
International Journal of Automation and Computing 6(2), May 2009, 137-144

DOI: 10.1007/s11633-009-0137-0

An Improved Differential Evolution Trained Neural

Network Scheme for Nonlinear System Identification

Bidyadhar Subudhi∗ Debashisha Jena

Center for Industrial Electronics & Robotics, Department of Electrical Engineering, National Institute of Technology, Rourkela 769008, India

Abstract: This paper presents an improved nonlinear system identification scheme using differential evolution (DE), neural network
(NN) and Levenberg Marquardt algorithm (LM). With a view to achieve better convergence of NN weights optimization during the
training, the DE and LM are used in a combined framework to train the NN. We present the convergence analysis of the DE and
demonstrate the efficacy of the proposed improved system identification algorithm by exploiting the combined DE and LM training
of the NN and suitably implementing it together with other system identification methods, namely NN and DE+NN on a number of
examples including a practical case study. The identification results obtained through a series of simulation studies of these methods
on different nonlinear systems demonstrate that the proposed DE and LM trained NN approach to nonlinear system identification can
yield better identification results in terms of time of convergence and less identification error.

Keywords: Differential evolution, neural network (NN), nonlinear system identification, Levenberg Marquardt algorithm

1 Introduction

There is an increasing interest in nonlinear system iden-
tification research from the viewpoint of industry and
real world applications. A number of nonlinear system
identification techniques have been proposed, such as the
Voltera series, Winner-Hammerstein model and polynomial
identification[1] methods which involve computational com-
plexities. Further, there is a lot of research directed towards
applying NNs[2, 3] for nonlinear system identification due
to its function approximation capabilities. Multi-layered
perceptrons (MLP) with back-propagation training[3] have
been successfully employed for system identification of a
number of complex dynamical systems. Although the NN
has been proved to be a successful technique for nonlinear
system identification, there is still little concern about its
convergence and problem of being trapped at local minima.
In addition to the NNs, the wavelet network techniques[2]

have also been applied to system identification of nonlinear
systems in which adaptive techniques such as back prop-
agation algorithm are found to provide better accuracy
compared to non-adaptive ones such as the Voltera series,
Winner-Hammerstein modeling and polynomial methods.

During the last three decades evolutionary algorithms
(EAs), such as genetic algorithm (GA), and evolutionary
strategies (ES) have become very popular as function op-
timizers, because they are easy to implement and exhibit
fair performance for a wide range of functions. However,
continued development in the research community has ob-
served that the tuning of the GA parameters in complex
search spaces is difficult.

The differential evolution (DE) is a population based
stochastic optimization method similar to GA that has
found an increasing interest in recent years as an op-
timization technique due to its achievement of a global
minimum[4, 5]. DE is an effective, efficient, and robust opti-

Manuscript received December 19, 2007; revised November 28, 2008
*Corresponding author.
E-mail address: bidyadharnitrkl@gmail.com

mization method capable of handling nonlinear and multi-
modal objective functions. The beauty of DE is its simple
and compact structure which uses a stochastic direct search
approach and utilizes common concepts of EAs. Further-
more, DE uses a few easily chosen parameters and provides
excellent results for a wide set of benchmark and real-world
problems. Experimental results have shown that DE has
good convergence properties and outperforms other well-
known EAs[5]. Therefore, there is a wide scope for using
DE approach to neural weight optimization.

Although an evolutionary computing technique such as
the GA has been combined to the NN for nonlinear system
identification[6], it is not self-adaptive in nature. As a re-
sult, it is more difficult to tune its step size in the successive
generations. Hence, in the case of GA-NN, fast convergence
is hard to achieve. In this paper, we attempt to exploit the
advantages of DE which requires a lesser number of param-
eters to tune and is easy to code and is self-adaptive in
nature because in the differential evolution the differential
term is very large at the moment of starting. As the so-
lution approaches to the global minimum, the differential
term automatically changes to a low value. As the differ-
ential term changes automatically with the progress of the
search process, the algorithm becomes self-adaptive. This
will be explained in more detail in Section 2.

