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Abstract

Background: Common spatial pattern (CSP) has been an effective technique for feature extraction in
electroencephalography (EEG) based brain computer interfaces (BCIs). However, motor imagery EEG signal
feature extraction using CSP generally depends on the selection of the frequency bands to a great extent.

Methods: In this study, we propose a mutual information based frequency band selection approach. The
idea of the proposed method is to utilize the information from all the available channels for effectively
selecting the most discriminative filter banks. CSP features are extracted from multiple overlapping sub-bands. An
additional sub-band has been introduced that cover the wide frequency band (7–30 Hz) and two different types of
features are extracted using CSP and common spatio-spectral pattern techniques, respectively. Mutual information is then
computed from the extracted features of each of these bands and the top filter banks are selected for further processing.
Linear discriminant analysis is applied to the features extracted from each of the filter banks. The scores are fused
together, and classification is done using support vector machine.

Results: The proposed method is evaluated using BCI Competition III dataset IVa, BCI Competition IV dataset I and BCI
Competition IV dataset IIb, and it outperformed all other competing methods achieving the lowest misclassification rate
and the highest kappa coefficient on all three datasets.

Conclusions: Introducing a wide sub-band and using mutual information for selecting the most discriminative sub-bands,
the proposed method shows improvement in motor imagery EEG signal classification.
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Background
Communication is the transfer of information through

various ways such as speaking, writing, using sign

language or other mediums, and is essential in our daily

lives. Human brain is one of the key parts of the human

body controlling all the body activities including motor

and muscle movement. Every time a communication is

initiated, the message is first constructed in the brain.

Over 100 billion neurons are contained by the human

brain [1]. These neurons communicate with each other

producing different patterns of electrical signals (gener-

ated due to electromagnetic activities inside the brain)

for different thoughts [2]. These electrical signals are

known as the electroencephalography (EEG) signals. The

purpose of a brain computer interface (BCI) system is to

capture the EEG signal and decode them for different

brain activities. This provides the brain a direct channel

of communication with the external devices without the

need for any muscular movement [3].

Over the past two decades, advances in signal processing,

pattern recognition and machine learning techniques have

resulted in a great progress for BCI research [4]. A huge

amount of focus is dedicated to the field of biomedical

engineering [5–16], with focus on BCI research. The

severely disabled people can benefit from the BCI system

to reinstate their ability of environmental control [17].

BCI has several applications such as communication con-

trol [18, 19], environment control [20], movement control

[21, 22] and neuro-rehabilitation [23–25]. The use of non-

invasive EEG sensors to capture the EEG signal has gained

widespread attention out of the many other available

methods. This is because non-invasive EEG devices such

as Emotiv EPOC/EPOC+ headset [26] is portable, can be

easily integrated for real time analysis and has compara-

tively low cost. Thus, it is the most suitable method to

capture EEG signals for BCI systems [27, 28]. The EEG

signal captures all the activities that are taking place in the

brain and thus it is referred to as a complex signal. The

raw EEG signal is a weak signal with very low amplitudes

and is generally contaminated by artifacts and noise such

as Electrocardiogram (ECG), Electrooculogram (EOG)

and Electromyogram (EMG). Therefore, preprocessing

of the raw EEG signals is mostly carried out to remove

artifacts and noise.

EEG signals can be grouped into different frequency

bands as different type of information is contained in

different bands. Various methods of feature extraction

and classification [13–15, 29–31] have been proposed.

CSP has been most superior and widely used feature

extraction method. CSP transforms the data to a new

time series where the variance of one class of signal is

maximized and that of another class is minimized.

However, feature extraction of motor imagery EEG

signal using CSP hugely depends on the selection of the

frequency bands. Since the frequency bands are subject-

specific, it is difficult to determine the optimal filter

bands. Poorly selected bands will mostly not be able to

capture the band-power changes that the motor imagery

event causes resulting in CSP being less effective [32].

Generally, a wide band (eg., 4–40 Hz) is selected for CSP

in motor imagery EEG signal classification. This wide

band covered most of the motor imagery related features,

however, it also contained other redundant information.

Over the past few years, studies [13, 32–37] have sug-

gested that optimizing the filter band could improve the

motor imagery EEG signal classification. Common spatio-

spectral pattern (CSSP) [38] has been proposed to further

enhance the performance of CSP. In CSSP, a finite impulse

response (FIR) filter is optimized within CSP. This is

realized by inserting a temporal delay τ allowing fre-

quency filters to be tuned individually and CSSP achieved

improved performance. Common sparse spectral spatial

pattern (CSSSP) [39] was proposed to further improve the

CSSP approach, which finds spectral patterns that is

common to all the channels instead of finding different

spectral patterns for each channel as in CSSP.

