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Abstract

A new error bound for the linear complementarity problem when the matrix involved

is a B-matrix is presented, which improves the corresponding result in (Li et al. in

Electron. J. Linear Algebra 31(1):476-484, 2016). In addition some sufficient conditions

such that the new bound is sharper than that in (García-Esnaola and Peña in Appl.

Math. Lett. 22(7):1071-1075, 2009) are provided.
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1 Introduction

Given an n× n real matrixM and q ∈ Rn, the linear complementarity problem (LCP) is to

find a vector x ∈ Rn satisfying

x ≥ , Mx + q ≥ , (Mx + q)Tx =  ()

or to show that no such vector x exists. We denote this problem () by LCP(M,q). The

LCP(M,q) arises in many applications such as finding Nash equilibrium point of a bima-

trix game, the network equilibrium problem, the contact problem and the free boundary

problem for journal bearing etc.; for details, see [–].

It is well known that the LCP(M,q) has a unique solution for any vector q ∈ Rn if and

only ifM is a P-matrix []. Here a matrixM is called a P-matrix if all its principal minors

are positive. For the LCP(M,q), one of the interesting problems is to estimate

max
d∈[,]n

∥∥(I –D +DM)–
∥∥

∞, ()

which can be used to bound the error ‖x – x∗‖∞ [], that is,

∥∥x – x∗∥∥
∞ ≤ max

d∈[,]n

∥∥(I –D +DM)–
∥∥

∞
∥∥r(x)

∥∥
∞,

where x∗ is the solution of the LCP(M,q), r(x) = min{x,Mx + q}, D = diag(di) with  ≤
di ≤  for each i ∈ N , d = [d,d, . . . ,dn]

T ∈ [, ]n, and the min operator r(x) denotes the

componentwise minimum of two vectors.
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When the matrix M for the LCP(M,q) belongs to P-matrices or some subclass of P-

matrices, various bounds for () were proposed; e.g., see [, –] and the references

therein. Recently, García-Esnaola and Peña in [] provided an upper bound for () when

M is a B-matrix as a subclass of P-matrices. Here, a matrix M = [mij] ∈ Rn,n is called a

B-matrix [] if for each i ∈N = {, , . . . ,n},

∑

k∈N
mik > , and



n

(∑

k∈N
mik

)
>mij for any j ∈N and j �= i.

Theorem  ([], Theorem .) Let M = [mij] ∈ Rn,n be a B-matrix with the form

M = B+ +C, ()

where

B+ = [bij] =

⎡
⎢⎢⎣

m – r+ · · · mn – r+
...

...

mn – r+n · · · mnn – r+n

⎤
⎥⎥⎦ , C =

⎡
⎢⎢⎣

r+ · · · r+
...

...

r+n · · · r+n

⎤
⎥⎥⎦ , ()

and r+i = max{,mij|j �= i}. Then

max
d∈[,]n

∥∥(I –D +DM)–
∥∥

∞ ≤ n – 

min{β , } , ()

where β = mini∈N {βi} and βi = bii –
∑

j �=i |bij|.

It is not difficult to see that the bound () will be inaccurate when the matrixM has very

small value of mini∈N {bii –
∑

j �=i |bij|}; for details, see [, ]. To conquer this problem, Li

et al., in [] gave the following bound for () whenM is a B-matrix, which improves those

provided by Li and Li in [, ].

Theorem  ([], Theorem .) Let M = [mij] ∈ Rn,n be a B-matrix with the form M =

B+ +C, where B+ = [bij] is the matrix of (). Then

max
d∈[,]n

∥∥(I –D +DM)–
∥∥

∞ ≤
n∑

i=

n – 

min{β̄i, }

i–∏

j=

bjj

β̄j

, ()

where β̄i = bii –
∑n

j=i+ |bij|li(B+) with lk(B
+) = maxk≤i≤n{ 

|bii|
∑n

j=k,
j �=i

|bij|}, and
∏i–

j=

bjj

β̄j
=  if

i = .

In this paper, we further improve error bounds on the LCP(M,q) when M belongs to

B-matrices. The rest of this paper is organized as follows: In Section  we present a new

error bound for (), and then prove that this bound is better than those in Theorems 

and . In Section , some numerical examples are given to illustrate our theoretical results

obtained.
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2 Main result

In this section, an upper bound for () is provided when M is a B-matrix. Firstly, some

definitions, notation and lemmas which will be used later are given as follows.

