds̄gs2dsu
*s1ds̄u

*s2d+c.c. do make the left-
right distinction. With the limiting valuescg<−cu<1/Î2,
the cross terms yield for the conditional density of theb spin
electron the contribution −1/2fsgsr 1dsgsr 2dsu

*sr 1dsu
*sr 2d

+c.c.g /r1
asr 1d, which correctly has a negative lobe around the

reference electron atr 1, while its positive lobe is on the
remote atom: i.e., whenr 1 is in the neighborhood of atom
HA, r 1PVa, s1=a, the contribution is −1/2uasr 2du2

+1/2ubsr 2du2, and when r 1PVb, the contribution is
1/2uasr 2du2−1/2ubsr 2du2. So these cross product terms take
care, when added to the even distribution from the diagonal
terms, that the probability for an electron with spin down to
be on nucleusb is 1 when the electron of up-spin is known to
be on nucleusa, and vice versa. In atoms, such orbital cross
products, stemming from double excitations, also take care
of in-out correlation, for instance, the 1s2→ns2 excitations
in He, and of angular correlation around the nucleus, e.g., the
1s2→np2 excitations in He.2 Evidently, in any theory that
directly tries to express the pair density in terms of orbitals,
the occurrence of these orbital cross products in the trial
two-matrix must play a key role.
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For two-electron systems, it has been shown by Löwdin
and Shull3 in one of the first applications of the concept of
natural orbitalssNOsd that the exact two-electron closed-
shell wave functionCs1,2d reduces to just a summation over
excited closed-shell configurations, when the NOs are used
as an expansion basis,

Cs1,2d = o
i

ciuxis1dx̄is2du. s1.1d

Herexi are the NOs with their occupationsni, which can be
easily deduced to beni =2ci

2 swe refer to Ref. 4 for the use
of reduced density matrices in the treatment of electron
correlationd. The exact spin-freer2 corresponding to
Eq. s1.1d contains, in particular, the cross products
−fÎn1nax1sr 1dx1sr 2dxa

*sr 1dxa
*sr 2d+c.c.g between the first NO

x1, with the largest occupationn1, and other NOsxa. In
the case of nondynamical correlation in dissociating H2

we have justx1=sg and xa=x2=su. In another limiting
case, the He isoelectronic series, the terms
−fÎn1nax1sr 1dx1sr 2dxa

*sr 1dxa
*sr 2d+c.c.g, being the only ex-

plicitly negative contributions to the electron-electron inter-
action energy calculated with Eq.s1.1d, are, apparently, also
responsible for the dynamical correlation prevailing in that
case. This time, however, many terms with weakly occupied
NOs are relevant.

In density matrix functional theorysDMFTd one tries to
obtain approximations to the pair density using the NOs and
NO occupation numbers. It is very important that such ap-
proximations contain the essential physics of electron corre-
lation, and they should therefore retain the correlating orbital
products just noted. In order to arrive at a useful approxima-
tion of r2, Buijse and Baerends2,5,6 wrote for closed-shell
systems the related exchange-correlationsxcd hole function
rxc

hole sr 2u r 1d as the square of a hole amplitudewxc
hole sr 2; r 1d

and expanded the amplitude describing the hole around a
position r 1, in the complete set of NOsssee the following
section for the corresponding expressionsd. This is a gener-
alization of the case of the pure exchange hole, where the
exact hole can be expanded in just the occupied Hartree–
Fock orbitals.7 With the expansion coefficients obtained with
due account of the “sum rule” and the permutation symmetry
for the two-matrix, Buijse and BaerendssBBd expressed the
total pair densityr2 in the following form:

r2
BBsr 1,r 2d = rsr 1drsr 2d

− o
i,j

Îninjxi
*sr 1dx jsr 1dxisr 2dx j

*sr 2d, s1.2d

where the natural occupation numbershnij are constrained to
lie between 0 and 2.

This particular functional has been obtained by Müller8

in a completely different way. Csanyi and Arias9 considered
the formal symmetry properties of two-matrices that are writ-
ten as tensor products of one-matrices and arrived at what
they called the corrected HartreesCHd functional, which is
identical to Eq.s1.2d, as the simplest case. The ansatzs1.2d
contains orbital cross products such as
−fÎninaxisr 1dxa

*sr 1dxisr 2dxa
*sr 2d+c.c.g between strongly oc-

cupied NOsxi, i øN/2, and weakly occupied NOsxa, a

.N/2, which are similar, apart from different complex
phases, to the orbital products highlighted above. The impor-
tance of these cross products to describe correlation has been
emphasized,2 and they need to be retained, but due to other
approximations madessee the following section for discus-
siond, the BB two-matrixs1.2d overestimates the xc effect.

Goedecker and Umrigar10 sGUd have modified the BB
xc functional by omitting certain diagonalsi = jd terms in
both the expansion ofuVxc

holesr 2; r 1du2 and in the Hartree en-
ergy. This modification tends to improve the energies but has
the disadvantage that the functional is no longer self-
interaction freesthe GU modification has been called a “self-
interaction correction,” but in a certain sense this is a misno-
mer since the modification destroys the integration of the
exchange-correlation hole to −1 electron11d. Furthermore, the
energy improvement obtained with the GU modification ap-
pears to be a result of partial cancellation of the positive
effect on the energy of this modification and the essentially
negative BB error. This cancellation is far from perfect in the
bond dissociation region, which is reflected in the large GU
errors in this region for a number of prototype molecules
sRefs. 12 and 13 and Secs. IV and Vd. We will discuss this
point in further detail when proposing corrections to the BB
functional in Sec. III.

A good test of the DMFT methods is the calculation of
molecular potential energy curves, which is known to be a
challenging task for approximate quantum chemical meth-
ods. The latter is true, in particular, for the otherwise suc-
cessful methods of density functional theorysDFTd, for
which even the simple H2 molecule with a dissociatings
bond presents a difficult problem. Spin-restricted variants of
standard DFT methods, such as the local density approxima-
tion and the generalized gradient approximation tend to pro-
duce rather large errors for dissociating closed-shell
molecules.14 As was argued in Ref. 6, an adequate approach
should be based on an orbital-dependent functional, which
involves both the bonding and antibonding orbitals of a dis-
sociating bond. This is, in fact, the characteristic feature of
the generalization of the Fermi hole amplitude of Hartree–
Fock theory, employing only occupied orbitals, to the full
exchange-correlation hole amplitude of Refs. 2, 5, and 15,
which involves the “virtual”sweakly occupiedd natural orbit-
als with weights proportional to theÎni. Nevertheless, appli-
cation of the ensuing DMFT to the potential curves of some
prototype molecules revealed deficiencies.12,13,16–18In par-
ticular, the BB or CH functional produces a consistent over-
estimation of the absolute value of the total energyssee also
Sec. IV and Vd. On the other hand, the corrected Hartree–
Fock sCHFd method, introduced also by Csanyi and Arias9

provides little or no improvement over the HF method for
prototype molecules around the equilibrium distance.12,16,19

As analyzed in Ref. 16, this is a consequence of the implicit
restriction of the CHF methodsand the Bogoliubov method
that is equivalent to it19d that its Coulomb hole is definite
negative, which is certainly far from true for systems where
Hartree–Fock is a reasonable zero-order wave function. The
GU modification10 yields mixed results, it often improves
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around the equilibrium geometry, but it produces rather large
errors for the dissociating H2 sRef. 12d and LiH sRef. 17d
molecules.