It may be noted that using the DE approach alone
may yield a slow convergence speed although it provides
the global minimum as compared to classical optimiza-
tion methods such as the gradient descent and Leven-
berg Marquardt (LM) methods. Therefore, we propose
a DE+LM+NN approach in view of achieving the global
minimum with a good convergence speed. In this paper, a
differential evolution method combined with LM has been
applied as a global optimization method for training a feed-
forward NN. In the proposed scheme, the DE is used to
train the NN that is chosen as a suitable candidate for non-
linear system identification. After observing the trends of
training towards a minimum through DE, the network is

138 International Journal of Automation and Computing 6(2), May 2009

then trained by LM. The role of the DE here is to approach
the global minimum point and then LM is used to move
forward to achieve a fast convergence. The nonlinear sys-
tems considered in [7, 8] have been chosen in this paper for
demonstrating the efficacy of the proposed system identifi-
cation approach.

The rest of the paper is organized as follows. Section 2 in-
cludes a brief review on differential evolution. In Section 3,
we discuss the convergence analysis of the DE. Section 4
gives an overview of the proposed DE+LM+NN algorithm.
In Section 5, results are included and discussed to verify
the effectiveness of the proposed method. Finally, conclud-
ing remarks on the improved identification scheme are pre-
sented in Section 6.

2 Review on differential evolution

In a population of potential solutions to an optimiza-
tion problem within an n-dimensional search space, a fixed
number of vectors are randomly initialized, then evolve over
time to explore the search space and to locate the minima
of the objective function.

In DE, individuals are represented as real-valued vectors.
For each generation of the evolution process, each individ-
ual (target individual) of the population competes against
a new individual (trial individual) for survival to the next
generation. In the next generation, the fitter of the two in-
dividual survives. The trial individual is created by recom-
bining the target individual with another individual created
by mutation (mutant individual). Mutation is performed
on the best individual found so far in the evolution process.
For each target vector xi,G, a mutant vector is produced
using the following formula

vi,G+1 = xr1,G + Fz2

z2 = (xr2,G − xr3,G)
(1)

where i, r1, r2, r3 ∈ {1, 2, · · · , NP} are randomly chosen
and must be different from each other. Considering (1),
it can be seen that the pdf of the differential population
z2 used during the mutation changes automatically as the
generation proceeds and eventually the solution converges
towards the global minimum.

Let P be the number of populations. In Fig. 1, five pop-
ulations X1, X2, · · · , X5 produce ten numbers of vector
differences in one direction and twenty numbers in both di-
rections as shown in Fig. 2. Similarly, for P populations
there will be P (P − 1)/2 vector differences in one direction
and P (P−1) in both directions. This implies that the mean
of the pdf is always zero and the shape of the distribution
changes automatically in successive generations depending
on the surface of the objective function being searched as
shown in Fig. 3.

In (1), F is the mutation factor. Recombination creates
an offspring (trial individual) by selecting parameters from
either the target individual or the mutant individual. There
are two methods of recombination in DE, namely, binomial
recombination and exponential recombination. In the bi-
nomial recombination, a series of binomial experiments are
conducted to determine which parent contributes which pa-
rameter to the offspring. Each experiment is mediated by

Fig. 1 Five populations

Fig. 2 Twenty vector differences

Fig. 3 Probability density functions

a crossover constant, CR, (0 6 CR 6 1). Starting at a
randomly selected parameter, the source of each parameter
is determined by comparing CR to a uniformly distributed
random number from the interval [0, 1). If the random
number is greater than CR, the offspring gets its parameter
from the target individual; otherwise, the parameter comes
from the mutant individual. In exponential recombination,
a single contiguous block of parameters of random size and
location is copied from the mutant individual to a copy of
the target individual to produce an offspring. A vector of
solutions are selected randomly from the mutant individuals
when randj (randj ∈ [0, 1] is a random number) is less than
CR.

In crossover, the parent vector is mixed with the mutated
vector to produce a trial vector tji,t+1

tji,t+1 =

{

vji,t+1, if randj 6 CR

wji,t+1, if randj > CR
, j = 1, 2, · · · , D

(2)

B. Subudhi and D. Jena / An Improved Differential Evolution Trained Neural Network Scheme · · · 139

where D is the number of parameters to be optimized.
At each generation, new vectors are generated by the

combination of vectors randomly chosen from the current
population (mutation). The upcoming vectors are then
mixed with a predetermined target vector. This operation
is called recombination and produces the trial vector. Fi-
nally, the trial vector is accepted for the next generation iff
it yields a reduction in the value of the objective function.
This last operator is referred to as a selection.

