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Abstract—Depression is a mental disorder characterized by persistent low mood that affects a person’s thoughts, behavior, feelings, and

sense of well-being. According to the World Health Organization (WHO), depression will become the second major life-threatening illness

in 2020. Electroencephalogram (EEG) signals, which reflect the working status of human brain, are regarded as the best physiological

tool for depression detection. Previous studies used the Empirical Mode Decomposition (EMD) method, which can deal with the highly

complex, nonlinear and non-stationary nature of EEG, to extract features from EEG signals. However, for some special data, the

neighboring components extracted through EMD could certainly have sections of data carrying the same frequency at different time

durations. Thus, the Intrinsic Mode Functions (IMFs) of the data could be linearly dependent and the features coefficients of expansion

based on IMFs could not be extracted, which can make the pre-proposed EMD-based feature extraction method impractical. In order to

solve this problem, an improved EMD applying Singular Value Decomposition (SVD)-based feature extraction method was proposed in

this study, which can extract the features coefficients of expansion based on all IMFs as accurately as possible, ignoring potentially linear

dependence of IMFs. Experiments were conducted on four EEG databases for detecting depression. The improved EMD-based feature

extraction method can extract feature from all three channels (Fp1, Fpz, and Fp2) on the four EEG databases. The average classification

results of the proposed method on the four EEG databases including depressed patients and healthy subjects reached 83.27%,85.19%,

81.98% and 88.07%, respectively, which were comparable with the pre-proposed EMD-based feature extraction method.

Index Terms—depression, Empirical Mode Decomposition, EEG, feature extraction

✦

1 INTRODUCTION

A CCORDING to the World Health Organization (WHO),
depression is a leading cause of mental illness and

is predicted to become the major life-threatening illness in
2020 [1]. Depression is more common in females than in
males, and its growth rate in females and males is 12% and
6.6%, respectively [2–4]. Depression can affect a person’s
thoughts, behavior, feelings, and sense of well-being.

As reported in [5], one million people commit suicide
every year because of depression. Hence, depression can
severely threaten human life [6]. Depression is treatable
through available effective treatments such as medication,
psychological counseling and other clinical methods, but
due to ignorance, untimely detection or misdiagnosis, nu-
merous people suffer from depression worldwide [7]. Thus,
early detection is critical, which can directly reduce the
social and economic pressures related to depression. Cur-
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rent clinical detection of depression is mostly based on
self-reporting questionnaire and interview, but there are
no objective assessment criteria in existing clinical practice
[8]. With the growing number of depressed patients, it is
important to trace the effect of treatment through early stage
detection and assessments. Therefore, physiological data-
based depression detection system could provide objective
and rapid detection to enable timely advanced clinical treat-
ment. Physiological data is more objective and accurate for
determining the patient’s physiological and mental state.

Electroencephalogram (EEG), which reflects the working
status of human brain [9, 10], is regarded as the most
excellent physiological data that can be used as a tool for the
detection and diagnosis of depression. It is safe, low cost,
noninvasive and easy to collect EEG across the surface of
brain. EEG is widely used in brain function studies. Recent-
ly, many studies [7, 11, 12] demonstrated the relationship
between depression and EEG. Many researches [11, 13–17]
showed asymmetries in EEG of depressed patients over
frontal cortex. Moreover, the EEG showed significant dif-
ferences between healthy subjects and depressed patients in
many researches [18–20].

Traditional feature extraction for EEG mostly include the
following methods: (1) Fast Fourier transform (FFT) [21, 22]:
The main disadvantage of FFT is that it only utilizes fre-
quency information, but ignores time domain information.
Nevertheless, a study [23] demonstrated that combining
frequency and time domain information can improve the
classification performance of EEG. (2)Autoregressive model
[24]: It fits non-stationary signals, like EEG. This method
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takes advantage of signal segmentation to estimate the
parameters for each segment of EEG signals. (3) Time-
frequency Analysis: This method outperformed convention-
al methods of frequency analysis in [25]. (4) Empirical Mode
Decomposition (EMD) [26–28]: EMD is an efficient decom-
position method introduced by Huang in recent years. It is
suitable to process nonlinear and non-stationary signals and
is an adaptive method for decomposing a signal into AM-
FM modulated components. EMD can decompose compli-
cated signals into several finite and simple functions, called
Intrinsic Mode Functions (IMFs), which reflect the essential
physical characteristics in the signal nature.

Due to nonlinear and non-stationary nature of most of
physiological signals, EMD is an excellent choice to process
physiological signals like EEG, which is one of the most
complicated signals. EMD has been used in many fields
such as de-noising and signal enhancement [29–31], and
feature extraction [27, 28, 32, 33].

An EMD-based feature extraction method [27, 28], which
used IMFs of reference signals in different class to represent
EEG and regard coefficients of expansion based on all IMFs
as a feature vector. The features represent the similarity
between EEG and reference signals. Accordingly, the IMFs
are the core component of the EMD-based feature extraction
method. To solve the inverse of the matrix product of the
IMFs and its transpose is the key step of the pre-proposed
method. Unfortunately, according to Huang [26], the defini-
tion of orthogonality of IMFs is local and for some special
data, the neighboring components of IMFs could certainly
have sections of data carrying the same frequency at differ-
ent time durations. Thus, the IMFs of reference signals could
be linearly dependent, which can cause that the rank of the
matrix product of the IMFs and its transpose is unfilled. In
other words, the inverse for the matrix product does not
exist. Therefore, the features coefficients of expansion based
on all IMFs proposed in [27, 28] could not be extracted or be
inaccurately extracted.