As an alternative method, sub-band common spatial

pattern (SBCSP) [40] has been proposed, where the motor

imagery EEG signals are filtered at multiple sub-bands

and CSP features are extracted from each of the sub-

bands. To reduce the dimensionality of the sub-bands

linear discriminant analysis (LDA) has been applied separ-

ately to the features of each of the sub-bands and the

scores fused together for classification. SBCSP achieved

superior classification accuracy than those of CSP, CSSP

and CSSSP. However, the possible association of the CSP

features obtained from different sub-bands has been

ignored by SBCSP and therefore filter bank CSP (FBCSP)

[32] was proposed to address this problem. FBCSP

estimates the mutual information of the CSP features

from multiple sub-bands in order to select the most

discriminative features. The selected features are used for

classification using support vector machine (SVM) classi-

fier. FBCSP outperformed SBCSP, however, it still utilized

several sub-bands that accounts for an increased compu-

tational cost. Discriminant filter bank CSP (DFBCSP)

[35, 36] has been proposed to address this problem.

DFBCSP utilizes the fisher ratio (FR) of single channels

(C3, C4 or Cz) band power for selecting the most

discriminant sub-bands from multiple overlapping

sub-bands. The CSP features are then extracted for

each sub-band, and used for classification using SVM

classifier. DFBCSP achieved improved classification

accuracy and a reduced computational cost compared

to SBCSP and FBCSP. The DFBCSP framework is

shown in Fig. 1.

In CSP, empirical averaging of training samples covari-

ance matrices is done. This includes the low quality signals,
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which degrades the performance of the system. Therefore,

the authors in [41] proposed a sparsity-aware method

where weighted averaging has been introduced. Using l1
minimization problem, weight coefficients are assigned to

each of the trials. The low quality trials get assigned to

almost zero weight values. This weighting method was

applied for determining the average covariance matrix in

the CSP algorithm and it achieved improved performance.

In [30], the authors proposed to use decimation filter that

was manually tuned to obtain optimal results. Fishers’

discriminant analysis (FDA) was used to reduce the

dimensionality of the features and SVM classifier was

employed. The method (named CD-CSP-FDA) achieved

improved performance compared to the state-of-the-art

methods.

Recently, a sparse filter bank CSP (SFBCSP) [42] method

that also uses multiple filter bands is proposed, which opti-

mizes the sparse patterns. Supervised technique is used to

select significant CSP features from multiple overlapping

frequency bands. SVM classifier is then used for motor

imagery classification using the selected features. Sparse

Bayesian learning has also gained increased attention

recently and has been used for feature selection in various

applications. In [13], the EEG signal was decomposed into

multiple sub-bands and CSP features were extracted.

Sparse features are obtained using the Bayesian learning

approach, which are used for classification using the SVM

classifier. The authors named their method as SBLFB and

it outperformed all the state-of-the-art methods. In [43] a

hybrid genetic algorithm-particle swarm optimization

based means clustering has been proposed for 2 class

motor imagery tasks. However, clustering methods

[44, 45] and hidden markov model [46] have not been

fully explored for motor imagery EEG signal classification.

In this paper, we propose an improved DFBCSP

method. The contribution and novelty of the proposed

approach, which makes our proposed approach different

from DFBCSP method are as follows. Firstly, instead of

using FR of single channels band power as in DFBCSP-FR,

we use mutual information calculated from features gener-

ated using all channel data for selecting the bands that give

optimal results. Using only a single channels band power

with FR as the criterion for selecting the sub-bands

(DFBCSP-FR) will not be effective. This is due to the fact

that EEG signals are mostly contaminated by noise. There-

fore, if the single channel used for calculating FR is

corrupted by noise, then this band selection method will

fail. This results in sub-bands being selected that will not

always give optimal results as sub-bands with redundant

information might be selected. Thus, we propose to utilize

all available channels data for selecting the most discrimin-

ant sub-bands by making use of the mutual information in

order to obtain optimal results. Using all channels data for

band selection reduces the chance of a sub-band with

redundant information being selected compared to that of

using single channel information for band selection.

Secondly, instead of using only CSP features from over-

lapping sub-bands as in DFBCSP-FR, we have introduced

Fig. 1 The DFBCSP framework
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an additional wide band of 7–30 Hz with CSP and CSSP

features. In our previous work [30], we have shown that

promising results can be obtained by using a single wide

band in the frequency range of 7–30 Hz. It is also shown

that using wide band CSP and CSSP methods produce

promising results for some subjects (refer to Table 1,

Table 2 and Table 3) that other competing methods could

not achieve. Therefore, to take advantage of the wide band

CSP and CSSP, we have introduced a single wide band of

7–30 Hz together with the twelve overlapping sub-bands

in the range of 4–30 Hz having a bandwidth of 4 Hz and

overlap of 2 Hz. Both CSP and CSSP features are

extracted from the wide band. Use of the CSP and CSSP

features of the wide band boosts the performance of the

system in majority cases by providing features that are

more significant (making it to the top 4 sub-bands having

most discriminant features). Thus, the sub-bands with

more significant information are selected, and optimal

results are achieved. This is shown by the reduction in the

misclassification rate that is achieved, which is due to the

fact that the wide band contains more significant informa-

tion in majority cases (refer to Table 4, Table 5 and Table 6,

which shows that the wide band is selected majority of the

times).