A matrix A = [aij] ∈ Cn,n is called a strictly diagonally dominant (SDD) matrix if |aii| >∑n
j �=i |aij| for all i = , , . . . ,n. A matrix A = [aij] ∈ Rn,n is called a nonsingular M-matrix if

its inverse is nonnegative and all its off-diagonal entries are nonpositive []. In [] it was

proved that a B-matrix has positive diagonal elements, and a real matrix A is a B-matrix

if and only if it can be written in the form () with B+ being a SDDmatrix. Given a matrix

A = [aij] ∈ Cn,n, let

wij(A) =
|aij|

|aii| –
∑n

k=j+,
k �=i

|aik|
, i �= j,

wi(A) = max
j �=i

{
wij(A)

}
,

mij(A) =

|aij| +
∑n

k=j+,
k �=i

|aik|wk(A)

|aii|
, i �= j.

()

Lemma  ([], Theorem ) Let A = [aij] be an n × n row strictly diagonally dominant

M-matrix. Then

∥∥A–
∥∥

∞ ≤
n∑

i=

(


aii –
∑n

k=i+ |aik|mki(A)

i–∏

j=



 – uj(A)lj(A)

)
,

where ui(A) =


|aii|
∑n

j=i+ |aij|, lk(A) = maxk≤i≤n{ 
|aii|

∑n
j=k,
j �=i

|aij|},
∏i–

j=


–uj(A)lj(A)
=  if i = ,

and mki(A) is defined as in ().

Lemma  ([], Lemma ) Let γ >  and η ≥ . Then, for any x ∈ [, ],



 – x + γ x
≤ 

min{γ , }

and

ηx

 – x + γ x
≤ η

γ
.

Lemma  ([], Lemma ) Let A = [aij] with aii >
∑n

j=i+ |aij| for each i ∈ N . Then, for any

xi ∈ [, ],

 – xi + aiixi

 – xi + aiixi –
∑n

j=i+ |aij|xi
≤ aii

aii –
∑n

j=i+ |aij|
.

Lemmas  and  will be used in the proofs of the following lemma and Theorem .

Lemma  Let M = [mij] ∈ Rn,n be a B-matrix with the formM = B+ +C, where B+ = [bij] is

the matrix of (). And let B+
D = I –D+DB+ = [b̃ij] where D = diag(di) with  ≤ di ≤ . Then

wi

(
B+
D

)
≤ max

j �=i

{ |bij|
bii –

∑n
k=j+,
k �=i

|bik|

}
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and

mij

(
B+
D

)
≤ vij

(
B+

)
< ,

where wi(B
+
D),mij(B

+
D) are defined as in (), and

vij
(
B+

)
=



bii

(
|bij| +

n∑

k=j+,
k �=i

(
|bik| · max

h�=k

{ |bkh|
bkk –

∑n
l=h+,
l �=k

|bkl|

}))
.

Proof Note that

[
B+
D

]
ij
= b̃ij =

{
 – di + dibij, i = j,

dibij, i �= j.

Since B+ is SDD, bii–
∑n

k=j+,
k �=i

|bik| > |bij| for each i �= j. Hence, by Lemma  and (), it follows

that

wi

(
B+
D

)
= max

j �=i

{
wij

(
B+
D

)}
= max

j �=i

{ |bij|di
 – di + biidi –

∑n
k=j+,
k �=i

|bik|di

}

≤ max
j �=i

{ |bij|
bii –

∑n
k=j+,
k �=i

|bik|

}
< . ()

Furthermore, it follows from (), () and Lemma  that for each i �= j (j < i ≤ n)

mij

(
B+
D

)
=

|bij| · di +
∑n

k=j+,
k �=i

|bik| · di ·wk(B
+
D)

 – di + bii · di

≤ 

bii
·
(

|bij| +
n∑

k=j+,
k �=i

|bik| ·wk

(
B+
D

)
)

≤ 

bii

(
|bij| +

n∑

k=j+,
k �=i

(
|bik| · max

h�=k

{ |bkh|
bkk –

∑n
l=h+,
l �=k

|bkl|

}))

= vij
(
B+

)

<


bii

(
|bij| +

n∑

k=j+,
k �=i

|bik|
)
< .

The proof is completed. �

By Lemmas , ,  and , we give the following bound for () whenM is a B-matrix.

Theorem  Let M = [mij] ∈ Rn,n be a B-matrix with the form M = B+ +C, where B+ = [bij]

is the matrix of (). Then

max
d∈[,]n

∥∥(I –D +DM)–
∥∥

∞ ≤
n∑

i=

n – 

min{β̂i, }

i–∏

j=

bjj

β̄j

, ()
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where β̂i = bii –
∑n

k=i+ |bik| · vki(B+) with vki(B
+) is defined in Lemma , β̄i is defined in

Theorem , and
∏i–

j=

bjj

β̄j
=  if i = .