Further improvement of DMFT is clearly required. In
Ref. 20 an approximate functional of the two-electronJ and
K integrals withhxij has been derived from the theory of the
antisymmetrized products of strongly orthogonal geminals
and in Ref. 21 the NO occupationsni in an approximate
functional were obtained as diagonal elements of an idempo-
tent matrix, the elements of which represent the variational
parameters to be optimized. In Ref. 22 the “phase dilemma”
of DMFT is discussed, i.e., the proper choice of the sign of
contributions to the xc functional of the terms with cross
products of NOs.

In the present paper corrections to the BB functional are
proposedsBBCnd, which retain the abovementioned impor-
tant correlating orbital structures of the BB functional, while
introducing a number of physically motivated repulsive cor-
rections. In Sec. II the original BB ansatz and the approxi-
mations behind it are discussed in both the prototype two-
electron case and in the generalN-electron case. In Sec. III
three variants, BBC1–BBC3, are put forward. The first cor-
rection sBBC1d changes the sign in Eq.s1.2d of the cross
products Înanbxasr 1dxasr 2dxbsr 1dxbsr 2d between different
weakly occupied NOsxa andxb. A theoretical justification of
this correction is that in the two-electron case it brings the
approximate expression forr2 closer to the exact one. The
second correctionsBBC2d reducesson top of BBC1d the xc
interactions in BB between different strongly occupied
NOs xi and x j, −Îninjxisr 1dx jsr 1dxisr 2dx jsr 2d / r12, to the
exchange-type interactions −1

2ninjxisr 1dx jsr 1dxisr 2dx jsr 2d
/ r12. We define here the strongly occupied NOs as the set of
N/2 NOs with the highest occupation numbers. The third
BBC variantsBBC3d appliesson top of BBC1 and BBC2d a
correction similar to the BBC2 correction, but now for the
interaction of the antibonding NO of the dissociating bond
with all strongly occupied NOs, except the corresponding
bonding one. The original BB form needs to be retained for
the bonding-antibonding pair, since it is precisely the re-
quired form to get the left-right correlation right in the case
of dissociation.2,6 BBC3 also applies the GU correction of
omitting certain diagonal terms in the Hartree and xc ener-
gies for all NOs except the bonding and the antibonding
ones. This selective application of the GU correction retains
the qualitatively correct BB description of the two-electron
bond, which makes an important numerical difference with
the full GU correction. In Sec. IV the BBC functionals with
hxij and hnij taken fromab initio multireference configura-
tion interaction sMRCId calculations in large correlation-
consistent basis sets are applied to potential curves of a num-
ber of prototype few-electrons-bonded molecules H2, LiH,
Li2, BH, HF and to the atoms He, Be, and Ne. BBC greatly
improves the quality of the DMFT molecular potential en-
ergy curves compared to the uncorrected BB and BB-GU
ones. The best performance in these post-CI calculations is
achieved with the BBC2 variant. In Sec. V the results of
self-consistent DMFT calculations are presented. Again,
BBC greatly improves the quality of the BB potential curves.
The best performance in the self-consistent calculations is

achieved with the BBC3 variant. In Sec. VI implications of
the present results for DMFT, DFT, and many-electron
theory are considered.

II. THE BB FUNCTIONAL

The BB electronic energy functional2,5 is based on a
simple ansatz for the xc holerxc

hole sN electron closed-shell
systems are consideredd which is defined by

r2sr 1,r 2d = rsr 1drsr 2d + rsr 1drxc
holesr 2ur 1d, s2.1d

wherer2sr 1,r 2d is the pair density andr is the electron den-
sity,

rsr 1d = o
i

niuxisr 1du2, s2.2d

with ni being the occupation of the NOxi swe work here in
the spin-restricted form, suitable for the closed-shell mol-
ecules we are dealing withd. The ansatz representsrxc

hole as the
square of the amplitudewxc

hole,

rxc
holesr 2ur 1d = − uwxc

holesr 2ur 1du2, s2.3d

which is exactly possible in the exchange-only case,7,23 if we
use wx

holesr 2u r 1d=oi=1
N/2Îni /rsr 1dxi

*sr 1dxisr 2d fall ni =2 si
øN/2dg. When the amplitudewxc

holesr 2u r 1d is expanded in the
NOs xisr 2d, with r 1-dependent coefficientscisr 1d, symmetry
and normalization requirements forr2sr 1,r 2d lead sapart
from a phase factord to an expression forcisr 1d in terms ofxi

andni as follows

wxc
holesr 2ur 1d = o

i

Înixi
*sr 1d

Îrsr 1d
xisr 2d. s2.4d

The choice of complex phase forxisr 1d* is arbitrary, and has
been made for smooth connection to the exchange type inte-
grals for sstronglyd occupied orbitals. We are dealing with
real orbitals and will drop the complex phases. From Eqs.
s2.1d, s2.3d, and s2.4d the expressions1.2d for r2

BB follows
which, in turn, determines the electron-electron interaction
energy functional

Eee
BB =

1

2
E rsr 1drsr 2d

r12
dr 1dr 2 −

1

2o
i,j

Îninj

3E xisr 1dx jsr 1dxisr 2dx jsr 2d
r12

dr 1dr 2. s2.5d

This orbital functional for the correlated total energy has
been derived for and has been applied to the many-electron
case,2,5 where it proved to be overbinding. This deficiency
was already mentioned in the Introduction. To prepare for the
modifications to be proposed in the following section, it is
instructive to consider the application ofEee