To solve the above problem, an improved EMD-based
feature extraction method is proposed in this study. Firstly,
the improved method applies Singular Value Decomposi-
tion (SVD) to decompose the matrix product of the IMFs
and its transpose, getting one rectangular diagonal matrix
with non-negative real numbers on the diagonal and two
unitary matrices. Next, the improved method computes the
pseudo-inverse of the diagonal matrix by replacing every
non-zero diagonal entry by its reciprocal and transposing
the resulting matrix. Then, the improved method calculates
the pseudo-inverse of the matrix product of the IMFs and
its transpose, which can be used in the following steps of
EMD-based feature extraction method, through the pseudo-
inverse of the diagonal matrix and the unitary matrices men-
tioned above. Therefore, the improved method can extract
the features coefficients of expansion based on all IMFs as
accurately as possible by ignoring the impact of the po-
tentially linear dependence of the IMFs, which ensures the
effectiveness of the EMD-based feature extraction method.

The rest of this paper is organized as follows: in Sec-
tion II, materials and methods are introduced. Afterwards,
the improved EMD-based feature extraction method is de-
scribed in Section III. The experimental results are analyzed
and compared in Section IV. Finally, the work is discussed

and concluded.

2 MATERIALS AND METHODS

2.1 Data Acquisition

Considering that the prefrontal lobe has a strong correlation
with emotional processes and psychiatric disorders [11, 13–
15], we collected four EEG databases by three-electrode
pervasive EEG collection device which used three electrodes
located on the prefrontal lobe (Fp1, Fpz, and Fp2) [34] to
detect depression in this study. The location of the three
electrodes placement (Fp1, Fpz, and Fp2) and the three-
electrode pervasive EEG collection device are shown in Fig.
1 and Fig. 2, respectively.

Fig. 1. Location of the three electrodes placement

Fig. 2. Three-electrode pervasive EEG collection device

In the data acquisition phase, depressed patients and
age-matched, gender-matched, education-matched healthy
subjects were selected based on psychological question-
naires and being diagnosed by general practitioners (GPs)
from Beijing Anding Hospital, Capital Medical University
and The Third People’s Hospital of Tianshui City, Tianshui,
China. All subjects were limited on aged 18-55 years with
normal hearing and intelligence. The educational level of all
subjects was higher than primary school. In order to select
depressed patients and healthy subjects, different question-
naires were used to evaluate the subjects’ psychological
status according to their depression severity, psychological
irritability, stress levels, etc. The international questionnaires
and evaluation standards mainly used were Life Event Scale
(LES) [35], Mini-International Neuropsychiatric Interview
(MINI) [36], Childhood Trauma Questionnaire (CTQ) [37]
and Hamilton Rating Scale for Depression[38]. This study
was approved by the Ethics Committee of Beijing Anding
Hospital, Capital Medical University and The Third Peo-
ple’s Hospital of Tianshui City, Tianshui, China. All subjects
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were informed about the aims and protocols of the data
acquisition experiments before EEG recording.

The four EEG databases were called Dataset 1, Dataset
2, Dataset 3 and Dataset 4 in this study, respectively. EEG
signals of Dataset 1 of 81 depressed patients and 89 healthy
subjects with the resting state eye-closed was recorded for
40 seconds in Beijing Anding Hospital, Capital Medical
University. Dataset 2 collected 160 depressed patients and
116 healthy subjects with the resting state eye-closed for 40
seconds in The Third People’s Hospital of Tianshui City,
Tianshui, China. Dataset 3 and Dataset 4 were collected
based on affective auditory stimulus. Depressed patients
were reported to have deficits in negative information
sources cognitive processing [39, 40]. Therefore, we select-
ed six affective auditory stimulus with different emotions
from the International Affective Digitized Sounds (IADS-
2) [41] to investigate the differences between depressed
patients and healthy subjects in same affective auditory
stimulus. The IADS-2 is a standardized database of 167
naturally occurring sounds that is widely used in the study
of emotions. The six affective auditory stimulus and their
Self-Assessment Manikin (SAM) [42] in the three affective
dimensions of valence, arousal, and dominance are listed
in Table 1. Every affective auditory stimuli lasts 6 seconds
with subjects in resting state eye-closed. After each affective
auditory stimuli, there is 6 seconds rest during which time
the EEG signals are also collected. Thus, EEG signals of 105
depressed patients and 109 healthy subjects in Dataset 3
were collected in Beijing Anding Hospital, Capital Medical
University. Dataset 4 collected 105 depressed patients and 70
healthy subjects in The Third People’s Hospital of Tianshui
City, Tianshui, China. Nevertheless, due to noise, the EEG
signals during the sixth affective auditory stimuli Crowd
and rest stage after Crowd were rejected.

The sampling frequency of the EEG signals was set
to 250 Hz with 24 bit A/D convertor precision. All EEG
signals were high-pass filtered with 1 Hz cutoff frequency
and low-pass filtered with 40Hz cutoff frequency. We used
the discrete wavelet transform and Kalman filtering [43] to
remove the eye movement.

TABLE 1
The profile of six affective auditory stimulus

Stimulus
Valence Arousal Dominance

Property
M SD M SD M SD

Cattle 5.01 1.85 6.04 1.85 4.56 1.75 neutral
Painting 4.96 1.68 5.37 1.68 5.06 1.82 neutral
Babies Cry 2.04 1.39 6.87 1.39 3.46 2.31 negative
Dentist Drill 2.89 1.67 6.91 1.67 2.92 2.03 negative
Baby 7.61 2.10 6.03 2.10 6.14 1.98 positive
Croud 7.65 1.58 7.12 1.58 6.09 2.18 positive

2.2 EMD Algorithm

EMD [26] can decomposes complicated signals into IMFs.
Each IMF has the following specifications:

(1) The number of extrema (maxima and minima) is
equal to the number of zero crossings of the signal or differs
only by one;

(2) They are locally symmetric and the mean of top and
bottom envelope of each IMF is zero.