The public BCI Competition III dataset IVa, BCI

Competition IV dataset I and BCI Competition IV dataset

IIb are used to validate the effectiveness of the proposed

method in comparison with CSP, CSSP, FBCSP, DFBCSP,

SFBCSP and SBLFB methods. Experimental results ob-

tained are promising and can be instrumental in developing

improved motor imagery based BCI systems.

Methods

Feature extraction using CSP

EEG based BCI has recently gained widespread attention

in becoming a medium of communication between the

human brain and the external world. CSP has been

commonly used for feature extraction in EEG based

BCI research and applications. In CSP, the spatial filter

Wcsp is formed by selecting the first and last m columns

of the CSP matrix, W. Thus, the bandpass filtered EEG

signal Xn ∈RC xT is transformed using (1), where n

denotes the n-th trial, C is the number of channels and

T is the number of sample points.

Zn ¼ WT
CSP Xn ð1Þ

The CSP features of n-th sample is then extracted using

(2), where f in is the i-th feature of the n-th trial, and

var(Zj
n) denotes the variance of j-th row of Zn. The fea-

ture matrix is thus formed as F = [ f1;…; fN], where N is

the total number of trials. A comprehensive explanation

of CSP process can be obtained from [47].

f in ¼ log
var Zi

n

� �

P2m
j¼1 var Zj

n

� �

 !

ð2Þ

Feature extraction using CSSP

The CSSP method was proposed in order to improve

the performance of CSP by inserting a temporal delay to

the raw signal. The time delay τ value of 1 to 15 sample

points have been evaluated and the best value is selected

using 10 fold cross validation. The signal is filtered using

the bandpass filter followed by spatial filtering using (1)

and feature extraction using (2).

The improved DFBCSP approach

In this study, we propose an improved method that utilizes

the mutual information for selecting the most discriminant

filter banks (sub-bands) for motor imagery EEG signal

classification. An illustration of the calibration phase of the

proposed approach is given in Fig. 2. The dataset is divided

into train and test data. Only train data is used in the

calibration phase for selecting the filter banks. The train

data is filtered using 13 filter banks. 12 filter banks are in

the range of 4–30 Hz having a bandwidth of 4 Hz with

2 Hz overlap, and the final filter bank of 7–30 Hz.

Figure 3 shows the general framework of the proposed

approach, giving detailed information for each of the steps.

The raw EEG signals are decomposed into sub-bands, and

CSP and CSSP features are extracted, respectively as

shown in Fig. 3. Mutual information is then calculated

from the feature matrix (refer to next sub-section) in order

to determine the 4 most discriminating filter banks (filtered

Table 1 Misclassification rate (%) of different methods using dataset 1

Subject CSP CSSP FBCSP DFBCSP (FR) DFBCSP (MI) SFBCSP SBLFB Proposed

aa 21.00 ± 5.31 17.00 ± 7.34 17.14 ± 8.19 9.64 ± 5.01 11.50 ± 6.42 18.43 ± 7.45 18.71 ± 7.45 8.79 ± 5.16

al 3.86 ± 3.63 3.07 ± 3.03 1.29 ± 1.18 1.00 ± 1.91 1.21 ± 1.16 1.64 ± 1.36 1.36 ± 1.23 1.14 ± 1.03

av 28.29 ± 7.46 28.86 ± 7.10 30.36 ± 8.23 31.21 ± 8.92 25.28 ± 8.77 29.93 ± 6.44 29.64 ± 9.98 24.05 ± 8.29

aw 10.36 ± 5.10 8.43 ± 5.09 6.50 ± 4.55 4.64 ± 4.75 3.93 ± 4.03 9.29 ± 5.85 6.57 ± 4.47 3.21 ± 3.13

ay 3.86 ± 4.11 4.29 ± 3.75 5.07 ± 4.68 8.21 ± 5.06 6.93 ± 4.47 12.79 ± 5.96 12.36 ± 7.22 4.43 ± 3.50

Average 13.47 ± 5.18 12.33 ± 5.30 12.07 ± 5.51 10.94 ± 5.13 9.77 ± 5.11 14.14 ± 5.57 13.73 ± 6.23 8.32 ± 4.48

The lowest misclassification rate for each subject is indicated in bold
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EEG signals of the filter banks that have more discriminat-

ing features, that is features with larger mutual information

values). The maximum mutual information values for each

of the sub-bands are used to form vector VMI (having

vector length of 14 since we have 14 sub-bands in total).

The mutual information values in VMI are arranged in

descending order and the 4 bands to which the first 4

mutual information values in vector VMI belong to are

thus selected as the top 4 bands. The dimensionality of

the features of each of the selected filter banks is

reduced using linear discriminant analysis (LDA). The

LDA scores are then fused together and fed to the SVM

classifier. All parameters such as the filter banks, spatial

filters, LDA matrix and the classifier are learned from the

training data only and later used during the test phase.