BB in the two-
electron case. The ansatzs2.4d for the hole amplitude has in
fact been shown to fully incorporate the effects of correlation
in two limiting two-electron cases, namely, the nondynami-
cal correlation in the dissociating electron pair bond
sstretched H2d and the dynamical correlation in the case of
two-electron ions withZ.2 sthe He isoelectronic seriesd.
The two-electron cases are particularly interesting, since the
exact wave functionCs1,2d attains the particularly simple
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form s1.1d in the natural orbital expansion.3 The expansion
coefficientsci are determined by theni up to a phase factor
f i = ±1,

ci = f i
Îni/2. s2.6d

From Eqs.s1.1d and s2.6d the exactr2 of the two-electron
system reads

r2sr 1,r 2d = 2E ds1ds2Cs1,2dC*s1,2d

= o
i

niuxisr 1du2uxisr 2du2 + Fo
a.1

f1fa
În1nax1sr 1d

3xa
*sr 1dx1sr 2dxa

*sr 2d + o
a.b.1

fafb
Înanbxasr 1d

3xb
*sr 1dxasr 2dxb

*sr 2d + c.c.G . s2.7ad

The phase factorsf i show up in the second and third sums of
Eq. s2.7ad, accompanying the cross products of the weakly
occupied NOsxa with the strongly occupied NOx1 and the
cross products between weakly occupied NOsxa and xb,
respectively. Then, using the fact thatfa tends to be negative
if the dominant coefficient is chosen to be positive,24 one
arrives at

r2sr 1,r 2d = o
i

niuxisr 1du2uxisr 2du2 + F− o
a.1

În1nax1sr 1d

3xa
*sr 1dx1sr 2dxa

*sr 2d + o
a.b.1

Înanbxasr 1d

3xb
*sr 1dxasr 2dxb

*sr 2d + c.c.G . s2.7bd

Comparingr2
BB of Eq. s1.2d with the exactr2 of Eq. s2.7d we

note that the BB approximation of writing the xc hole as the
square of an amplitudefEq. s2.3dg which leads to Eq.s1.2d
could be considered as amounting to two separate approxi-
mations. In the first place the first sum of Eq.s2.7d is ap-
proximated as the productrsr 1drsr 2d plus the diagonal terms
in the double sum of Eq.s1.2d,

o
i

niuxisr 1du2uxisr 2du2 < rsr 1drsr 2d

− o
i

niuxisr 1du2uxisr 2du2. s2.8d

This is valid in the two limiting cases of purely dynamical
correlation whenn1<2 and ni.1<0 sthe He isoelectronic
seriesd and of purely nondynamical correlationsdissociated
H2d whenn1<n2<1 andni.2<0.2,5 Note, that the approxi-
mation s2.8d provides for the normalization condition

E r2sr 1,r 2ddr 2 = sN − 1drsr 1d s2.9d

since the other terms in Eq.s2.7d do not contribute to this
integral, and Eq.s2.8d leads immediately to Eq.s2.9d. The
second approximation is a change of the positive sign of the
cross products between weakly occupied NOs in the last sum
of Eq. s2.7d to the negative sign of the corresponding terms
in Eq. s1.2d. This approximation is required in order that the

xc holerxc
hole could be represented as minus the square of the

hole amplitudewxc
hole, Eq. s2.3d. Though this representation

has been used to arrive at Eq.s2.4d and hence at Eq.s1.2d,
the conditions2.3d is not a necessary attribute of the rigorous
theory and, for example, the xc part of the exact pair density
s2.7d does not obey it. The erroneous negative sign of these
terms inEee

BB may be a source for its being too negative, so it
appears natural to adhere to the1 sign of the last sum in the
exact expressions2.7d, which is one of the corrections to be
discussed in the following section.

Note that the abovementioned BB approximations pre-
serve the important second term in Eq.s2.7d with sminusd the
cross products −fÎn1nax1sr 1dxa

*sr 1dx1sr 2dxa
*sr 2d+c.c.g, so

that it passes unchanged from Eq.s2.7d to Eq. s1.2d, apart
from a change of the complex phases, which arise from the
specific choice of phase for the weakly occupied NOssthe
same as for the strongly occupied onesd which was made in
Eq. s1.2d. This could be changed in Eq.s1.2d, but we will, as
noted above, refrain from keeping track of the complex
phases. For the dissociating H2 molecule this term reduces
ssee the Introductiond to −fsgsr 1dsusr 1dsgsr 2dsusr 2d+c.c.g.
Taken together with the corresponding diagonal terms with
−usgsr 1du2usgsr 2du2 and −ususr 1du2ususr 2du2 which arise in the
approximations2.8d, this term produces the BB xc hole

rxc
holesr 2ur 1d < −

1

rsr 1d
husgsr 1du2usgsr 2du2

+ fsgsr 1dsusr 1dsgsr 2dsusr 2d + c.c.g

+ ususr 1du2ususr 2du2j, s2.10d

which is correctly localized around the reference electron at
r 1, i.e., whenr 1 is in the neighborhood of atom HA, rxc

hole

sr 2u r 1PVAd<−uasr 2du2, and whenr 1 is in the neighborhood
of HB, rxc

hole sr 2u r 1PVBd<−ubsr 2du2. Note, that in the general
N-electron case the BB ansatzs1.2d contains similar cross
products −Îninjxisr 1dx jsr 1dxisr 2dx jsr 2d, si j d, for all NOs.
Then, the cross products −fÎninaxisr 1dxasr 1dxisr 2dxasr 2d
+c.c.g between strongly occupied NOsxi, i øN/2, and
weakly occupied NOsxa, a.N/2, represent a natural gen-
eralization of the abovementioned two-electron structure
−fÎn1nax1sr 1dxasr 1dx1sr 2dxasr 2d+c.c.g.

Terms for which the analysis of the two-electron case,
with only one occupied orbital, does not yield a clue, are the
cross products −Îninjxisr 1dx jsr 1dxisr 2dx jsr 2d, si j øN/2d,
between different strongly occupied NOs. We will identify
these terms as another source for the overbinding ofEee

BB.
The corresponding correction as well as other repulsive cor-
rections will be presented in the following section.

III. REPULSIVE CORRECTIONS: THE BBC n
FUNCTIONALS

The first repulsive correction to BBsBBC1d proposed in
this paper restores the positive phase of the cross products
between weakly occupied NOs as it appears in the accurate
two-electronr2 of Eq. s2.7d. To accomplish this, we intro-
duce the corresponding sign correctionsC1d r2

C1 to r2
BB of

Eq. s1.2d.
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r2
BBC1sr 1,r 2d = r2

BBsr 1,r 2d + r2
C1sr 1,r 2d, s3.1d

which only makes this restoration, while preserving the ap-
proximations2.8d. Comparing Eq.s1.2d with Eq. s2.7d, one
finds thatr2

C1 has the general form

r2
C1sr 1,r 2d = 2 o

a,bÞa.N/2

Înanbxasr 1dxbsr 1dxasr 2dxbsr 2d,

s3.2d

which is valid in the two-electron case and can also be ap-
plied as a correction to the ansatzs1.2d in the N-electron
case. The corresponding electron-electron interaction energy
functionalEee

BBC1 has the form

Eee
BBC1 = Eee

BB + Eee
C1, s3.3d

where

Eee
C1 = o

a,bÞa.N/2

ÎnanbE xasr 1dxbsr 1dxasr 2dxbsr 2d
r12

dr 1dr 2.

s3.4d

The positive correction that we make inhibits the representa-
tion of the xc hole corresponding tor2

BBC1 as minus the
square of a hole amplitude, as in Eq.s2.3d. However, the
correction C1 bringsr2

BBC1 closer to Eq.s2.7d in the two-
electron case. Besides,r2

BBC1sr 1,r 2d has the correct symme-
try with respect to permutation of the electron coordinates
r 1,r 2 and it satisfies the normalization conditions2.9d. There
is no compelling reason to stick to the initial ansatz that the
hole be written as minus the square of an amplitude. We will
therefore drop this assumption and will take as our only pur-
pose to provide an accurate approximation to the xc energy.