Proof LetMD = I –D +DM. Then

MD = I –D +DM = I –D +D
(
B+ +C

)
= B+

D +CD,

where B+
D = I –D +DB+ = [b̃ij] and CD =DC. Similarly to the proof of Theorem . in [],

we find that B+
D is an SDD M-matrix with positive diagonal elements and that

∥∥M–
D

∥∥
∞ ≤

∥∥(
I +

(
B+
D

)–
CD

)–∥∥
∞

∥∥(
B+
D

)–∥∥
∞ ≤ (n – )

∥∥(
B+
D

)–∥∥
∞. ()

Next, we give an upper bound for ‖(B+
D)

–‖∞. By Lemma , we have

∥∥(
B+
D

)–∥∥
∞ ≤

n∑

i=

(


 – di + biidi –
∑n

k=i+ |bik| · di ·mki(B
+
D)

i–∏

j=



 – uj(B
+
D)lj(B

+
D)

)
, ()

where

uj
(
B+
D

)
=

∑n
k=j+ |bjk|dj

 – dj + bjjdj
, lk

(
B+
D

)
= max

k≤i≤n

{ ∑n
j=k,
j �=i

|bij|di

 – di + biidi

}
,

and

mki

(
B+
D

)
=

|bki| · dk +
∑n

l=i+,
l �=k

|bkl| · dk ·wl(B
+
D)

 – dk + bkk · dk

with wl(B
+
D) = maxh�=l{ |blh|dl

–dl+blldl–
∑n

s=h+,
s�=l

|bls|dl
}.

By Lemmas  and , we can easily see that, for each i ∈N ,



 – di + biidi –
∑n

k=i+ |bik| · di ·mki(B
+
D)

≤ 

min{bii –
∑n

k=i+ |bik| ·mki(B
+
D), }

≤ 

min{bii –
∑n

k=i+ |bik| · vki(B+), }

=


min{β̂i, }
, ()

and that, for each k ∈N ,

lk
(
B+
D

)
= max

k≤i≤n

{ ∑n
j=k,
j �=i

|bij|di

 – di + biidi

}
≤ max

k≤i≤n

{


bii

n∑

j=k,
j �=i

|bij|
}
= lk

(
B+

)
< . ()

Furthermore, according to Lemma  and (), it follows that, for each j ∈N ,



 – uj(B
+
D)lj(B

+
D)

=
 – dj + bjjdj

 – dj + bjjdj –
∑n

k=j+ |bjk| · dj · lj(B+
D)

≤ bjj

β̄j

. ()
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By (), () and (), we have

∥∥(
B+
D

)–∥∥
∞ ≤ 

min{β̂, }
+

n∑

i=

(


min{β̂i, }

i–∏

j=

bjj

β̄j

)
. ()

The conclusion follows from () and (). �

The comparisons of the bounds in Theorems  and  are established as follows.

Theorem  Let M = [mij] ∈ Rn,n be a B-matrix with the form M = B+ +C, where B+ = [bij]

is the matrix of (). Let β̄i and β̂i be defined in Theorems  and , respectively. Then

n∑

i=

n – 

min{β̂i, }

i–∏

j=

bjj

β̄j

≤
n∑

i=

n – 

min{β̄i, }

i–∏

j=

bjj

β̄j

.

Proof Note that

β̄i = bii –

n∑

j=i+

|bij|li
(
B+

)
, β̂i = bii –

n∑

k=i+

|bik|vki
(
B+

)
,

and B+ is a SDDmatrix, it follows that for each i �= j (j < i≤ n)

vij
(
B+

)
=



bii

(
|bij| +

n∑

k=j+,
k �=i

(
|bik| · max

h�=k

{ |bkh|
bkk –

∑n
l=h+,
l �=k

|bkl|

}))

<


bii

n∑

k=j,
k �=i

|bik|

≤ max
j≤i≤n

{


bii

n∑

k=j,
k �=i

|bik|
}
= lj

(
B+

)
.

Hence, for each i ∈N

β̂i = bii –

n∑

k=i+

|bik|vki
(
B+

)
> bii –

n∑

k=i+

|bik|li
(
B+

)
= β̄i,

which implies that



min{β̂i, }
≤ 

min{β̄i, }
.

This completes the proof. �

Remark here that, when β̄i <  for all i ∈N , then



min{β̂i, }
<



min{β̄i, }
,
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which yields

n∑

i=

n – 

min{β̂i, }

i–∏

j=

bjj

β̄j

<

n∑

i=

n – 

min{β̄i, }

i–∏

j=

bjj

β̄j

.

Next it is proved that the bound () given in Theorem  can improve the bound () in

Theorem  (Theorem . in []) in some cases.

Theorem  Let M = [mij] ∈ Rn,n be a B-matrix with the form M = B+ +C, where B+ = [bij]

is the matrix of (). Let β , β̄i and β̂i be defined in Theorems ,  and , respectively, and let

α =  +
∑n

i=

∏i–
j=

bjj

β̄j
and β̂ = mini∈N {β̂i}. If one of the following conditions holds:

(i) β̂ >  and α < 
β
;

(ii) β̂ <  and αβ < β̂ ,

then

n∑

i=

n – 

min{β̂i, }

i–∏

j=

bjj

β̄j

<
n – 

min{β , } .