Fig. 4 shows a two-dimensional objective function illus-
trating different vectors xi which are important in differ-
ential evolution. It shows the process of generating a trial
vector for the scheme explained in (2).

Fig. 4 A two-dimensional objective function

3 Convergence analysis of DE

Let PPP G = (www1,G, · · · ,wwwNP,G)T, G = 1, · · · , Gmax (where
Gmax is the maximum number of generations) be the ran-
dom population of size NP at step G > 0, and FG =
min {f (PPP G,i) : i = 1, · · · , NP} be the best fitness value
within the population at step G > 0. As soon as the ran-
dom variable FG attains the value of the global maximum,
f∗, it is ensured that the population contains an individual
representing the global solution of the minimization prob-
lem. Ideally, this event should happen after a finite number
of steps with probability one regardless of the initialization
of the DE algorithm.

Property 1. In DE, it is known that the best solutions
found in the process of evolution in the current generation
are carried over to the next generation. This property guar-
antees that the global optimum will be found in finite time
and never be lost once it is achieved. Thus, the property
above shows that the random sequence (FG : G > 0) con-
verges to the limit f∗.

Let (w1, w2, · · · , wn) ∈ P n denote the population of par-
ents known as target individuals. An offspring is produced
as follows. At first m number of parents are selected to
serve as mates for the mutation process. This operation is
denoted as follows

mat : PPP n → PPP m where 3 6 m 6 n.
These individuals are then mutated by the following pro-

cedure
mut : PPP m → PPP .

Thus, it yields a mutated individual. Finally, recombination
with the target individual, we have a trial individual using
the following process

reco : PPP → PPP .

Now, the selection is done by the trial and target individuals
through a selection procedure given as

sel : PPP → PPP .

The above selection procedure decides which ones will serve
as the new parents in the next generation. Thus, a single
generation of differential evolution can be described as fol-
lows.

∀i ∈ {1, · · · , NP} : ui = reco(mut(mat(w1 · · ·wn)))

∀i ∈ {1, · · · , NP} : yi = {sel(wi, yi)} .

After this operational description, differential evolution is in
the position of defining some assumptions about the prop-
erties of the variation and selection operators.

Assumption 1. Every parent may be selected for mat-
ing and can be changed to an arbitrary other individual by a
finite number of successive mutations, i.e., for every w ∈ PPP
there exists a finite path such that Pr {wi+1 = mut (wi)} =
1 for i = 1, · · · , (G − 1).

Assumption 2. Every mutant individual is altered by
the recombination with the minimum probability pcr > 0.

∀i ∈ {1, · · · , NP} :

Pr {ui = reco(mut(mat(w1 · · ·wn)))} > pcr > 0.

Assumption 3. Every trial individual competing for
survival will survive with a minimum probability of 0.5.

∀i ∈ {1, · · · , NP} : Pr {sel(wi, yi)} = 0.5.

Assumption 4. The best individual among the com-
petitors in the selection process will survive with probabil-
ity 1.

Theorem 1. (Convergence analysis of the DE algo-
rithm) If the Assumptions 1–3 are valid, then the differen-
tial evolution visits the global optimum after a finite num-
ber of generations with probability one regardless of the
initialization.

Proof. Let random variable T = {G > 0 : FG = f∗} de-
note the first hitting time of the global solution. An evo-
lutionary algorithm is said to visit the global optimum in
finite time with probability one if Pr {T < ∞} = 1 regard-
less of the initialization.

Let PPP ∗ = {w ∈ PPP : f(w) = f∗} be the set of globally opti-
mal solutions. Owing to Assumption 1, there exists a finite
path from an arbitrary w /∈ PPP ∗ to some w∗ ∈ PPP ∗ that can
be traversed by successive mutations. Let tx be the length
of the path between w /∈ PPP ∗ to the set w∗ ∈ PPP ∗.

Now, we consider an arbitrary parent w of some popu-
lation known as the target individual. Assumption 1 en-
sures that this parent passes the mutation process with ev-
ery change with probability one. The probability that the
mutated individual transits to the next point of the path
towards w∗ ∈ PPP ∗ by recombination is guaranteed to be at
least pcr > 0 by Assumption 2.