The second repulsive correction of this papersC2d is
applied on top of BBC1 to the xc interaction between differ-
ent strongly occupied NOsxi and x j, i , j øN/2. As was
pointed out in the previous sections, this interaction is repre-
sented for thei , j pair sand similarly for the j , i paird
with the term −1

2
Îninj exisr 1dx jsr 1dxisr 2dx jsr 2d / r12dr 1dr 2

=−1
2
ÎninjKij . This reduces to the normal exchange interac-

tion, which just has the prefactor −1 in front of theKij inte-
gral, when the orbitals are fully occupied,ni =nj =2. In the
correlated case, the occupation numbers start to decrease
from 2.0, and the −12Îninj factors become less negative than
the full sHartree–Fockd exchange factor −1. If one takes,
however, the exchange-type part of the exact pair density,
which can be obtained from the exact one-particle density
matrix g as the product −s1/4dgsr 1,r 2dgsr 2,r 1d,
one would obtain the off-diagonal terms
−1

4ninjxisr 1dx jsr 1dxisr 2dx jsr 2d / r12 in the energy integrand.
This of course reduces to pure Hartree–Fock exchange
s−Kijd in the caseni =nj =2, but when the occupation num-
bers start to decrease from 2.0, the factor −ninj /4 is less
negative even than −Îninj /2. We have inferred that the latter
terms are indeed too negative, the Coulomb correlation being
expressed primarily by the cross terms between strongly and
weakly occupied NOs, not between different strongly occu-
pied NOs. We therefore reduce the xc interaction between
strongly occupied NOs, replacing for each orbital pair the
xc interaction −12Îninj exisr 1dx jsr 1dxisr 2dx jsr 2d /

r12dr 1dr 2 with the exchange-type interaction
−1

4ninj exisr 1dx jsr 1dxisr 2dx jsr 2d / r12dr 1dr 2. This is effected
by the correctionr2

C2 to r2
BBC1

r2
BBC2sr 1,r 2d = r2

BBC1sr 1,r 2d + r2
C2sr 1,r 2d, s3.5d

where

r2
C2sr 1,r 2d = o

i,jÞiøN/2
SÎninj −

1

2
ninjD

3xisr 1dx jsr 1dxisr 2dx jsr 2d. s3.6d

The corresponding BBC2 energy functional is

Eee
BBC2 = Eee

BBC1 + Eee
C2, s3.7d

where

Eee
C2 =

1

2 o
i,jÞiùN/2

SÎninj −
1

2
ninjD

3E xisr 1dx jsr 1dxisr 2dx jsr 2d
r12

dr 1dr 2. s3.8d

Since both corrections C1 and C2 change only the orbital
cross products inr2, the functionr2

BBC2 of Eq. s3.5d also
satisfies the normalization conditions2.9d.

The third BBC variantsBBC3d appliesson top of BBC1
and BBC2d a correction like BBC2 but now for the interac-
tion of the antibonding NOxr of the dissociating bond with
all strongly occupied NOs, except the corresponding bonding
one. In addition, BBC3 applies the GU correction10 to all
NOs, except the bonding and the antibonding ones. This
means that in Eq. s2.5d in the Coulomb term
s1/2dersr 1drsr 2d / r12dr 1dr 2, the i = j terms describing self-
interaction of electrons in the same orbital with the same
spin are omitted, amounting to a correction
−1

4ni
2xisr 1d2xisr 2d2/ r12 to the Coulomb energy integrand. In

the xc term the corresponding diagonal terms are omitted,
which is a correction1

2
Îni

2xisr 1d2xisr 2d2/ r12 to the xc energy
integrand. In the Hartree–Fock case withni =nj =2 the can-
cellation of these diagonal terms would be automatic, which
is the usual correction by the exchange terms of the spurious
self-interaction in the Coulomb term. In the present case, the
GU approximation, which is only justified pragmaticallysit
works in the right directiond, introduces a positive correction
of the form s−1

4ni
2+ 1

2nidJii . The factor −1
4ni

2+ 1
2ni goes

through zero forni =0 andni =2 and has a maximum forni

=1. So this is a relatively small correction when applied to
strongly occupied orbitalssni <2d and to weakly occupied
orbitals sni <0d. Denoting the bonding/antibonding pair of
orbitals as the orbitals with numbersN/2 andr, the occupa-
tions nN/2 andnr deviate most from 2 and 0, equalizing at 1
at the dissociation limit. Because of this the full GU correc-
tion sapplied also toxN/2 andxrd would distort the correlation
structures2.10d, which is essential for the left-right correla-
tion in the dissociating bond. This distortionsas will be
shown in the next sectionsd produces a dramatic deterioration
of some molecular curves in the dissociation region. We
therefore will not apply the GU correction for the bonding-
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antibonding pair of orbitals with occupation numbers differ-
ing strongly from 2 and 0. The resultingr2

BBC3 can be ex-
pressed as follows:

r2
BBC3sr 1,r 2d = r2

BBC2sr 1,r 2d + r2
C3sr 1,r 2d, s3.9d

where

r2
C3sr 1,r 2d = o

i,N/2
SÎninr −

1

2
ninrD

3fxisr 1dxrsr 1dxisr 2dxrsr 2d + c.c.g

+ o
iÞN/2,r

Sni −
1

2
ni

2Dxisr 1d2xisr 2d2. s3.10d

The corresponding BBC3 energy functional is

Eee
BBC3 = Eee

BBC2 + Eee
C3, s3.11d

where

Eee
C3 = o

i,N/2
SÎninr −

1

2
ninrD

3E xisr 1dxrsr 1dxisr 2dxrsr 2d
r12

dr 1dr 2

+
1

2 o
iÞN/2,r

Sni −
1

2
ni

2D E xisr 1d2xisr 2d2

r12
dr 1dr 2.

s3.12d

Equationss3.10d and s3.12d are valid for molecules with a
single bond, which are considered in this paper, but their
generalization for the case of multiple bonds is straightfor-
ward. The selective application of the GU correction in
BBC3 as well as other corrections of this paper preserve the
important orbital structures2.10d of the original BB, which is
responsible for the proper description of nondynamical elec-
tron correlation in the dissociating bond. Unlike other cor-
rections of this section, the GU correctionfeven if selectively
applied in Eqs.s3.10d ands3.12dg does not preserve the nor-
malization conditions2.9d. However, as will be shown in
Sec. V, the potential energy curves obtained with the self-
consistent DMFT calculations with BBC3 provide the best
agreement with the benchmark full CIsFCId and MRCI
curves.