Proof When β̂ >  and α < 
β
, we can easily get

n∑

i=

n – 

min{β̂i, }

i–∏

j=

bjj

β̄j

<
n – 

min{β̂ , }

n∑

i=

i–∏

j=

bjj

β̄j

= (n – )α <
n – 

β
≤ n – 

min{β , } .

Similarly, for β̂ <  and αβ < β̂ , the conclusion can be proved directly. �

3 Numerical examples

Two examples are given to show that the bound in Theorem  is sharper than those in

Theorems  and .

Example  Consider the family of B-matrices in []:

Mk =

⎡
⎢⎢⎢⎣

. . . .

–. . . .

. –. k
k+

. .

 . . .

⎤
⎥⎥⎥⎦ ,

where k ≥ . ThenMk = B+
k +Ck , where

B+
k =

⎡
⎢⎢⎢⎣

  –. 

–.   –.

 –. k
k+

– .  –.

–. –.  

⎤
⎥⎥⎥⎦ .

By computations, we have β = 
(k+)

, β̄ = β̄ =
k+
k+

, β̄ = ., β̄ = , β̂ =
k+
k+

,

β̂ = ., β̂ =  and β̂ = . Then it is easy to verify that Mk satisfies the condition (ii) of
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Theorem . Hence, by Theorem  (Theorem . in []), we have

max
d∈[,]

∥∥(I –D +DMk)
–

∥∥
∞ ≤  – 

min{β , } = (k + ).

It is obvious that

(k + ) −→ +∞, when k −→ +∞.

By Theorem , we find that, for any k ≥ ,

max
d∈[,]

∥∥(I –D +DMk)
–

∥∥
∞

≤ 

(


β̄

+


β̄

· 

β̄

+


β̄

· 

β̄β̄

+


β̄β̄β̄

)

= 

(
k + 

k + 
+
(k + )

(k + )
+

(k + )

.(k + )

)
< ..

By Theorem , we find that, for any k ≥ ,

max
d∈[,]

∥∥(I –D +DMk)
–

∥∥
∞

≤ 

(


β̂

+


β̂

· 

β̄

+


β̄β̄

+


β̄β̄β̄

)

= 

(
k + 

k + 
+

(k + )

.(k + )
+
.(k + )

.(k + )

)

< 

(
k + 

k + 
+
(k + )

(k + )
+

(k + )

.(k + )

)
.

In particular, when k = ,



(
k + 

k + 
+

(k + )

.(k + )
+
.(k + )

.(k + )

)
≈ .,



(
k + 

k + 
+
(k + )

(k + )
+

(k + )

.(k + )

)
≈ .,

and the bound () in Theorem  is

 – 

min{β , } = (k + ) = .

When k = ,



(
k + 

k + 
+

(k + )

.(k + )
+
.(k + )

.(k + )

)
≈ .,



(
k + 

k + 
+
(k + )

(k + )
+

(k + )

.(k + )

)
≈ .,
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and the bound () in Theorem  is

 – 

min{β , } = (k + ) = .

Example  Consider the following family of B-matrices:

Mk =

[

k

–a
k

 
k

]
,

where
√
–


< a <  and –a

+a
< k < . ThenMk = B+

k +C with C is the null matrix.

By simple computations, we can get

β =
 – a

k
, β̄ =

 – a

k
, β̄ =



k
, β̂ =



k
and β̂ =



k
.

It is not difficult to verify thatMk satisfies the condition (i) of Theorem . Thus, the bound

() of Theorem  (Theorem . in []) is

∑

i=

 – 

min{β̄i, }

i–∏

j=

bjj

β̄j

=
k + 

 – a
,

which is larger than the bound



min{β , } =
k

 – a

given by () in Theorem  (Theorem . in []). However, by Theorem  we can get

max
d∈[,]

∥∥(I –D +DMk)
–

∥∥
∞ ≤  – a

 – a
,

which is smaller than the bound () in Theorem , i.e.,

 – a

 – a
<

k

 – a
.

In particular, when a = 

and k = 


, the bounds in Theorems  and  are, respectively,



min{β , } =
k

 – a
=




and

∑

i=

 – 

min{β̄i, }

i–∏

j=

bjj

β̄j

=
k + 

 – a
=



,

while the bound () in Theorem  is

∑

i=

 – 

min{β̂i, }

i–∏

j=

bjj

β̄j

=
 – a

 – a
=



.
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These two examples show that the bound in Theorem  is sharper than those in Theo-

rems  and .

4 Conclusions

In this paper, we give a new error bound for the linear complementarity problem when

the matrix involved is a B-matrix, which improves those bounds obtained in [] and [].

Numerical examples are given to illustrate the corresponding results.
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