The sifting process, which is an iterative algorithm, is the
decomposition of the original signal into IMFs. The sifting
process stops when reaches any of the following criteria:

(1) The residual signal energy becomes less than a pre-
defined threshold;

(2) The residual signal is a monotonic function that
cannot be decomposed into more IMFs.

The sifting process can be summarized into the following
steps:

(1) Let i = 1;
(2) Find all extrema (maxima and minima) of the signal

x(t);
(3) Get the envelopes of minima (emin(t)) and

maxima(emax(t)) of the signal x(t);
(4) Compute the mean of the maxima and minima en-

velops: m(t) = emin(t)+emax(t)
2 ;

(5) Compute the difference of the main signal and the
mean signal: h(t) = x(t)−m(t);

(6) Continue the steps 2–5 with h(t) as a new signal or
stop depending on stop criteria in [26], and let ci(t) = h(t),
where ci(t) is the IMF. Then continue the process with the
residual signal x(t) − h(t) as a new x(t) and increase i by
one.

After the sifting process, the original signal can be writ-
ten as the sum of IMFs and a residue [26]:

x(t) =
N
∑

i=1

ci(t) + rn (1)

The reference signal and its IMFs from Fpz channel of
depressed patients in Dataset 3 during the affective auditory
stimulus Cattle are shown in Fig. 3.

2.3 EMD-based Feature Extraction

All EEG signals for each channel of depressed patients and
healthy subjects in training sets were respectively to obtain
two reference signals R1(t), R2(t). R1(t) is the reference
signal of depressed patients, and R2(t) is the reference
signal of healthy subjects:

R1(t) =
1

K1

K1
∑

i=1

x1,i(t), R2(t) =
1

K2

K2
∑

i=1

x2,i(t) (2)

K1 and K2 are the number of depressed patients and
healthy subjects in training sets, respectively.

The choice of reference signals R1(t) and R2(t) is not
same in different datasets. The EEG signals were segmented
into 10-second epoch [34] in Dataset 1 and Dataset 2, and for
each EEG epoch of all depressed patients and healthy sub-
jects, we calculated the reference signals R1(t) and R2(t).
Therefore, there are four different reference signals R1(t)
and R2(t) for different epoches in Dataset 1 and Dataset 2.
The EEG of each affective auditory stimuli and rest after
each affective auditory stimuli of all depressed patients and
healthy subjects were calculated as reference signals R1(t)
and R2(t), respectively, in Dataset 3 and Dataset 4. Thus,
there were 10 different reference signals R1(t) and R2(t) for
different EEG of stimulus and rest after stimulus in Dataset
3 and Dataset 4.

Then EMD algorithm was applied to decompose the
reference data into IMFs [26]:
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Fig. 3. The reference signal and its IMFs from Fpz channel of depressed
patients

R1(t) =
M1
∑

i=1

c1,i(t) + r1,n(t), R2(t) =
M2
∑

i=1

c2,i(t) + r2,n(t)

(3)

In Equation 3, M1 and M2 are the number of the IMFs of
R1(t) and R2(t) respectively, c1,i(t) and c2,i(t) are the IMFs,
r1,n(t) and r2,n(t) are the residues. Thus, each EEG record
x(t) can be expanded through c1,i(t) and r1,n(t) or c2,i(t)
and r2,n(t):

x(t) ≃
M1
∑

i=1

b1,ic1,i(t) + b1,i+1r1,n(t) = x̂1(t)

x(t) ≃
M2
∑

i=1

b2,ic2,i(t) + b1,i+1r2,n(t) = x̂2(t) (4)

In Equation 4, the b1,i+1 (i = 0, 1, · · ·M1) and b2,i+1 (i =
0, 1, · · ·M2) are expansion coefficients based on IMFs and
residue of reference signals R1(t) and R2(t). The coefficients
can be calculated as follows [27]:

A1b1 = x̂1(t)

A2b2 = x̂2(t) (5)

Where A1 and A2 are the matrix of IMFs and residue of
reference signals R1(t) and R2(t), respectively, b1 and b2 are
the expansion coefficients:

A1 =











c1,1(1) c1,2(1) · · · c1,M1
(1) r1,n(1)

c1,1(2) c1,2(2) · · · c1,M1
(2) r1,n(1)

...
...

. . .
...

...
c1,1(t) c1,2(t) · · · c1,M1

(t) r1,n(1)











A2 =











c2,1(1) c2,2(1) · · · c2,M1
(1) r2,n(1)

c2,1(2) c2,2(2) · · · c1,M2
(2) r2,n(1)

...
...

. . .
...

...
c2,1(t) c2,2(t) · · · c2,M2

(t) r2,n(1)











(6)

b1 =
[

b1,1 b1,2 · · · b1,M1
b1,M1+1

]

= (AT
1 A1)

−1AT
1 x

b2 =
[

b2,1 b2,2 · · · b2,M1
b2,M2+1

]

= (AT
2 A2)

−1AT
2 x

(7)

All the EEG signals of depressed patients and healthy
subjects in training sets used the above equations to calcu-
late expansion coefficients b1 and b2, which were used as
feature for classification.

3 THE IMPROVED EMD BASED FEATURE EXTRAC-

TION

According to Huang [26], the definition of orthogonality of
IMFs is locally and for some special data, the neighboring
components of IMFs could certainly have sections of data
carrying the same frequency at different time durations.
Thus, the IMFs of reference signals could be linearly de-
pendent and the features of expansion coefficients based
on all IMFs proposed in [27, 28] could not be extracted
or inaccurately extracted, which means that the traditional
EMD feature extraction method is not suitable for all types
of data and has certain limitations.