140 International Journal of Automation and Computing 6(2), May 2009

Owing to Assumption 3, this offspring will survive the
selection process at least with probability ps = 0.5. Thus,
the probability that parent w /∈ PPP ∗ transits to a parent rep-
resenting the next point on the path to w∗ ∈ PPP ∗ is at least
0.5 pcr > 0. Consequently the probability that a globally
optimal solution has not been found is (1 − 0.5 pcr).

A Gw fold repetition of this argumentation shows that
the probability for a globally optimal solution not to be
found after Gw generations is at most (1 − 0.5 pcr)

Gw

which converges exponentially fast to zero as Gw → ∞.
This immediately implies Pr {T < ∞} = 1, where T =
{G > 0 : FG = f∗}. Thus, a global optimum will be vis-
ited for the first time after a finite number of iterations
with probability one. ¤

4 Proposed DE+LM+NN system iden-

tification scheme training algorithm

In this section, we describe how a DE is applied to the
training NN in the framework of system identification (see
the following Algorithm 1). According to Step 7, in the
Algorithm 1, after reaching a particular value of ε, the al-
gorithm is switched from the global search space of the dif-
ferential evolution algorithm to a local search by exploiting
the LM technique. In differential evolution, at the moment
of starting, the differential term is very large. As the solu-
tion approaches global minimum, the differential term au-
tomatically changes to a low value. Thus, during the initial
period of the search process, the convergence speed is fast
and the search space is very large. However, during the lat-
ter stage of the search process due to the small differential
term, (xr2,G − xr3,G), the algorithm becomes slow which
may take more time to converge. To overcome such a situ-
ation, we then exploit the LM, a gradient based algorithm,
to take over the optimization to achieve the fast conver-
gence. The role of LM at this moment is to increase the
convergence speed for reaching the global minimum. Our
objective here is to apply DE to the weight optimization of
a typical feed-forward NN. The output of a feed-forward NN
is a function of synaptic weights www and input values xxx, i.e.,
yyy = f(xxx,www). In the training process, both the input vec-
tor xxx and the output vector yyy are known, and the synaptic
weights in www are adapted to obtain appropriate functional
mappings from the input xxx to the output yyy. Generally,
the adaptation can be carried out by minimizing the net-
work error function E which is of the form E(yyy, f(xxx,www)).
In this work, we have taken E as mean squared error, i.e.,
E = [

∑N

k=1 [yyy − f(xxx,www)]2]/N , where N is the number of
data considered.

The optimization goal is to minimize the objective func-
tion E by optimizing the values of the network weights www,
where www = (w1, · · · , wd).

Algorithm 1. (DE+LM+NN identification algorithm)
Step 1. Initialize population.

PPP G = (www1,G, · · · ,wwwNP,G)T, G = 1, · · · , Gmax

wwwi,G = (w1,i,G, · · · , wD,i,G), i = 1, · · · , NP

where D is the number of weights in the weight vector and
in wwwi,G, i is index to the population and G is the generation
to which the population belongs.

Step 2. Evaluate all the candidate solutions inside pop-
ulation for a specified number of iterations.

Step 3. For each i-th candidate in the population, selects
the random variables r1, r2, r3 ∈ {1, 2, · · · , NP}.

Step 4. Apply mutation operator to yield a mutant vec-
tor, i.e.,

vj,i,G+1 = wj,r1,G + F (wj,r2,G − wj,r3,G), for j = 1, · · · ,

D (i 6= r1 6= r2 6= r3) ∈ {1, · · · , NP} and F ∈ (0, 1]

Step 5. Apply crossover to produce trial vector.

tj,i,G+1 =

{

vj,i,G+1, if randj [0, 1) 6 CR

wj,i,j , otherwise

where CR ∈ [0, 1].
Step 6. Apply selection between the trial vector and tar-

get vector.

wwwi,G+1 =

{

ti,G+1, if E(yyy, f(xxx,wwwi,G+1)) 6 E(yyy, f(xxx,wwwi,G))

wwwi,G, otherwise

Step 7. If E 6 ε, where ε > 0 then go to Step 8.
Step 8. Initialize the weight matrix of Levenberg-

Marquardt algorithm. Find out the value of E.
Step 9. Compute the Jacobian matrix JJJ(w).
Step 10. Find ∆w using the following equation

∆w =
[

JJJT(w) J(w) + µI
]

−1

JJJT(w) E.