Mutual information

The quantity of information a feature contains about the

class membership under the assumption of independence

is given by the mutual information (MI). It is one of

the measures of association or correlation between the

row and column variables. The correlation coefficient

only measures the linear dependence whereas mutual

information gives information about both linear and

non-linear dependence. For two discrete arbitrary variables

X and Y, the mutual information can be computed using

(3), where p(x,y) is the joint probability distribution func-

tion of X and Y, and p(x) and p(y) are the marginal

probability distribution functions of X and Y, respectively.

A larger mutual information value implies the corre-

sponding feature has a greater predictive ability of the

class membership (i.e. discriminating features).

Alternatively, the mutual information can also be

computed using (4), where H(Y) is the marginal entropy,

H(X| Y) and H(Y|X) are the conditional entropies and

H(X,Y) is the joint entropy of X and Y.

I X;Yð Þ ¼
X

y∈Y

X

x∈X
p x; yð Þ log

p x; yð Þ

p xð Þp yð Þ

� �

ð3Þ

I X;Yð Þ ¼ H Yð Þ−H Y jXð Þ
¼ H X;Yð Þ−H XjYð Þ−H Y jXð Þ ð4Þ

The features obtained from all the bands are concatenated

to form the feature vector F i
V ¼ f iB1; f

i
B2;…; f iBn

� �

, where F i
V

is the feature vector of the i-th trial, f iBj is the features

Table 2 Misclassification rate (%) of different methods using dataset 2

Subject CSP CSSP FBCSP DFBCSP (FR) DFBCSP (MI) SFBCSP SBLFB Proposed

a 13.20 ± 8.07 13.65 ± 8.19 19.10 ± 9.35 16.80 ± 7.81 14.40 ± 5.68 17.40 ± 5.93 19.10 ± 9.73 14.30 ± 9.26

b 42.80 ± 12.25 42.70 ± 11.38 44.70 ± 11.27 42.90 ± 9.75 43.00 ± 9.69 45.30 ± 6.59 41.50 ± 11.12 43.00 ± 10.74

c 43.70 ± 11.24 39.95 ± 10.21 35.70 ± 9.58 35.20 ± 8.51 33.70 ± 9.99 43.00 ± 11.62 33.20 ± 12.53 31.00 ± 9.85

d 22.40 ± 8.82 14.60 ± 8.75 22.20 ± 8.99 23.50 ± 8.41 21.90 ± 8.59 29.50 ± 10.13 11.50 ± 7.91 6.60 ± 5.57

e 18.00 ± 9.74 18.05 ± 9.18 14.00 ± 9.15 18.30 ± 8.84 17.30 ± 8.88 24.70 ± 10.34 11.60 ± 6.88 8.10 ± 6.92

f 22.50 ± 10.84 18.55 ± 8.39 19.60 ± 8.56 14.30 ± 8.57 13.00 ± 8.08 20.90 ± 6.45 21.20 ± 11.98 13.40 ± 8.48

g 7.10 ± 5.06 6.35 ± 4.92 6.90 ± 6.62 9.00 ± 5.05 7.60 ± 5.65 9.70 ± 4.97 5.90 ± 5.41 7.20 ± 5.26

Average 24.24 ± 9.43 21.98 ± 8.72 23.17 ± 9.07 22.86 ± 8.13 21.56 ± 8.12 27.21 ± 8.00 20.57 ± 9.36 17.66 ± 8.01