IV. POST-CI CALCULATIONS OF POTENTIAL ENERGY
CURVES WITH THE BBC FUNCTIONALS

Calculations with the NOshxij and occupationshnij ob-
tained from MRCI calculations are of importance for further
development of DMFT. Indeed, a successful DMFT func-
tional should reproduce these quantities, so that an assess-
ment of the quality of the proposed functionals with the
“best” hxij and hnij is in order.

Figures 1–5 display the potential energy curves for the
prototypes-bonded molecules H2, LiH, Li 2, BH, and HF
obtained in this post-CI way with the BBC functionals pro-
posed in the preceding section. They are compared with the
potential curves obtained with a multireference single and
double CIsMRSDCId with theATMOL package25 and they are

also compared with the BB and GU curvesfthe curves la-
beled GU apply the full GU correction of omitting the same-
spin diagonali = j terms in the Hartree energy and the diag-
onal terms in the xc energy of the BB expression, Eq.s2.5d,
in both cases for all orbitalsg. The correlation-consistent ba-

FIG. 1. Energy curves for the H2 molecule with NOs and NO occupation
numbers from full CI calculations in the cc-pV5Z basis. The drawn curve is
the full CI curveslabeled CId, the other labels are defined in the text.

FIG. 2. Energy curves for the LiH molecule with NOs and NO occupation
numbers from MRSDCI calculations with the cc-pV5Z basis on H and aug-
cc-pCVQZ on Li.
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sis sets are employed in these calculations, which are rather
more extended and more adapted to treat electron correlation
than the basis sets commonly used in molecular self-
consistent DMFT calculations. For H and He atoms the cal-

culations are performed in the correlation-consistent polar-
ized valence 5-zeta basis sets26,27 scc-pV5Zd and for heavier
atoms the correlation-consistent polarized core-valence qua-
druple zeta augmentedsaug-cc-pCVQZd basis sets28,29 are
used. NOshxij and their occupationshnij obtained with
MRSDCI have been used in Eqs.s3.1d–s3.12d to produce the
BB, BBCn, and GU electronic energies.

Since two-electron systems in general, and stretched H2

in particular, served as the DMFT paradigm, we start our
discussion with the potential curves of Fig. 1 for the H2

molecule. With the scale chosen, it clearly displays, first of
all, the well-known failure of the GU approximation. The
latter consistently underestimates the H2 energy and the cor-
responding error increases dramatically with the bond length
RsH–Hd, so that already atR=2.5 a.u. the GU curve is way
off the FCI one. The reason for this is the deficiency of the
GU correction for NO occupationsni that deviate apprecia-
bly from 2 or 0, which is the case for the singly occupied
frontier NOssg and su of the dissociating H2. In this case
the GU modification produces a deficientsnot attractive
enoughd xc hole

rxc
holesGUdsr 2ur 1d < −

1

rsr 1dH1

2
usgsr 1du2usgsr 2du2

+ fsgsr 1dsusr 1dsgsr 2dsusr 2d + c.c.g

+
1

2
ususr 1du2ususr 2du2J , s4.1d

which integrates erroneously to −1/2 electron. On the other
hand, BB consistently overestimates the H2 energy but, be-
cause of the proper forms2.10d of its xc hole, the corre-

FIG. 3. Energy curves for the Li2 molecule with NOs and NO occupation
numbers from MRSDCI calculations with the aug-cc-pCVQZ on Li.

FIG. 4. Energy curves for the BH molecule with NOs and NO occupation
numbers from MRSDCI calculations with the cc-pV5Z basis on H and aug-
cc-pCVQZ on B.

FIG. 5. Energy curves for the HF molecule with NOs and NO occupation
numbers from MRSDCI calculations with the cc-pV5Z basis on H and aug-
cc-pCVQZ on F.

204102-7 Improved density matrix functional J. Chem. Phys. 122, 204102 ~2005!

Downloaded 30 Mar 2011 to 130.37.129.78. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



sponding error vanishes at largeRsH–Hd. What is clearly
missing in BB at shorterRsH–Hd fcompared to the exact
case, Eq.s2.7dg is the proper positive sign of the cross prod-
ucts of weakly occupied NOs, which is restored with the C1
correction s3.2d of BBC1. In the two-electron case BBC2
coincides with BBC1, while the selective GU correction for
weakly occupied NOs makes the BBC3 curve only slightly
higher than the FCI and BBC1s2d ones around the equilib-
rium ssee Fig. 1d. As a result, all BBCn reproduce excellently
the FCI curve for H2 and at largeRsH–Hd the BBCn curves
converge somewhat faster than the BB curve to the FCI one.

For other molecules considered GU displays the same
trend as for H2 consistently underestimating molecular total
energiesscompare Fig. 1 with Figs. 2–5d. While this under-
estimation is not large near equilibrium, it increases sharply
with the bond distance, so that the resulting GU curves ex-
hibit incorrect dissociation behavior and are much too deep
compared to the MRCI ones. On the other hand, BB consis-
tently overestimates the molecular energies but, unlike the
case of H2, this overestimation appears to increase with the
bond distance, which is especially true for the molecules BH
and HF with heavier atoms. As a result, in the latter case the
BB curves are far too shallow.

A remarkable feature of Figs. 2–5 is that BBC greatly
improves the quality of the DMFT potential curves. In par-
ticular, the BBC1 and BBC2 curves are much closer to the
MRCI curves than the BB or GU ones. The main correction
to BB appears to be the phase correction C1 of Eqs.s3.2d and
s3.4d, though the C2 correction plays an increasingly impor-
tant role with increasing number of strongly occupied orbit-
als, the interaction of which determines the size of C2
through Eqs.s3.6d ands3.8d. For LiH with only two strongly
occupied NOs the BBC1 and BBC2 curves nearly coincide
with each other with only a marginal difference at large
RsLi–Hd ssee Fig. 2d. Already for Li2 with three strongly
occupied NOs the C2 correction makes a rather important
differencessee Fig. 3d. While C1 is a dominant correction to

BB at all distancesRsLi–Li d, C2 significantly reduces fur-
ther the DMFT error, so that the BBC2 curve excellently
reproduces that of MRCI. For BH the BBC1 and BBC2
curves nearly coincide with each other around the equilib-
rium ssee Fig. 4d, however, the C2 correction increases with
the bond lengthRsB–Hd, which makes the BBC2 curve defi-
nitely closer to the MRCI one in the dissociation region. For
HF, though slightly worsening the BBC performance near
the equilibriumssee Fig. 5d, C2 plays an important role at
largerRsF–Hd considerably reducing the relatively large dis-
crepancy between the MRCI and BBC1 curves at largeR.
For the latter two molecules, the combined effect of C1
+C2, incorporated in the BBC2 curve, greatly reduces the
large BB error in the dissociation region.

Note that, except for the case of H2 discussed abovessee
Fig. 1d and for the dissociating LiHssee Fig. 2d, the third
BBC correction C3 produces a too high upward shift of the
BBC3 curve for Li2, BH, and HFssee Figs. 3–5d. However,
this upward shift notwithstanding, the form of the BBC3
curves appears to be surprisingly good, reproducing fairly
well the form of the MRCI curvesssee Figs. 1–5d.