Since the IMFs of reference signals maybe linearly de-
pendent, the values of |AT

1 A1| and |AT
2 A2| in Equation 7 is

zero or very near to zero, which would cause the inverse
of AT

1 A1 and AT
2 A2 to be non-existent. Thus, the EMD-

based feature vectors b1 and b2 can not be calculated using
Equation 7.

In order to solve the above problem, we proposed an
improved EMD-based feature extraction method. The first
several steps were the same as Equations 3, 4, 5,and 6 after
which H1 = AT

1 A1 and H2 = AT
2 A1. Then, calculated as

follows:

rank1 = rank(H1)

rank2 = rank(H2) (8)

Where rank1 and rank2 are the rank of square matrices H1

and H2. If rank1 is equal to M1+1, the b1 can be calculated
using Equation 7. If rank1 is less than M1 + 1, the Equation
7 can be represented as follows:

A1b1 = x (9)

AT
1 A1b1 = AT

1 x (10)

The Equation 10 is equal to the following equation:

H1b1 = AT
1 x (11)
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Then, the SVD was introduced to solve the problem:

H1 = UΣ1V
T (12)

The pseudo-inverse of H1 can be represented as follows:

H+
1 = V Σ+

1 U
T (13)

H+
1 H1 = V Σ+

1 U
TUΣ1V

T = Σ+
1 Σ1 ≃ E (14)

Thus, b1 can be calculated using Equations 5, 12, 13, 14 and
15:

A1b1 = x (15)

⇒ AT
1 A1b1 = AT

1 x (16)

⇒ H1b1 = AT
1 x (17)

⇒ H+
1 H1b1 = H+

1 AT
1 x (18)

⇒ b1 =
[

b1,1 b1,2 · · · b1,M1
b1,M1+1

]

= H+
1 AT

1 x

(19)

If rank2 is equal to M2 + 1, b2 can be calculated using
Equation 7. If rank2 is less than M1+1, b2 can be calculated
in the same way as b1:

A2b1 = x (20)

⇒ AT
2 A2b2 = AT

2 x (21)

⇒ H2b2 = AT
2 x (22)

⇒ H+
2 H2b2 = H+

2 AT
2 x (23)

⇒ b2 =
[

b2,1 b2,2 · · · b2,M2
b2,M1+1

]

= H+
2 AT

2 x

(24)

Algorithm 1 Improved EMD-based feature extraction
method
Input: Training EEG signals (the number of subjects is N);

label of the signals.
Output: Extracted feature set
Method:

1: Calculate the reference signals R1 and R2 of different
label respectively

2: Compute the IMFs and residues of R1 and R2 and let
A1 and A2 be the set of IMFs and residues of R1 and R2

respectively
3: while i<=N do
4: Extract the features of i − th subjects: A1b1,i = xi

and A2b2,i = xi

5: Compute H1 = AT
1 A1 and H2 = AT

2 A2, and com-
pute rank rank1 and rank2 of H1 and H2 respectively

6: if rank1 = M1 + 1 then
7: b1,i = (AT

1 A1)
−1AT

1 xi = H−1
1 AT

1 xi

8: else
9: b1,i = H+

1 AT
1 xi

10: end if
11: if rank2 = M2 + 1 then
12: b2,i = (AT

1 A2)
−1AT

2 xi = H−1
2 AT

1 xi

13: else
14: b2,i = H+

2 AT
2 xi

15: end if
16: The extracted feature of the EEG signals of i − th

subject bi is the combination of b1,i and b2,i
17: end while
18: return the extracted feature set b.

The steps of improved EMD-based feature extraction
method are listed in Algorithm 1. The proposed improved
EMD-based feature extraction method has a good gener-
alization capability that can be applied to extract feature
of various signals by ignoring the nonlinear and non-
stationary nature. The robustness of the improved EMD-
based feature extraction method is better than the traditional
EMD method. In many situations and for many types of
signals, the improved EMD-based feature extraction method
is equivalent to EMD-based feature extraction method (us-
ing Equation 7 to extract features). Nevertheless, in some
circumstances, especially, for some special signals, the pro-
posed improved EMD-based feature extraction method can
extract features that cannot be extracted by traditional EMD-
based feature extraction method, as accurately as possible.
Consequently, the performance of improved method is e-
qual to the performance of the traditional method at least,
but can be better than the performance of the traditional
method in some special conditions. According to Algorithm
1, the computational complexity of the proposed improved
EMD-based feature extraction method is equal to the com-
putational complexity of traditional method. As compared
to traditional method, the proposed method requires a little
more time for computing rank1 and rank2 in each iteration.
Thus, the proposed method is better than the traditional
method in general.

4 EXPERIMENTS AND RESULTS

4.1 Feature Extraction and Classification

In order to validate the effectiveness of the EMD-based
feature extraction method, we selected three linear features
of the EEG power spectrum: Max frequency, Mean frequen-
cy and Centroid frequency and three non-linear features:
Permutation entropy [44], Shannon entropy [45] and LZ
complexity [46] as traditional features. The first classifica-
tion experiment was conducted on the four EEG databases
using the traditional EMD-based feature extraction method
and traditional features. To validate the effectiveness of
the improved EMD-based feature extraction method, we
compared the performance of the two methods. The second
classification experiments were conducted using the effec-
tive features extracted through the improved EMD-based
feature extraction method on the four EEG databases. In this
study, we took advantage of SVM in the two classification
experiments.