The lowest misclassification rate for each subject is indicated in bold

Table 3 Misclassification rate (%) of different methods using dataset 3

Subject CSP CSSP FBCSP DFBCSP (FR) DFBCSP (MI) SFBCSP SBLFB Proposed

B0103T 23.69 ± 10.37 25.31 ± 9.99 19.00 ± 8.47 23.25 ± 11.23 20.38 ± 9.18 26.50 ± 9.24 21.75 ± 9.96 19.25 ± 10.48

B0203T 41.00 ± 11.21 42.94 ± 11.74 45.63 ± 11.93 40.76 ± 12.45 44.38 ± 11.24 42.75 ± 12.84 40.75 ± 11.99 41.63 ± 10.23

B0303T 49.63 ± 10.80 48.44 ± 10.82 49.13 ± 13.54 50.50 ± 12.87 46.38 ± 9.95 44.97 ± 11.65 50.68 ± 13.34 44.00 ± 13.06

B0403T 0.63 ± 0.60 0.63 ± 0.60 1.75 ± 1.61 0.75 ± 0.69 0.63 ± 0.60 0.38 ± 0.35 0.88 ± 0.73 0.63 ± 0.60

B0503T 16.56 ± 9.21 42.25 ± 16.33 28.50 ± 8.85 25.00 ± 10.71 21.13 ± 9.36 25.02 ± 7.38 7.96 ± 6.52 9.42 ± 7.96

B0603T 21.19 ± 9.89 23.81 ± 10.94 24.38 ± 9.80 20.88 ± 10.38 19.75 ± 9.81 20.06 ± 10.70 20.51 ± 8.23 18.00 ± 9.91

B0703T 14.13 ± 8.46 13.81 ± 8.11 15.50 ± 6.83 12.13 ± 9.05 9.75 ± 7.05 12.25 ± 7.47 7.50 ± 6.44 11.13 ± 7.61

B0803T 11.69 ± 7.14 14.50 ± 8.56 18.88 ± 11.68 11.13 ± 6.95 12.88 ± 8.03 12.38 ± 7.63 11.13 ± 8.95 10.50 ± 5.85

B0903T 17.25 ± 8.15 17.25 ± 8.66 20.88 ± 10.07 22.25 ± 10.80 16.34 ± 8.93 25.00 ± 9.62 19.38 ± 10.58 16.25 ± 9.36

Average 21.75 ± 8.57 25.44 ± 9.67 24.85 ± 9.39 22.96 ± 9.61 21.29 ± 8.38 23.26 ± 8.67 20.06 ± 8.73 18.98 ± 8.48

The lowest misclassification rate for each subject is indicated in bold
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obtained from the j-th band of the i-th trial, and n

is the total number of bands. The feature matrix

FM ¼ F1
V ; F2

V ;…; Fn
V

� �

, is formed using the feature vectors

of all the trials from the train data. The feature matrix is

then utilized to determine the mutual information using

(3), which gives MI = [I1, I2,…, IL], where Il is the mutual

information value of the l-th feature.

Experimental study

Description of dataset

The proposed method has been evaluated using three

publicly available datasets: BCI Competition III dataset

IVa [48], BCI Competition IV dataset I [49] and, BCI

Competition IV dataset IIb [49] referred to as dataset 1,

dataset 2 and dataset 3 from here onwards, respectively.

Dataset 1 contains 118 channels of EEG signals for right

hand and left foot MI tasks, which have been recorded

from five subjects labeled aa, al, av., aw, and ay. The

down sampled signal at 100 Hz has been used. It contains

140 trials of each task for each of the subjects. A detail

description of the dataset can be found online at http://

www.bbci.de/competition/iii/.

Dataset 2 contains two classes of motor imagery EEG

signals obtained from seven different subjects; 59 channels

of data are recorded at 1000 Hz using BrainAmp MR plus

amplifiers and Ag/AgCl electrode cap. The data were

filtered using 10th order Chebyshev Type II lowpass

filter with stopband ripple of 50 dB and stopband edge

frequency of 49 Hz. The data was down sampled to

100 Hz by computing the mean of blocks of 10 samples. A

total of 200 trials of motor imagery EEG measurements are

available for each subject with almost equal number of

trials for each class. A detailed description of the dataset

can be found online at http://www.bbci.de/competition/iv/.

Dataset 3 contains 3 channels (C3, Cz, and C4) data for

right hand and left hand motor imagery tasks recorded

from nine subjects. The data was recorded at a sampling

rate of 250 Hz. As in [42], only the third session data is

used for evaluation. For each subject, a total of 160 trials

of motor imagery EEG measurements are available

(having equal number of trials for each motor imagery

tasks). More details about the dataset can be found online

at http://www.bbci.de/competition/iv/.

Evaluation scheme

In this study, the motor imagery EEG data between 0.5 and

2.5 s (i.e. 200 sample points for dataset 1 and 2, and 500

sample points for dataset 3) after the visual cue have been

extracted and used for further processing. Common aver-

age referencing is applied to the extracted raw EEG data.

Butterworth bandpass filter and SVM classifier have been

used for all methods except for SBLFB where LDA is used

for classification. For comparison the following experimen-

tal settings have been used for each of the methods:

� CSP: A bandpass filter with 7–30 Hz passband has

been applied. The number of spatial filters m = 3 has

been used.

� CSSP: Sample point delay τ in the range of 1 to 15 has

been evaluated and the best value selected using 10-fold

cross validation. Bandpass filter is the same as in CSP.

The number of spatial filters m = 3 has been used.

� FBCSP: The experimental settings were adopted

from Higashi and Tanaka [35] (as these settings gave

optimal results), having 6 bandpass filters with 4–40 Hz

frequency range and bandwidth of 6 Hz (no overlap).

Mutual information based feature selection has been

performed as it gave the best results in [32]. The

number of spatial filters m = 3 has been used.

� DFBCSP: As in [36], we have used 12 bandpass

filters with a bandwidth of 4 Hz in the range of 6 to

40 Hz. The number of spatial filter m = 1 has been

used. Fisher’s ratio is used in DFBCSP (FR) and

mutual information in DFBCSP (MI) for band

selection, where the top 4 bands are selected.

� SFBCSP: 17 bandpass filters with a bandwidth of

4 Hz overlapping each other at a rate of 2 Hz was

adopted from [36]. The regularization parameter λ

was determined using 10-fold cross validation.

� SBLFB: 17 bandpass filters in the frequency range of

4–40 Hz having bandwidth of 4 Hz with an overlap

of 2 Hz has been used, as used in [13]. The number

of spatial filters m = 1 has been used.