Table I presents the totalsEd and correlationsEcd ener-
gies calculated for the abovementioned molecules at the
equilibrium distances as well as those calculated for the at-
oms He, Be, and Ne in the same post-CI manner. Because of
the absence of bonds for free atoms, we calculate the BBC3
functional in this case without the corrections to an antibond-
ing orbital. Thus, the C3 correction in Eqs.s3.10d ands3.12d
reduces in this case to the GU correction applied to all orbit-
als, except the last strongly occupied orbitalxN/2. In agree-
ment with the discussion given above, BB consistently over-
estimatesEc values compared with those obtained with the
benchmark CI calculations. In turn, GU and BBC3 consis-
tently underestimateEc. BBC1 and BBC2 produce similar
energiessby definition, for two-electron systems, such as He
and H2, these are the same energiesd and they displayEc

errors of either signssee Table Id. With this, BBC1 and

TABLE I. Comparison of the total and correlation energiessatomic unitsd calculated at the molecular equilibrium geometries with BB, GU, BBCn sall in the
post-CI variantd, and MRSDCI.

System He Be Ne H2 LiH Li 2 BH HF

−ECI 2.9032 14.6444 128.8820 1.1739 8.0668 14.9857 25.2791 100.4128
−Ec

CI 0.0416 0.0714 0.3352 0.0403 0.0795 0.1142 0.1477 0.3442
−EBB 2.9119 14.6782 128.9166 1.1857 8.0878 15.0211 25.3422 100.4619
−Ec

BB 0.0503 0.1052 0.3698 0.0521 0.1005 0.1482 0.2108 0.3679
Error s%d 21 47 10 29 26 31 43 16
−EBBC1 2.9047 14.6590 128.8544 1.1759 8.0715 14.9897 25.2941 100.3939
−Ec

BBC1 0.0431 0.0860 0.3076 0.0423 0.0842 0.1182 0.1627 0.3253
Error s%d 4 20 −8 5 6 4 10 −5
−EBBC2 2.9047 14.6571 128.8414 1.1759 8.0712 14.9840 25.2914 100.3795
−Ec

BBC2 0.0431 0.0841 0.2946 0.0423 0.0839 0.1125 0.1600 0.3109
Error s%d 4 18 −12 5 6 −2 8 −10
−EBBC3 2.8975 14.6203 128.8062 1.1712 8.0537 14.9547 25.2141 100.2905
−Ec

BBC3 0.0361 0.0473 0.2594 0.0376 0.0664 0.0832 0.0827 0.2219
Error s%d −13 −34 −23 −7 −16 −17 −44 −36
−EGU 2.8966 14.6143 128.8531 1.1625 8.0538 14.9816 25.2564 100.3862
−Ec

GU 0.0352 0.0413 0.3063 0.0289 0.0665 0.1101 0.1250 0.3176
Error s%d −15 −42 −9 −28 −16 −4 −15 −8
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BBC2 achieve the best performance among the functionals
considered, with the same relatively small average absolute
error of Ec of 8% for both functionals.

To sum up, the BBC corrections greatly improve the
quality of the BB potential energy curves obtained with non-
self consistent DMFT calculations with MRCIhxij and hnij.
In this type of calculation the BBC2 functional shows the
best overall performance. In the following section it will be
shown that the energy lowering due to the self-consistent
optimization significantly improves the atomic and molecu-
lar energies obtained with the BBC3 functional, so that the
latter emerges as the best self-consistent functional.

V. SELF-CONSISTENT CALCULATIONS OF THE
POTENTIAL ENERGY CURVES WITH THE
BBC FUNCTIONALS

Though the post-CI calculations presented in the preced-
ing section are useful for the assessment and further devel-
opment of the DMFT methods, in a full-fledged DMFT
method all quantities should be calculated in a self-consistent
manner. Obviously, a variational, self-consistent energy
minimum of an approximate DMFT functional is lower than
its energy calculated with any nonvariational NOs and their
occupancies, even with the best MRCIhxij and hnij. In par-
ticular, while the BBC2 energies obtained in the post-CI cal-
culations are rather close to the MRCI onesssee the preced-
ing sectiond, the self-consistent BBC2 energies appear to be
consistently lower than the corresponding MRCIfor full-
configuration interactionsFCId where it was possible to cal-
culate themg values. Since BBC2 is obtained from BBC1
with the repulsive correction C2, the self-consistent BBC1
energies are lower than the already too low BBC2 energies.
On the other hand, the C3 repulsive correction, which makes
the post-CI BBC3 energies too high, produces self-consistent
BBC3 energies that appear to be rather closesand in some
cases very closed to the MRCI ones. This discrepancy means,
of course, that the self-consistent DMFT NOs and their oc-
cupations differ from the corresponding MRCIsclose to ex-
actd hxij and hnij. The ultimate goal, of course, is to formu-
late NO dependent xc functionals that yield self-consistently
optimized orbitals that are close to the exact NOs, so the
discrepancy between energies based on exact NOs and on
optimized orbitals would disappear. We note that there is no
proof for variational stability of the functionals we are inves-
tigating. For the BBsCHd functional the possibility of varia-
tional collapse has been investigated for the H2 molecule, as
a function of basis set and of the number of “active” orbitals
s“virtual” orbitals that are allowed to acquire occupationsd.16

It was concluded that variational collapse does not show up.
This has been confirmed by Herbert and Harriman with
larger basis sets and for other systems.17

Figures 6–10 display the potential energy curves for the
prototype molecules obtained with self-consistent calcula-
tions with the BB, GU, and BBC3 functionals. They are
compared with the FCI results in the case of H2, LiH, Li 2,
and BH sand He, Be in Table IId or MRSDCI results in the
case of HF and Ne. As a natural reference, the restricted
Hartree–FocksHFd curves in the same bases are also in-
cluded. Because of the computationally more demanding or-

bital optimization, the basis sets are smaller than in the pre-
ceding section. The absolute energies of Figs. 6–10 are
therefore not directly comparable to those of Figs. 1–5. For
atoms the cc-pVQZsRef. 26d basis set was employed with
the exclusion of theg and one of thef orbitals for Be and
Ne. For molecules composed of at least one light atom, i.e.,
for H2, LiH, BH, and HF, the correlation-consistent polarized
valence triple-zeta basis setscc-pVTZd was used from which
the f orbital for heavy atoms was excluded, whereas for the
Li2 molecule a smaller cc-pVDZ basis set was used. It
should be emphasized that the employed basis sets are still
relatively large compared to previous calculations16,21 and
we did not freeze any orbitals throughout the optimization
calculations. Fully variational DMFT calculations involve

FIG. 6. Energy curves for the molecule H2 with self-consistent determina-
tion of the NOs and NO occupation numbers for each NO functional. For
basis see text.