SVM can better solve small sample, high dimensional,
nonlinear and local minima problems, while avoiding curse
of dimensionality [47–49] and over-learning. SVM has a
good generalization capability [49]. Consequently, in order
to analyze the extracted features of the four EEG databases,
SVM is an excellent choice to detect the depression. The
Kernel RBF was applied in this study:

K(xi, xj) = exp(
−(xi − xj)

2

2σ2
) (25)

Cross-validation was used to search the optimum values
of σ and C . The optimum values of these parameters were
estimated by grid-search using 10-fold cross-validation in
this study for the four EEG databases. Trying exponentially
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Fig. 4. Flowchart of the proposed depression detection method

growing sequences of C and σ was reported to be a practical
method to search optimum values of parameters such as
C = [215, 214, · · · , 2−15] and σ= [215, 214, · · · , 2−15] [50].
Each subject had four feature vectors (EEG signals of all de-
pressed patients and healthy subjects were segmented into
10-second epoch) in Dataset 1 and Dataset 2, so the 10-fold
cross-validation by subjects, in which the EEG feature sets
were randomly divided into training sets and testing sets by
the subject, and the train sets were randomly divided into
training data and validation sets by subjects, was applied in
this study. Thus, all four feature vectors of one subject can
only be in testing sets or validation sets or training sets. The
EEG signals of same affective auditory stimulus and same
rest after each affective stimulus of all depressed patients
and healthy subjects were divided into same set and for
each set we took advantage of 10-fold cross-validation in
Dataset 3 and Dataset 4.

For the i− th attribute of feature x in training sets, it was
normalized into [0,1] by the following Equation:

xnew
i =

xi −mini

maxi −mini

(26)

Moreover, the i − th attribute of features in testing sets
were also normalized through the above Equation, where
the mini and maxi are the minimum value and maximum
value of the features of the i− th attribute in corresponding
training sets.

The general architecture of our proposed depression
detection system is shown in Fig. 4.

The classification experiments were performed in the
platform of 3.2 GHz CPU and 8 GB memory and Windows
10 operation system, the SVM was trained using LIBSVM
[51] package of Java version.

4.2 Analysis and Comparison of Experimental Results

The average accuracy of traditional features and EMD-based
feature extraction method on the four EEG databases shown
in Table 2 were obtained in the same condition. According
to Table 2, the results of EMD-based method was better than
the traditional features since the traditional features only u-
tilize frequency information by ignoring time domain infor-
mation, whereas the EMD-based feature extraction method
can reflect the essential physical characteristic existing in the
signal nature, which means that both frequency information
and time domain information of the signal are used to
extract intrinsic mode features. The first experiment veri-
fied the effectiveness of the EMD-based feature extraction
method and suggested that it was suitable for this study,

as well as verified that the information, whether frequency
information or time domain information, of signals can
not be ignored. Therefore, while extracting features from
signals, we must comprehensively consider their physical
characteristics.

TABLE 2
Comparing the classification results of EMD-based feature extraction

method and traditional features

Average Accuracy

EMD 79.95%
Traditional Features 71.99%

The classification results of improved EMD-based fea-
ture extraction method and traditional EMD-based method
on Dataset 1 and Dataset 2 of depressed patients and healthy
subjects with the resting state eye-closed are shown in Table
3.

TABLE 3
Comparing the classification results of traditional EMD and the

improved EMD-based feature extraction method on Dataset 1 and
Dataset 2

Measures EMD improved EMD

Dataset 1

Accuracy 82.65% 83.27%
Sensitivity 87.33% 85.54%
Specificity 77.63% 82.04%
C 2

5
2
5

σ 2
−3

2
−2

Dataset 2

Accuracy 83.03% 85.19%
Sensitivity 89.28% 89.58%
Specificity 76.78% 81.67%
C 2

−2
2
4

σ 2
−1

2
−2

As illustrated in Table 3, the measures of the improved
EMD-based feature extraction method were more stable and
balanced than measures of traditional EMD-based method.
The accuracy of the improved EMD-based feature extraction
method was better than the traditional EMD-based method.
Sensitivity is very important in depression detection, which
represents the percentage of depressed patients who are
correctly identified as depressed. Thus, with the increase in
sensitivity, the missed diagnosis rate of depression detection
will reduce. The lower missed diagnosis rate can trace the ef-
fect of treatment on more depressed patients as well as save
more lives. Specificity represents the percentage of healthy
subjects who are correctly identified as healthy. High speci-
ficity is useful for detecting depression. With the increase
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in specificity, the misdiagnosis rate will decrease as well
as the effectiveness of treatment will increase. Therefore,
both sensitivity and specificity are important in depression
detection. Consequently, the improved EMD-based feature
extraction method performed better than the traditional
EMD-based feature extraction method on Dataset 1 and
Dataset 2.

The classification results on Dataset 3 and Dataset 4
of depressed patients and healthy subjects with affective
auditory stimulus are shown in Table 4. The best classi-
fication results in Dataset 3 and Dataset 4 were 82.18%
and 88.07% during the rest after Dentist Drill and during
affective auditory stimulus of Baby, respectively. Fig. 5
represents the box plot of three measures of EMD-based
feature extraction method and improved EMD-based fea-
ture extraction method. The accuracy of improved EMD-
based feature extraction method is better than that of EMD-
based feature extraction method. Most of the specificity of
improved EMD-based feature extraction method is better
than that of EMD-based feature extraction method (the Q1,
Q2 and Q3 values of improved EMD-based feature extrac-
tion method all are better than that of EMD-based feature
extraction method). Moreover, the sensitivity of improved
EMD-based feature extraction method was comparable to
that of EMD-based feature extraction method. Thus, Table 4
and Fig.5 demonstrated that the improved EMD-based fea-
ture extraction method performed better than the traditional
EMD-method.