� Proposed approach: 12 bandpass filters with 4–30 Hz

range having bandwidth of 4 Hz with 2 Hz overlap

(i.e. 4–8 Hz, 6–10 Hz, 8–12 Hz, …, 26–30 Hz) have

been used. The number of spatial filters selected for

these bands is m = 1. A 7–30 Hz wide bandpass filter

is used with CSP and CSSP feature extraction. The

number of spatial filter m = 3 has been used for the

wide band. The 4 most discriminating bands are

selected as we conducted several experiments on

different number of bands to be selected and using 4

bands produced good results.

Table 4 Top 4 bands mostly selected by the proposed method
using dataset 1

Subject aa al av aw ay

Selected bands 4, 5,
10, 11

4, 5,
13a, 13b

3, 4,
8, 13b

3, 4,
5, 13a

3, 4,
13a, 13b

Table 5 Top 4 bands mostly selected by the proposed method
using dataset 2

Subject a b c d e f g

Selected
bands

3, 4,
13a,13b

4, 7,
8, 11

4, 5,
11, 13b

4, 5,
10, 13b

4, 5,
10, 13b

3, 4,
13a, 13b

2, 3,
8, 13b
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Performance measures

The following performance measures have been used to

evaluate the performance of the proposed method in

comparison with other methods:

(a)Misclassification rate – the number of trials that are

being incorrectly classified with respect to the entire

trials.

(b)Cohen’s kappa coefficient (κ) – statistical method to

assess the reliability of agreement between two

raters. κ ¼ pa−pe
1−pe

, where pe is the expected percentage

chance of agreement and pa is the actual percentage

of agreement.

Results

10 × 10-fold cross-validation is used to evaluate the per-

formance of all experiments conducted using dataset 1,

dataset 2 and dataset 3. The figure with ± represents the

standard deviation.

Table 1, Table 2 and Table 3 shows the comparison of

the misclassification rate of the proposed method with

other competing methods in the literature. As can be

seen from the results in Table 1, Table 2 and Table 3, the

use of mutual information for band selection (DFBCSP-MI)

shows an improved performance of 1.17%, 1.30% and 1.67%

(for dataset 1, dataset 2 and dataset 3, respectively) com-

pared to that of the original DFBCSP approach where FR is

used for band selection. Our proposed method achieved the

lowest average misclassification rate on all the evaluated

datasets, reducing the misclassification rate by 5.15%, 2.62%,

5.82% and 5.41% (for dataset 1), 6.58%, 5.20%, 9.55% and

2.91% (for dataset 2), and 2.77%, 3.98%, 4.28% and 1.08%

(for dataset 3) compared to that of CSP, DFBCSP (FR),

SFBCSP and SBLFB, respectively. For 3 out of 5 subjects, 3

out of 7 subjects and 4 out of 9 subjects (for dataset 1,

dataset 2 and dataset 3, respectively), our proposed method

obtained the lowest misclassification rate.

Cohen’s kappa coefficient is used to further validate

the reliability of the obtained results. The values obtained

Table 6 Top 4 bands mostly selected by the proposed method using dataset 3

Subject B0103T B0203T B0303T B0403T B0503T B0603T B0703T B0803T B0903T

Selected bands 8, 9, 13a, 13b 1, 3, 4, 13a 1, 3, 4, 13a 3, 4, 13a, 13b 4, 10, 11, 13a 3, 4, 5, 13b 4, 5, 13a, 13b 3, 4, 13a, 13b 4, 10, 13a, 13b

Fig. 2 Illustration of calibration phase of the proposed approach (MI value - mutual information value of features of corresponding sub-bands
indicated in red)
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are given in Table 7, Table 8 and Table 9 for dataset 1,

dataset 2 and dataset 3, respectively. A larger value of the

kappa coefficient indicates a greater strength of agreement

while a lower kappa coefficient indicates that the agree-

ment is weak. As a rule of thumb, in [50] it is suggested

that kappa coefficients in the range of <0.20, 0.21–0.40,

0.41–0.60, 0.61–0.80 and 0.81–1.0 indicate poor, fair,

moderate, good and very good strengths, respectively.

Highest average kappa coefficient of 0.832 for dataset 1,

0.647 for dataset 2 and 0.620 for dataset 3 are obtained by

our proposed method indicating a very good strength of the

prediction of classes for dataset 1 and good prediction of

classes for dataset 2 and dataset 3. Subject av. of dataset 1,

subjects b and c of dataset 2 and subjects B0203T and

B0303T of dataset 3 obtained the highest misclassification

rate and the lowest kappa coefficient. This may be due to

the signals being contaminated by noise or due to poor

recording of the signal that resulted in reducing the overall

average kappa coefficient. Subjects aa, al, aw and ay of

dataset 1, subjects d and e of dataset 2, and subjects

B0403T and B0503T of dataset 3 obtained high kappa coef-

ficients indicating very good strength of class prediction.

Discussion

In the results section, we have shown that the use of

mutual information for band selection gives improved

results over that of using FR of single channel band power.

We have also introduced a single wide band (7–30 Hz)

with CSP and CSSP feature extraction in our approach.