FIG. 7. Energy curves for the LiH molecule with self-consistent determina-
tion of the NOs and NO occupation numbers for each NO functional. For
basis see text.
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minimizing the total energy with respect to both natural or-
bitals and natural occupation numbers. For singlet and triplet
ground states of two-electron systems, such a method was
developed and applied some time ago by Kutzelnigg.24 To
assure convergence to the minimum and to make the calcu-
lations more efficient, we have implemented a two-step pro-
cedure. It consists of minimization of the energy with respect
to the natural orbitals for fixed occupation numbers and a
subsequent variation of the occupancies for the new set of
natural orbitalssobtained in the first stepd. This procedure is
repeated until convergence is achieved. The natural orbitals
were parametrized according to the orthonormality-

preserving scheme presented in Ref. 30 and the quasi-
Newton Boyden-Fletcher-Goldfarb-ShannonsBFGS Ref. 31d
optimization method was implemented in the first step of the
variational procedure described above. To assure that the
natural occupancies stay between zero and two and that they
sum up to the number of electronsN, we imposed thatni

=2 cos2spid and Sini =N. For the optimization of the free
parametershpij we employed the conjugate gradient Polak–
Ribière algorithm.31

We start our discussion with the potential curves for the
H2 molecule in Fig. 6. Optimization improves GU close to
the equilibrium geometry, but again, due to its deficient xc
hole s4.1d, it produces a large positive error at large bond
lengths. On the other hand, unlike in the post-CI calculations
and in agreement with the previous self-consistent
calculations,12,16 BB consistently overestimates the H2 en-
ergy not only near equilibrium, but at allRsH–Hd distances
scompare Figs. 1 and 6d. The apparent reason for this over-
estimation is the difference between the FCIhxij ,hnij and the
corresponding quantities produced self-consistently with the
over-attractive BB functional. But then, the repulsive correc-
tions of BBC3 remove this error. As a result, BBC3 excel-
lently reproduces the FCI potential curve of H2 at all
RsH–Hd ssee Fig. 6d, the largest BBC3 error is only
3 kcal/mol atRsH–Hd=4 a.u.

Similar trends in the self-consistent performance of the
DMFT functionals follow also for other molecules. Just as in
the post-CI calculations of the preceding section, the self-
consistent BB greatly overestimates the molecular energies,
especially in the dissociation region, so the BB potential
curves are much too shallowssee Figs. 7–10d. The self-
consistent GU curves are also too deep aroundRe sexcept in
the case of H2d, but much less so than the BB energies. The
self-consistent GU curves dissociate improperly for H2 and
LiH, rising too high as in the post-CI case, though the cor-
responding error is relatively not as large as that case. In the

FIG. 8. Energy curves for the Li2 molecule with self-consistent determina-
tion of the NOs and NO occupation numbers for each NO functional. For
basis see text.

FIG. 9. Energy curves for the BH molecule with self-consistent determina-
tion of the NOs and NO occupation numbers for each NO functional. For
basis see text.

FIG. 10. Energy curves for the HF molecule with self-consistent determi-
nation of the NOs and NO occupation numbers for each NO functional. For
basis see text.
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other moleculessLi2, BH and HFd the self-consistent GU
curves do not exhibit the large error of the post-CI calcula-
tions. The apparent reason for this better performance of the
GU approximation is partial cancellation of the positive er-
ror, corresponding to the deficient GU xc holes4.1d and the
large negative error of the BB part of the self-consistent
functional. For H2 this cancellation failsssee Fig. 6d, for LiH
it also does not work wellsFig. 7d, while it produces good
quality curves for Li2 sFig. 8d and HFsFig. 10d, and some-
what less so for BH due to a relatively large error atRe.

The best overall performance is achieved with the self-
consistent BBC3 functional. When one takes into account
that the present orbital-dependent exchange-correlation func-
tionals are not essentially more complicated than the HF ex-
change functional—the most important complication being
the additional variability of occupation numbers—the im-
provement compared to the Hartree–Fock curves in Figs.
6–10 is striking. In particular, BBC3 excellently reproduces
the potential energy curves not only for H2 but also for Li2
and BH. In fact, the GU curve for Li2 is already of high
quality. However, BBC3 manages to further enhance the
DMFT quality at allRsLi–Li d and nearRe the BBC3 curve
practically coincides with the FCI onessee Fig. 8d. BBC3
also exhibits a remarkably good performance for BHssee
Fig. 9d. The largest deviation between the FCI and BBC3
curves in this case is only 4 kcal/mol and for larger
RsB–Hd, starting from ca. 4 a.u., both curves coincide with
each other. For LiH and HF the performance of BBC3 is
somewhat worse. In the former case, the BBC3 curve coin-
cides with the GU one around the equilibrium and both
curves are close to but a bit lower than the FCI one in this
region ssee Fig. 7d. However, at largerRsLi–Hd the BBC3
and GU curves diverge from each other and from the FCI
curve. While the GU curve goes too high, the BBC3 curve
goes too low. For the HF molecule the BBC3 curve is too
shallow in total, being too high aroundRe, and somewhat too
low at R→` ssee Fig. 10d. However, both BBC3 and GU
greatly improve upon BB. However, while the GU improve-
ment emerges from the abovementioned cancellation of er-
rors, that of BBC3 comes as a result of successive correc-
tions of Sec. III, which do not distort the correct BB orbital
structures2.10d for the dissociating bond.

Table II presents the self-consistent DMFT and FCI/

MRSDCI total and correlation energies calculated for the
prototype molecules at the equilibrium bond lengths as well
as for the atoms He, Be, and Ne. Comparison with Table I
with the post-CI energies shows that, due to the variational
effect discussed in the beginning of this section, the self-
consistent energies of the DMFT functionals are substantially
shifted downwards compared to the corresponding post-CI
energies. This downward shift dramatically increases, in gen-
eral, the overestimation of the correlation energies with BB
ssee Table IId. In turn, the GU and BBC3 self-consistent
correlation energies display errors of either sign. In particu-
lar, the average absolute error of the GU correlation energies
is 14%. The BBC3 functional shows the best performance
also at the equilibrium geometry. The BBC3Ec values are
closer to the FCI/MRSDCI ones than the GU values in all
cases, except Hesfor which the BBC3 and GUEc are nearly
the samed and HFssee Table IId. The relative error of BBC3
does not increase with the size of a system. Indeed, the larg-
est error of −13% for the ten-electron HF molecule is close
to that of −12% for the two-electron He atom. On the other
hand, the error for another ten-electron system, the Ne atom
is only 2%, while for the six-electron Li2 the BBC3Ec co-
incides with the FCI one. With this, the absolute averageEc

error of the self-consistent BBC3 is only 6.5%.
To sum up, the results of the self-consistent DMFT cal-

culations presented in this section show the best overall per-
formance of the BBC3 functional, which greatly improves
the quality of the original BB for the potential energy curves
as well as the quality of the total and correlation energies for
atoms and for molecules at the equilibrium geometry.