In order to examine the effectiveness of EMD-based
method and the improved EMD-based method, we applied
Friedman test [52, 53] on Dataset 3 and Dataset 4. Thus,
we defined that if at least two measures of one method
was better than the other one in Table 4, this method
was better than the other one. For example, the accuracy
and sensitivity of EMD-based method during the affective
auditory stimulus of Dentist Drill in Dataset 3 was better
than the improved EMD-based method, thus, the EMD-
based method performed better than the improved EMD-
based method during the affective auditory stimulus of
Dentist Drill in Dataset 3. Then, we calculated the differ-
ence between the two methods according to Friedman test.
Friedman test revealed that the difference between the two
methods was significant ( p < 0.01) (Table 4), hence the
improved EMD-based method is better than the traditional
EMD-based method.

The results on Dataset 3 in Table 4 during affective
auditory stimulus of Dentist Drill and Baby, and the rest
after the two affective auditory stimulus were relatively
higher, which was also observed in Dataset 4 in Table 4.
Thus, the EEG collected during both negative and posi-
tive affective auditory stimulus can be used to detect de-
pression effectively. The EEG responses on both negative
and positive affective auditory stimulus of healthy subjects
and depressed patients were obviously different. It was
reported in [54] that healthy subjects showed greater rostral
anterior cingulate cortex (ACC) activity when successfully
inhibiting attention to positive stimulus, whereas depressed
patients show greater activation when inhibiting attention
to negative stimulus, which suggested that healthy subjects
require more cognitive effort to divert attention away from
positive stimulus, while depressed patients require more

TABLE 4
Comparing the classification results of traditional EMD and the

improved EMD-based feature extraction method on Dataset 3 and
Dataset 4

Affective
Measures EMD

improved
stimulus EMD

Dataset 3

Cattle
Accuracy 75.25% 78.01%
Sensitivity 86.77% 82.19%
Specificity 68.45% 75.08%

rest
Accuracy 72.27% 73.79%
Sensitivity 77.47% 77.34%
Specificity 67.42% 69.13%

Painting
Accuracy 78.41% 78.46%
Sensitivity 84.80% 78.42%
Specificity 73.43% 79.40%

rest
Accuracy 78.03% 81.39%
Sensitivity 87.66% 80.17%
Specificity 69.45% 82.40%

Babies Cry
Accuracy 70.54% 73.38%
Sensitivity 71.39% 76.74%
Specificity 69.01% 69.60%

rest
Accuracy 77.44% 79.02%
Sensitivity 85.55% 87.89%
Specificity 70.07% 70.98%

Dentist Drill
Accuracy 81.34% 81.27%
Sensitivity 84.14% 83.62%
Specificity 78.45% 79.47%

rest
Accuracy 82.18% 81.98%
Sensitivity 84.48% 82.69%
Specificity 79.51% 77.10%

Baby
Accuracy 77.59% 80.78%
Sensitivity 81.92% 83.89%
Specificity 73.42% 77.29%

rest
Accuracy 74.80% 78.87%
Sensitivity 78.92% 82.51%
Specificity 69.13% 73.97%

Dataset 4

Cattle
Accuracy 85.62% 85.13%
Sensitivity 93.64% 86.97%
Specificity 75.13% 81.48%

rest
Accuracy 82.74% 86.96%
Sensitivity 92.01% 87.48%
Specificity 71.40% 87.12%

Painting
Accuracy 78.92% 79.54%
Sensitivity 86.33% 88.03%
Specificity 68.57% 65.93%

rest
Accuracy 79.90% 81.08%
Sensitivity 86.11% 89.81%
Specificity 71.52% 70.06%

Babies Cry
Accuracy 79.97% 75.81%
Sensitivity 85.08% 85.73%
Specificity 73.35% 61.19%

rest
Accuracy 80.58% 82.32%
Sensitivity 86.79% 84.98%
Specificity 71.53% 78.51%

Dentist Drill
Accuracy 81.56% 83.49%
Sensitivity 86.30% 85.14%
Specificity 75.34% 79.89%

rest
Accuracy 85.71% 85.75%
Sensitivity 89.57% 90.78%
Specificity 80.74% 77.98%

Baby
Accuracy 86.33% 88.07%
Sensitivity 92.52% 92.28%
Specificity 80.83% 81.64%

rest
Accuracy 84.01% 86.83%
Sensitivity 90.01% 90.42%
Specificity 75.51% 79.65%

According to the Friedman test, we calculated the F1,19 = 10.69,
which showed p < 0.01, so the improved EMD-based method is
better than the traditional EMD-based method.
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cognitive effort to divert attention away from negative stim-
ulus. Therefore, the research [54] correlated with the results
acquired in Table 4. Consequently, it can be concluded that
both negative and positive affective auditory stimulus can
easily and effectively distinguish depressed patients from
healthy subjects.

Fig. 5. The measures of traditional EMD and improved EMD-based
feature extraction method in Table 4

As illustrated in Table 3 and Table 4, the results on
Dataset 2 and Dataset 4 were better than Dataset 1 and
Dataset 3, respectively, perhaps due to great regional dif-
ferences in the incidence of depression [55, 56]. The Dataset
1 and Dataset 3 were collected in Beijing and the Dataset
2 and Dataset 4 were collected in Tianshui. The subjects in
Dataset 1 and Dataset 3 suffered great stress everyday which
can lead to depression and anxiety tendency, whereas, the
subjects in Dataset 2 and Dataset 4 suffered much less stress
than the subjects in Beijing. Thus, the EEG difference of
depressed patients and healthy subjects in Tianshui was
more significant than that in Beijing. According to Table 3
and Table 4, although the epoches in Dataset 4 are only 6-
second, much shorter than 10-second epoches in Dataset 3,
the results on Dataset 4 are comparable or even better than
the results on Dataset 3. This could be because the affec-
tive auditory stimulus can induce more abnormal neural
activities in depressed patients and healthy subjects, and
different groups of subjects require different cognitive effort
to divert attention away from different affective auditory
stimulus (such as positive or negative auditory stimulus),
which can lead to a significant difference on the EEG of
depressed patients and healthy subjects. Moreover, the af-
fective auditory stimulus can induce corresponding moods
and reaction, which help to distinguish between depressed
patients and healthy subjects.