Step 11. Recompute E using (w + ∆w). If this new E is
smaller than that computed in Step 7, then reduce µ and
go to Step 1, where µ is the damping factor.

Step 12. The algorithm is assumed to have con-
verged when the norm of the gradient, i.e., ‖∇E‖ =
∥

∥JJJT(w)yyy − f(xxx, w)
∥

∥ is less than some predetermined value,
or when the sum of squares of errors has been reduced to
some error goal.

5 Results and discussion

We present here the performance achieved through using
the proposed DE+LM+NN scheme to a number of bench-
mark problems as follows.

Example 1. The nonlinear system[5] to be identified is
expressed by

yp(k + 1) =
yp(k)[yp(k − 1) + 2][yp(k) + 2.5]

8.5 + [yp(k)]2 + [yp(k − 1)]2
+ u(k) (3)

where yp(k) is the output of the system at the k-th time step
and u(k) is the plant input which is a uniformly bounded
function of time. The plant is stable at u(k) ∈ [−2 2]. The
identification model is in the form of

ypi(k + 1) = N(yp(k), yp(k − 1)) + u(k) (4)

where N(yp(k), yp(k−1)) is the nonlinear function of yp(k)
and yp(k−1). The inputs to the NN are yp(k) and yp(k−1).
The output from the NN is ypi(k + 1). The goal is to train
the NNs such that when an input u(k) is presented to the
NN and to the nonlinear system, the NN outputs ypi(k)
and the actual nonlinear system output yp(k) will closely
match.

B. Subudhi and D. Jena / An Improved Differential Evolution Trained Neural Network Scheme · · · 141

1) NN identifier

The NN identifier structure consisted of eleven neurons
in the hidden layer. After 1000 epochs the training of the
neural identifier stopped. After the training, its prediction
capability was tested for input.

u(k) =

2 cos(
2πk

100
), if k 6 200

1.2 sin(
2πk

20
), if 200 < k 6 500.

Fig. 5 shows the system identification results obtained
using NN. The error is more at time steps 100 and 200.
Fig. 6 shows the identification error.

Fig. 5 Identified and actual models (NN identifier)

Fig. 6 Error in modeling (NN identifier)

2) DE+NN identifier

Fig. 7 shows the identification performance of the sys-
tem using NN and differential evolution. Here, the net-
work was trained by using differential evolution instead of
classical ones such as gradient descent and LM algorithms.
The results obtained with DE+NN indicate no significant
improvement over the previously discussed NN identifier.
Here, eleven hidden layer neurons and thousands of epochs
were also taken. Fig. 8 shows the identification error in the
case of the DE+NN approach.

3) DE+NN+LM identifier

Fig. 9 gives the result of proposed DE+LM+NN scheme.
In this case the network was trained by both DE and LM
algorithms. Here, eleven hidden layer neurons were con-
sidered. Fig. 10 shows its identification error curve for
DE+LM+NN system identification. From Fig. 10, it is clear
that identification error is smaller than errors in NN and
NN+DE. This result clearly indicates that accurate identi-
fication of a nonlinear system is achieved, i.e., the superior

identification capability of the proposed scheme over the
other NN and DE+NN methods.

Fig. 7 Identified and actual models (DE+NN identifier)

Fig. 8 Error in modeling (DE+NN identifier)

Fig. 9 Identified and actual models (DE+LM+NN identifier)

Fig. 10 Error in modeling (DE + LM + NN identifier)

142 International Journal of Automation and Computing 6(2), May 2009

Example 2. The plant[7] to be identified is governed by

yp(k + 1) = 0.3 yp(k) + 0.6 yp(k − 1) + N [u(k)] (5)

where the unknown function has the form

N(u) = 0.6 sin(π u) + 0.3 sin(3π u) + 0.1 sin(5π u). (6)

In order to identify the plant, a series parallel model gov-
erned by the difference equation

ŷp(k + 1) = 0.3 yp(k) + 0.6 yp(k − 1) + N [u(k)] (7)

was used.
1) NN identifier

The NN identifier structure consisted of eleven neurons
in the hidden layer. After 1500 epochs, the training of the
neural identifier stopped. After the training, its prediction
capability was tested for input given as

u(k) = sin
2πk

250
.