Table 4, Table 5 and Table 6 shows the top 4 bands that are

mostly selected (during 10 × 10-fold cross validation) for

each subject using the proposed method. The bands are

not listed in any particular order of the amount of discrim-

inant information it contains. Bands 1–12 corresponds to

Fig. 3 General framework of the proposed approach

Table 7 Cohen’s kappa coefficient for different methods using dataset 1. The largest value for each subject is highlighted in bold

Subject CSP CSSP FBCSP DFBCSP (FR) DFBCSP (MI) SFBCSP SBLFB Proposed

aa 0.613 0.659 0.601 0.816 0.746 0.394 0.664 0.810

al 0.927 0.940 0.970 0.976 0.964 0.917 0.973 0.977

av 0.426 0.423 0.384 0.329 0.450 0.389 0.439 0.540

aw 0.800 0.837 0.837 0.906 0.934 0.743 0.889 0.936

ay 0.903 0.926 0.881 0.847 0.853 0.763 0.780 0.897

Average 0.734 0.757 0.735 0.775 0.789 0.641 0.749 0.832
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the 12 overlapping bands in the range of 4–30 Hz, while

bands 13a and 13b corresponds to the 7–30 Hz wide band

with CSP and CSSP feature extraction, respectively.

The introduced wide band is mostly selected in 4 out

of 5 subjects for dataset 1, 6 out of 7 subjects for dataset

2 and 9 out of 9 subjects for dataset 3. Therefore, it is

evident that introducing the wide band with CSP and

CSSP feature extraction methods did play an instrumen-

tal role in improving the performance of motor imagery

EEG signal classification. The selection of the wide band

means the wide band have more significant features

(features with larger mutual information values) that

help in distinguishing between the two classes of signals.

For subject b of dataset 2 where the wide band was not

selected, it can be noted that there is no change in the

misclassification rate and kappa coefficient comparing the

proposed method with that of DFBCSP (MI). This is

because the same bands were selected as in DFBCSP (MI),

which is due to the wide band having less significant

features compared to the 4 bands that were selected. On

the other hand, in comparison with DFBCSP (MI), subject

d of dataset 2 showed the largest reduction in the mis-

classification rate (15.30%) using the proposed method.

This is mainly due to the selection of the wide band with

CSSP features (13b) that contain more significant features

thus contributing to the improved performance. It should

be noted that Table 4, Table 5 and Table 6 only report the

bands that are selected most of the time during 10 × 10

fold cross validation, and does not mean that these bands

are selected all the time. This is the reason why some sub-

jects showed improved performance using the proposed

method compared to that of DFBCSP (MI) although the

wide band was not selected. For example, for subject aa of

dataset 1, improvement in the performance is noted using

the proposed method compared to that of DFBCSP (MI).

This is due to the facts that in some of the runs during the

10 × 10-fold cross validation, the wide bands were selected

and had accounted for the improvement. However, since

majority of the times the 4 bands selected for subject aa

of dataset 1 did not include the wide band it is not shown

in Table 1.

Our proposed method also outperformed the sparsity-

aware and CD-CSP-FDA methods that were evaluated

using dataset 1. Average misclassification rate of 12.36%

and 8.92% were reported (for sparsity-aware and CD-CSP-

FDA methods, respectively) while our proposed method

achieved an average misclassification rate of 8.32% (an

improvement of 4.04% and 0.60%, respectively) on the

same dataset. The improved performance of CD-CSP-

FDA was mainly due to the use of decimation filter that

was manually tuned for optimal performance for each

subject. The sparsity-aware method can be used for

Table 8 Cohen’s kappa coefficient for different methods using dataset 2. The largest value for each subject is highlighted in bold

Subject CSP CSSP FBCSP DFBCSP (FR) DFBCSP (MI) SFBCSP SBLFB Proposed

a 0.736 0.727 0.618 0.664 0.712 0.652 0.618 0.714

b 0.144 0.146 0.106 0.142 0.140 0.094 0.170 0.140

c 0.126 0.201 0.286 0.290 0.326 0.140 0.336 0.380

d 0.552 0.708 0.556 0.530 0.562 0.410 0.770 0.868

e 0.640 0.639 0.720 0.634 0.654 0.506 0.768 0.838

f 0.550 0.629 0.608 0.714 0.740 0.582 0.576 0.732

g 0.858 0.873 0.862 0.820 0.848 0.806 0.882 0.856

Average 0.515 0.560 0.537 0.542 0.569 0.456 0.589 0.647

Table 9 Cohen’s kappa coefficient for different methods using dataset 3. The largest value for each subject is highlighted in bold