VI. CONCLUSIONS

The improved density matrix functionals BBCn pro-
posed in this paper employ simple nonempirical corrections
to the BB functional. These corrections provide a physically
reasonable description of electron exchange and correlation
in terms of the NO product structures in the approximate
pair-densityr2. In particular, the repulsive xc interaction be-
tween electrons in weakly occupied NOs, provided with the
C1 correction BBC1, corrects the sign of the terms involving
products of weakly occupied NOs only to the sign those
terms have in the exactr2 for the limiting two-electron case.

TABLE II. Comparison of the total and correlation energiessatomic unitsd calculated at the molecular equilibrium geometries with the self-consistent BB, GU,
BBC3, and MRSDCIsfor Ne and HFd or FCI sfor other systemsd methods.

System He Be Ne H2 LiH Li 2 BH HF

−ECI 2.9024 14.6400 128.8278 1.1723 8.0357 14.9014 25.2376 100.3192
−Ec

CI 0.0409 0.0671 0.2843 0.0394 0.0492 0.0319 0.1077 0.2616
−EBB 2.9141 14.7632 128.9548 1.1904 8.1040 14.9956 25.4560 100.4941
−Ec

BB 0.0526 0.1903 0.4113 0.0574 0.1175 0.1261 0.3262 0.4365
Error s%d 29 184 45 46 139 295 203 67
−EBBC3 2.8976 14.6423 128.8333 1.1705 8.0414 14.9016 25.2320 100.2844
−Ec

BBC3 0.0361 0.0693 0.2898 0.0375 0.0550 0.0320 0.1022 0.2268
Error s%d −12 3 2 −5 12 0 −5 −13
−EGU 2.8978 14.6578 128.8583 1.1658 8.0414 14.9040 25.2680 100.3441
−Ec

GU 0.0363 0.0848 0.3148 0.0329 0.0549 0.0345 0.1382 0.2865
Error s%d −11 26 11 −17 12 8 28 10
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On the other hand, the C2 correction reduces the xc interac-
tion of the BB functional between electrons in strongly oc-
cupied NOs to the exchange-type interaction that can be
written as −gsr 1,r 2dgsr 2,r 1d /4 also for nonidempotent one-
matricesswith occupation numbers differing from 2 and 0d.
In turn, the C3 correction includes the antibonding orbital of
a dissociating molecular bond, which formally belongs to the
weakly occupied set of orbitals, in the set of orbitals for
which this type of interactionsone-matrix exchanged is as-
sumed. In addition, the C3 correction applies a selective can-
cellationsnot for the bonding/antibonding pair of orbitalsd of
the diagonal terms in the Coulomb and xc interactions, as
originally applied by GU for all orbitals.

A remarkable result of the paper is that these simple
orbital product structures, based on a qualitatively reasonable
description of the xc effects, yield within DMFT rather ac-
curate molecular potential energy curves as well as reason-
able correlation energies for prototype atoms and molecules.
BBC greatly improves the quality of the BB potential curves
in all regions and for all molecules considered and, unlike
GU, it does not fail in certain cases such as the dissociating
H2 molecule. This overall good performance of BBC is due
to the fact that all the Cn corrections do not distort the im-
portant orbital product terms of the BB functional that de-
scribe correlation in the dissociating bond.

BBC reproduces well the correlation energies obtained
with FCI/MRSDCI for the equilibrium geometry. The aver-
age absolute error of the self-consistentEc calculated with
BBC3 is only 6.5%. The apparent reason for this are the
specific orbital product terms involving strongly and weakly
occupied NOs, which are introduced with the original BB
ansatz and describe both nondynamical and dynamical corr-
elators, and are retained in BBCn. However, the virtue of this
orbital structure is revealed only when other orbital product
terms are corrected, as is done in the case of the BBCn
functionals. The present results show that for a number of
typical systems an accurate approximation to the CI result
can be obtained with NO functional. Effectively, a highly
correlated result is obtained with an energy expression,
which only employs two-index two-electron integralssthe
so-calledJ andK integralsd. In contrast to the Hartree–Fock
method, however, these integrals have to be evaluated not
only for the limited set ofN/2 occupied canonical orbitals,
but for both strongly and weakly occupied NOs. It is, never-
theless, very gratifying that with such a relatively small ex-
tension of the exchange functional of Hartree–Fock theory
such a considerable improvement is possible. Although the
Hartree–Fock model covers a very large part of the total
energy of atoms, and hence of molecules, it should not be
forgotten how poor this model is for chemical bonding, i.e.,
for chemistryscf. the HF curves in the figuresd. With errors
of typically 25%–100% of the bond energy, it is indeed even
a poor zero-order description of bonding. This is reflected in
very large errors in individual energy terms such as kinetic
energy, electron-nuclear attraction energysHartree–Fock
densities tend to be very poord, and electron-electron Cou-
lomb repulsion energy. These errors are typically of the same
order or even much larger than the bond energy itself.32–34 It
is highly desirable that asmuchd better zero-order method for

chemical bonding, of essentially self-consistent field level of
complexity, be developed. The developments in this paper go
some way in this direction.

We shall extend these investigations in both a DMFT
and a DFT framework. First, the present BBC will be applied
within DMFT to a larger and more varied set of molecules
and their reactions. Already, our results for the HF molecule
suggest further refinement of BBC. Then, the established dis-
crepancy between the post-CI and self-consistent DMFT cal-
culations is to be addressed. Eventually, a successful DMFT
method should reproduce closely both the energies and NOs
sand their occupationsd of ab initio FCI/MRSDCI calcula-
tions. If an efficient evaluation of the approximate NOs can
be achieved in a Hartree–Fock-like self-consistent field pro-
cedure, the NO functionals offer the perspective of a large
improvement over the Hartree–Fock model with moderate
cost. This would not only yield good energetics on the basis
of the NO functionals, but also provide an excellentsnaturald
orbital basis for a subsequent CI calculation.

The present BBC functional will be applied also within
density functional theorysDFTd for which the proper de-
scription of the full potential curves is known to be a noto-
riously difficult problem. In this case, as was proposed in
Refs. 6 and 14, instead of NOs and their occupationshnij, the
occupied and virtual Kohn–Sham orbitalshfij are to be in-
serted in the xc functionals with corresponding participation
weightshwij. The latter quantities cannot be calculated with
the same self-consistent procedure asni, rather thewi are to
be obtained as functionals of other KS quantities, for ex-
ample, as functionals of the KS orbital energiesh«ij as in
Ref. 14. It is currently believed that the next step in refine-
ment of xc functionals in DFT has to involve the introduction
of orbital-dependent functionals. While the exact-exchange
functional is a natural first choice, it suffers from similar
disadvantages as the Hartree–Fock model does.34 Orbital-
dependent functionals should incorporate the effects of cor-
relation from the start in order to be competitive at all with
the available density and density-gradient based functionals.
The functionals of the type investigated here are such ex-
change plus correlation including orbital-dependent function-
als. The results of this paper prove their viability.
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