5 CONCLUSION

This study presented an improved EMD-based EEG fea-
ture extraction method and its application in depression
detection. EEG is a type of nonlinear, non-stationary and
complicated physiological signals. Thus, it is very difficult
for many popular feature extraction methods such as FFT to
extract excellent features on EEG and many methods ignore
the essential physical characteristic existing in the signal

nature. EMD is an efficient decomposition method intro-
duced by Huang. The EMD-based feature extraction method
performed better than traditional features on Dataset 1.
Thus, it is very important to comprehensively consider the
physical characteristics of signals while extracting features
on complicated signals.

The experimental results in Table 3 and Table 4 illustrat-
ed that the improved EMD-based EEG feature extraction
method performed better than the traditional EMD-based
method. The three measures: accuracy, sensitivity and speci-
ficity of the improved EMD-based method were performed
better than traditional EMD-based method, indicating that
the improved EMD-based method is more suitable in the
field of depression detection, and can reduce both missed
diagnosis and misdiagnosis rates. After applying the Fried-
man test on the results of Table 4, the improved EMD-based
method was more significant (p < 0.01) than the traditional
EMD-based method. Therefore, the improved EMD-based
feature extraction method should be widely advocated for
depression detection to save more lives in the future.
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U. Võhma, H. Pehlak, and J. Lass. Spectral features of
EEG in depression. Biomedizinische Technik Biomedical
Engineering, 55(3):155–161, 2010.

[13] S. Debener, A. Beauducel, D. Nessler, B. Brocke,
H. Heilemann, and J. Kayser. Is Resting Anterior
EEG Alpha Asymmetry a Trait Marker for Depression?
Neuropsychobiology, 41(1):31–37, 2000.

[14] Z. J. Koles, J. C. Lind, and P. Florhenry. A source-
imaging (low-resolution electromagnetic tomography)
study of the EEGs from unmedicated men with
schizophrenia. Psychiatry Research, 130(2):171–190,
2004.

[15] C. Nissen, B. Feige, E. A. Nofzinger, U. Voderholzer,
M. Berger, and D. Riemann. EEG slow wave activity
regulation in major depression. Somnologie, 10(2):36–
42, 2006.

[16] B. Hu, D. Majoe, M. Ratcliffe, Y. Qi, Q. Zhao, H. Peng,
D. Fan, F. Zheng, M. Jackson, and P. Moore. EEG-Based
Cognitive Interfaces for Ubiquitous Applications: De-
velopments and Challenges. IEEE Intelligent Systems,
26(5):46–53, 2011.

[17] J. A. Coan and J. J. Allen. Frontal EEG asymmetry
as a moderator and mediator of emotion. Biological
Psychology, 67(1):7–49, 2004.

[18] V. A. Grin-Yatsenko, I. Baas, V. A. Ponomarev, and J. D.
Kropotov. Independent component approach to the
analysis of EEG recordings at early stages of depres-
sive disorders. Clinical Neurophysiology, 121(3):281–289,
2010.

[19] Y. Kwan, C. Baek, S. Chung, T. H. Kim, and S. Choi.
Resting-state quantitative EEG characteristics of insom-
niac patients with depression. International Journal of
Psychophysiology, 124:26–32, 2018.

[20] M. Bachmann, J. Lass, and H. Hinrikus. Single channel
EEG analysis for detection of depression. Biomedical
Signal Processing & Control, 31:391–397, 2017.

[21] P. Carr and D. Madan. Option valuation using the
fast Fourier transform. Journal of Computational Finance,
2(4):61–73, 1999.

[22] P. Welch. The use of fast Fourier transform for the
estimation of power spectra: a method based on time

averaging over short, modified periodograms. IEEE
Transactions on audio and electroacoustics, 15(2):70–73,
1967.

[23] B. D. Mensh, J. Werfer, and H. S. Seung. Combining
gamma-band power with slow cortical potentials to
improve single-trial classification of electroencephalo-
graphic signals. IEEE Transactions on Biomedical Engi-
neering, 51(6):1052–1056, 2004.

[24] G. Mohammadi, P. Shoushtari, B. Molaee Ardekani,
and M. B. Shamsollahi. Person identification by using
AR model for EEG signals. In Proceeding of World A-
cademy of Science, Engineering and Technology, volume 11,
pages 281–285, 2006.

[25] B. Boashash, M. Mesbah, and P. B. Colditz. Time-
frequency detection of EEG abnormalities. Amsterdam,
pages 663–670, 2003.

[26] N. E. Huang, Z. Shen, S. R. Long, Manli C. Wu, H. H.
Shih, Q. Zheng, N. C. Yen, C. T. Chi, and H. H. Liu.
The empirical mode decomposition and the Hilbert
spectrum for nonlinear and non-stationary time series
analysis. Proceedings Mathematical Physical & Engineer-
ing Sciences, 454(1971):903–995, 1998.

[27] T. Solis-Escalante, G. G. Gentiletti, and O. Yanez-
Suarez. Single trial P300 detection based on the em-
pirical mode decomposition. In Conference proceedings:
IEEE Engineering in Medicine and Biology Society, pages
1157–1160, 2006.

[28] A. Arasteh, M. H. Moradi, and A. Janghorbani. A Nov-
el Method Based on Empirical Mode Decomposition
for P300-Based Detection of Deception. IEEE Trans-
actions on Information Forensics & Security, 11(11):2584–
2593, 2016.