As shown in Fig. 11, the learned network predicted the
nonlinear system outputs. Fig. 12 shows the identification
error. The figures clearly indicate the poor identification
performance of the neural identifier.

Fig. 11 Identified and actual models (NN identifier)

Fig. 12 Error in modeling (NN identifier)

2) DE+NN identifier

Fig. 13 shows the identification performance of the sys-
tem using differential evolution. Here, the network was
trained by using differential evolution instead of classical
ones such as gradient descent and LM algorithms. The
results obtained with DE+NN indicate no significant im-
provement over the previously discussed existing ones.

Fig. 13 Identified and actual models (DE identifier)

3) DE+LM+NN identifier

Fig. 14 gives the result of proposed DE+LM+NN scheme.
In this case, the network was trained both by DE and LM al-
gorithms. This result clearly indicates the superior identifi-
cation capability of the proposed scheme over the other two
methods discussed, i.e., the NN and DE+NN approaches.
Fig. 15 shows its identification error curve for DE+LM+NN
system identification.

Fig. 14 Identified and actual models (DE+LM+NN identifier)

Fig. 15 Error in modeling (DE+LM+NN identifier)

Example 3. The Box and Jenkins′ gas furnace data are
frequently used in performance evaluation of system identi-
fication methods[8]. The data can be obtained from the site.
The example consists of 296 input–output samples recorded
with a sampling period of 9 s. The gas combustion process
has one variable, the gas flow u(k), and one output vari-
able, the concentration of carbon dioxide (CO2) y(k). The
instantaneous values of output y(k) have been regarded as
being influenced by ten variables y(k−1), y(k−2), y(k−3),
y(k−4), y(k−5), u(k−1), u(k−2), u(k−3), u(k−4), and
u(k−5). In the literature, the number of variables influenc-
ing the output varies from 2 to 10. In the proposed method,
ten variables were chosen. The results shown gives a com-
parison of the identification methods such as NN trained
with conventional methods and NN trained with DE and
hybrid differential evolution methods. For all the methods,

B. Subudhi and D. Jena / An Improved Differential Evolution Trained Neural Network Scheme · · · 143

eleven hidden layer neurons were taken and the results were
obtained after 1000 epochs. The number of training data
was taken as 100 for all the cases and the other 196 data
were the test data.

1) NN identifier

Fig. 16 shows the graphs of the identified results obtained
with NN and the actual system. Here, the NN fails to
identify the system dynamics at iteration of 260 thus leading
to a big identification error.

Fig. 16 Identified and actual models (NN identifier)

2) DE+NN identifier

The DE+NN identified system dynamics and the actual
system dynamics were plotted in Fig. 17. It is observed that
there is no improvement in identification with respect to the
previous one, i.e., the NN identifier.

Fig. 17 Identified and actual models (DE+NN identifier)

3) DE+LM +NN identifier

The DE+LM+NN identified system dynamics and the
actual system dynamics were plotted in Fig. 18.

Fig. 18 Identified and actual models (DE+LM+NN identifier)

Fig. 19 gives the comparison of errors in modeling be-
tween the proposed DE+LM+NN identifier and the NN
identifier. In this case, the network was trained both by DE
and LM algorithm. From Fig. 18, we see that the proposed
DE+LM+NN scheme has exhibited the expected identifi-
cation performance, i.e., the error between the true sys-
tem and the identified one is the minimum. Table 1 sum-
maries the performance of the proposed method of system
identification (DE+LM+NN) over the existing ones (NN,
DE+NN) for different examples and case studies.

Fig. 19 Comparison of errors in modeling (NN vs (DE + LM +

NN identifier))

Table 1 Comparison of performances of three methods

Method Time of Mean squared Example

convergence (s) error (MSE)