Subject CSP CSSP FBCSP DFBCSP (FR) DFBCSP (MI) SFBCSP SBLFB Proposed

B0103T 0.526 0.494 0.620 0.535 0.593 0.470 0.565 0.615

B0203T 0.180 0.141 0.088 0.185 0.113 0.145 0.185 0.168

B0303T 0.008 0.031 0.018 0.010 0.073 0.100 0.014 0.120

B0403T 0.988 0.988 0.965 0.985 0.988 0.993 0.983 0.988

B0503T 0.669 0.115 0.430 0.500 0.578 0.499 0.840 0.810

B0603T 0.576 0.524 0.513 0.583 0.605 0.598 0.590 0.640

B0703T 0.718 0.724 0.690 0.758 0.805 0.755 0.850 0.778

B0803T 0.766 0.710 0.623 0.778 0.743 0.753 0.778 0.790

B0903T 0.655 0.655 0.583 0.555 0.675 0.500 0.613 0.675

Average 0.565 0.487 0.503 0.543 0.574 0.535 0.602 0.620
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learning the spatial filters, and the decimation filter can

be used for filtering the raw data in the proposed method,

which may further enhance the performance of the sys-

tem. Manual tuning of the filter bank is a time consuming

exercise and therefore optimization algorithms should be

employed to automatically tune the temporal filters.

Furthermore, band selection is carried out for selecting

the most discriminating filter banks that will result in

more separable features for improved classification per-

formance. The results in Fig. 4 show that our proposed

method can effectively find the most separable features

resulting in an improved performance in comparison

with other competing methods such as CSP, DFBCSP

(FR), and SBLFB. This confirms the usefulness of the pro-

posed method. SBLFB and the proposed method attained

further separable feature distributions than those of CSP

and DFBCSP.

As in [36], amongst the 14 bands (the 12 overlapping

bands and the wide band with CSP and CSSP features

considered separately) we have selected top-r bands in

the following manner. First we measured the mutual in-

formation for each of the 14 bands. Then we ranked the

14 bands according to its mutual information values.

Thereafter, we selected top-r bands for which the aver-

age error rate was minimum. We found that when r = 4

the error rate was lowest and hence we selected 4 bands.

Figure 5 shows the error rate (for dataset 2) for each of

the subjects. In addition, the average error rate over all

the subjects is also depicted in Fig. 5. We achieved near

optimal results using r = 4 bands for dataset 1 and data-

set 3 as well. Most of the subjects in dataset 2 (as shown

in Fig. 5) obtained low error rate using the top 4 bands

(except for subjects b and c). This suggests that selecting

number of bands influences the error rate. In addition,

band selection procedure also influences the computa-

tional complexity of the system.

To further analyse the correlation from the sub-bands,

we have carried out redundancy analysis of the top 4

bands that are selected. One band is removed from the

selected 4 bands and the performance in terms of the

misclassification rate using the remaining 3 bands is

evaluated. This procedure (of removing a band and com-

puting misclassification error of the 3 bands) is done for

all the 4 selected bands. Figure 6 shows the misclassifica-

tion rates of 3 out of 4 bands for one of the trial runs of

subject f (dataset 2). It can be observed that by removing

any band (out of the 4 selected bands) increases the

misclassification error rate. Particularly, the error rate

increased by 20%, 5%, 10% and 5% when removing

bands 13b, 13a, 4 and 3, respectively. This shows that

each of the 4 bands possesses significant information

and contributes towards the classification performance

of the system. Removing any single band deteriorates

the classification performance. Therefore, the bands do

not have overlapping information or in other words are

not redundant. Hence, we can say the correlations among

bands are not significant by showing this redundancy

analysis.

Fig. 4 Distributions of the two most significant features of subject d obtained by CSP, DFBCSP (FR), SBLFB and proposed method (random
experimental run), respectively
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CSP has become an effective method for extracting

features from motor imagery EEG signals for the purpose

of classification. As a number of studies have suggested

[13, 30, 32–34, 36, 40, 42, 51], sub-band optimization

leads to an improved performance of motor imagery EEG

based BCI systems. Accordingly, this study proposed an

improved method of band selection to find most separable

features utilizing the mutual information. In our work, we

have introduced a wide band (7–30 Hz) to the existing

overlapping sub-bands. This wide band is not the optimal

wide band, however, it gives overall good results and can

be adopted. For SBCSP, FBCSP, DFBCSP, SFBCSP, SBLFB,

and proposed method, the bands are pre-specified i.e. de-

termined empirically. To further improve the performance

of these methods, we need to adopt the method of

learning the filter band parameters (passband frequen-

cies and cutoff frequencies) automatically. This will

require the development of more sophisticated strategies

to further enhance the performance of BCI systems.

Furthermore, dimensionality reduction methods [52], and

other feature selection methods [53] can also be studied

to optimize the performance of the system using multiple-

filter bands.

Conclusions

This study introduced an improved DFBCSP method for

selecting the most discriminating filter bands that would

give most significant features for classification. Use of

mutual information of all available channel data proved

to be more effective in selecting the most significant

bands compared to using FR of single channels band power

as used by original DFBCSP approach. An additional wide

band of 7–30 Hz has been introduced to boost the per-

formance of the system and it is shown that the wide band

effectively plays a vital part in reducing the misclassification

rate. The proposed method outclassed all other state-of-

the-art methods achieving the lowest misclassification rate

with good overall prediction strength. Further improve-

ments may be achieved if sophisticated algorithms are

developed for automatically learning the filter band

parameters.
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