[29] N. Chatlani and J. J. Soraghan. Adaptive Empirical
Mode Decomposition for Signal Enhancement with
application to speech. In International Conference on
Systems, Signals and Image Processing, pages 101–104,
2008.

[30] M. Blanco-Velasco, B. Weng, and K. E. Barner. ECG
signal denoising and baseline wander correction based
on the empirical mode decomposition. Computers in
Biology & Medicine, 38(1):1–13, 2008.

[31] T. Y. Sun, C. C. Liu, J. H. Jheng, and T. Y. Tsai.
An efficient noise reduction algorithm using empirical
mode decomposition and correlation measurement. In
International Symposium on Intelligent Signal Processing
and Communications Systems, pages 1–4, 2009.

[32] J. Tang, X. Yang, J. Xu, Y. Tang, Q. Zou, and X. Zhang.
The Algorithm of R Peak Detection in ECG Based on
Empirical Mode Decomposition. In Fourth International
Conference on Natural Computation, pages 624–627, 2008.

[33] S. K. Hadjidimitriou and L. J. Hadjileontiadis. EEG-
Based Classification of Music Appraisal Responses Us-
ing Time-Frequency Analysis and Familiarity Ratings.
IEEE Transactions on Affective Computing, 4(2):161–172,
2013.

[34] J. Shen, S. Zhao, Y. Yao, Y. Wang, and L. Feng. A novel
depression detection method based on pervasive EEG
and EEG splitting criterion. In IEEE International Con-
ference on Bioinformatics and Biomedicine (BIBM), pages
1879–1886, 2017.

[35] B. E. Compas, G. E. Davis, C. J. Forsythe, and B. M.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2019.2934412, IEEE

Transactions on Affective Computing

IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. ..., NO. ..., ... ... 10

Wagner. Assessment of major and daily stressful
events during adolescence: the Adolescent Perceived
Events Scale. Journal of Consulting & Clinical Psychology,
55(4):534–541, 1987.

[36] D. V. Sheehan, Y. Lecrubier, K. H. Sheehan, P. Amorim,
J. Janavs, E. Weiller, T. Hergueta, R. Baker, and G. C.
Dunbar. The Mini-International Neuropsychiatric In-
terview (M.I.N.I): The development and validation of
a structured diagnostic psychiatric interview for DSM-
IV and ICD-10. Journal of Clinical Psychiatry, 59(Suppl
20):22–33, 1998.

[37] D. Bernstein, L. Fink, and D. Bernstein. Childhood
trauma questionnaire: A retrospective self-report: Manual.
Psychological Corporation, 1998.

[38] M. Valstar, J. Gratch, B. Schuller, F. Ringeval,
D. Lalanne, M. Torres, S. Scherer, G. Stratou, R. Cowie,
and M. Pantic. Avec 2016: Depression, mood, and
emotion recognition workshop and challenge. In Pro-
ceedings of the 6th International Workshop on Audio/Visual
Emotion Challenge, pages 3–10. ACM, 2016.

[39] R. J. Davidson, W. Irwin, M. J. Anderle, and N. H.
Kalin. The neural substrates of affective processing in
depressed patients treated with venlafaxine. American
Journal of Psychiatry, 160(1):64–75, 2003.

[40] C. L. Fales, D. M. Barch, M. M. Rundle, M. A. Mintun,
A. Z. Snyder, J. D. Cohen, J. Mathews, and Y. I. Sheline.
Altered emotional interference processing in affective
and cognitive-control brain circuitry in major depres-
sion. Biological Psychiatry, 63(4):377–384, 2008.

[41] M. M. Bradley and P. J. Lang. The International Affec-
tive Digitized Sounds Affective Ratings of Sounds and
Instruction Manual. University of Florida, 2007.

[42] M. M. Bradley and P. J. Lang. Measuring emotion: The
self-assessment manikin and the semantic differential.
Journal of Behavior Therapy and Experimental Psychiatry,
25(1):49–59, 1994.

[43] Y. Chen, Q. Zhao, B. Hu, J. Li, H. Jiang, W. Lin, Y. Li,
S. Zhou, and H. Peng. A method of removing ocular
artifacts from EEG using discrete wavelet transform
and Kalman filtering. In IEEE International Conference
on Bioinformatics and Biomedicine (BIBM), pages 1485–
1492, 2016.

[44] C. Bandt and B. Pompe. Permutation entropy: a natural
complexity measure for time series. Physical Review
Letters, 88(17):174102, 2002.

[45] Shannon C. E. A mathematical theory of communica-
tion. Bell system technical journal, 27(3):379–423, 1948.

[46] A. Lempel and J. Ziv. On the Complexity of Finite
Sequences. IEEE Transactions on Information Theory,
22(1):75–81, 1976.

[47] C. Cortes and V. N. Vapnik. Support-Vector Networks.
Machine Learning, 20(3):273–297, 1995.

[48] K. P. Burnham and D. R. Anderson. Model Selection
and Multimodel Inference. Technometrics, 33(2):105–124,
2004.

[49] S. Maldonado, A . Flores, T. Verbraken, B. Baesens, and
R. Weber. Profit-based feature selection using support
vector machines–General framework and an applica-
tion for customer retention. Applied Soft Computing,
35:740–748, 2015.

[50] C. W. Hsu, C. C. Chang, and C. J. Lin. A practical guide

to support vector classification. 2003.
[51] C. C. Chang and C. J. Lin. LIBSVM: a library for sup-

port vector machines. ACM transactions on Intelligent
Systems and Technology (TIST), 2(3):27, 2011.

[52] M. Friedman. The use of ranks to avoid the assumption
of normality implicit in the analysis of variance. Journal
of the American Statistical Association, 32(200):675–701,
1937.
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