Only NN 17.490 0.0047

DE+NN 50.112 6.8830 Example 1

DE+LM+NN 24.899 0.0030

Only NN 18.991 0.3115

DE+NN 121.148 3.5470 Example 2

DE+LM+NN 30.985 0.0059

Only NN 20.929 0.0038

DE+NN 102.347 2.6680 Example 3

DE+LM+NN 54.895 0.0001

6 Conclusions

In this paper, we have clearly described the scope of im-
proving the nonlinear system identification strategy by the
improved training of the NNs using both the differential
evolution and LM algorithms. In the proposed identifica-
tion framework, differential evolution is used only to find
approximate values in the vicinity of the global minimum.
These approximate weight values are then used as starting
values for a fast convergence algorithm, i.e., LM algorithm.
From the results presented in Section 5, it is clear that
there is certainly an improvement in identification perfor-
mance for nonlinear systems over the existing approaches.
In comparison with the DE+NN approach, the proposed
DE+LM+NN approach provides better system identifica-
tion performance in terms of speed of convergence and iden-
tification capability. Although good identification results
have been obtained in this work, it seems that an extensive
research is still required to implement different concepts of

144 International Journal of Automation and Computing 6(2), May 2009

the DE, such as the opposition based differential evolution
(ODE) in system identification and to verify whether the
proposed learning scheme can bring clear improvement in
terms of convergence speed and better identification accu-
racy.

Acknowledgement

The authors acknowledge their sincere thanks to the
anonymous reviewers and the editor for suggesting a num-
ber of improvements for enhancing the quality of the paper.

References

[1] S. Chen, S. A. Billings, W. Luo. Orthogonal Least Squares
Methods and Their Application to Non-linear System Iden-
tification. International Journal of Control, vol. 50, no. 5,
pp. 1873–1896, 1989.

[2] S. A. Billings, H. L. Wei. A New Class of Wavelet Networks
for Nonlinear System Identification. IEEE Transactions on
Neural Networks, vol. 16, no. 4, pp. 862–874, 2005.

[3] K. S. Narendra, K. Parthaasarathy. Identification and Con-
trol of Dynamical Systems Using Neural Networks. IEEE
Transactions on Neural Networks, vol. 1, no. 1, pp. 4–27,
1990.

[4] R. Storn. System Design by Constraint Adaptation and
Differential Evolution. IEEE Transactions on Evolutionary
Computation, vol. 3, no. 1, pp. 22–34, 1999.

[5] J. Ilonen, J. K. Kamarainen, J. Lampinen. Differential Evo-
lution Training Algorithm for Feed Forward Neural Net-
works. Neural Processing Letters, vol. 17, no. 1, pp. 93–105,
2003.

[6] O. Ludwig Jr., P. C. Gonzalez, A. C. de C. Lima. Opti-
mization of ANN Applied to Non-linear System Identifi-
cation Based in UWB. In Proceedings of the Symposium
on Trends in Communications, IEEE Press, Slovakia, pp.
56–59, 2006.

[7] C. T. Lin, C. S. G. Lee. Neural Fuzzy Systems: A Neuro-
fuzzy Synergism to Intelligent Systems, Prentice-Hall, Inc.,
New Jersey, USA, 1996.

[8] G. E. P. Box, G. M. Jenkins. Time Series Analysis, Forecast-
ing and Control, Holden Day, San Francisco, USA, 1970.

Bidyadhar Subudhi received the
Bachelor degree in electrical engineer-
ing from Regional Engineering College
Rourkela (presently National Institute of
Technology Rourkela), India, Master of
technology in control & instrumentation
from Indian Institute of Technology, In-
dia, in 1994, and the Ph.D. degree in con-
trol system engineering from University of
Sheffield, UK, in 2003. He worked as a post

doctoral research fellow in the Department of Electrical & Com-
puter Engineering, National University of Singapore (NUS), Sin-
gapore, in 2005. Currently, he is a professor in the Department
of Electrical Engineering in the National Institute of Technology,
India. He is a fellow of the Institution of Engineers (India), life
member of Systems Society of India and senior member of IEEE.
He is serving as a technical committee member, IEEE Intelligent
Control Society.

His research interests include system identification, intelligent
control, control of mobile and flexible robot manipulators, and
estimation of signals & systems.

Debashisha Jena received the Bachelor
of electrical engineering degree from Uni-
versity College of Engineering, India, in
1996 and Master of technology in electri-
cal engineering in 2004. He is currently
a Ph. D. candidate in the Department of
Electrical Engineering, National Institute
of Technology, India. He worked as a fac-
ulty member in the National Institute of
Science & Technology, India, during 2004–

2007. He has been awarded a GSEP fellowship in 2008 from
Canada for research in control and automation.

His research interests include evolutionary computation and
system identification with application to non-linear systems.

