
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this

document without permission of its author may be prohibited by law.

A n Improved Fai lures M ode l for C o m m u n i c a t i n g Proces se s

S. D. Brookes

Carnegie-Mellon University

Department of Computer Science

Pittsburgh

A. W. Ro3coe

Oxford University

Programming Research Group

Oxford

To appear in Proceedings of NSF-SERC Seminar on Concurrency, July 1984, Springer

Verlag Lecture Notes in Computer Science (1935).

The research reported in this paper was supported in part by funds from the Computer

Science Department of Carnegie-Mellon University, and by the Defense Advanced Research

Projects Agency (DOD), ARPA Order No. 3597, monitored by the Air Force Avionics

Laboratory under Contract F33615-81-K-1539. The views and conclusions contained in it

are those of the authors and should not be interpreted as representing the official policies,

either expressed or implied, of the Defense Advanced Research Projects Agency or the US

Government.

1

AN IMPROVED FAILURES MODEL FOR COMMUNICATING PROCESSES

S. D. Brookes

Carnegie-Mellon University

Pittsburgh, Pa.

USA

A. W, Roscoe

Programming Research Group

Oxford University

Oxford

England

0 . A b s t r a c t * ,

We extend the failures inode] of communicating processes to allow' a more satisfactory

treatment of divergence in addition to deadlock. The relationship between the revised

model and the old model is discussed, and we make some connections with various models

proposed by other authors.

1 . In troduct ion .

The papers [3,4] introduced the failure sets model for communicating sequential processes.

This model, an extension of the traces model of [13], was able to represent nondeterminis-

tic behaviour in a simple but effective way. We showed how to use this model to give a

denotational semantics to an abstract version of Hoare's language CSP [14], and used it to

prove some theorems about the behaviour of programs. The model enjoyed many elegant

mathematical properties, which facilitated formal manipulation and derivation of process

properties.

The failures model of processes is able to support a formal treatment of deadlock

properties. A process is said to deadlock if it reaches a stage where it is unable to participate

further in events; this property is captured very simply by the failures model, since a

potential deadlock corresponds to the ability to refuse all events and this is reflected directly

in the structure of the failure set of a process. However, there are problems associated

with the treatment in this model of the phenomenon of divergence. A process diverges

when it is engaged in an infinite unbroken sequence of internal actions invisible to its

2

environment, and as a result leaves its environment waiting eternally for a response. It is

important to be able to reason about the possibility of divergence, especially when trying to

establish a liveness property, such as the ability of a process to make some visible response

to its environment. The original failures model has certain weaknesses in its treatment

of diverging processes, as remarked in [11,12,19,20,2,23], and we will make in this paper

suitable alterations to the model which allow a more satisfactory account to be given. The

need for these adjustments was originally, independently, suggested by Hennessy and de

Nicola in [23] and by Roscoe in [12], and had a direct influence on the development of

[2]. The relationship of the new model with the models of Hennessy, de Nicola, and other

authors, is discussed in more detail in the final section of this paper. The new model

retains the ability to model deadlock, and is thus in a well defined sense an improvement

over the original. Again the model possesses an elegant mathematical structure and is well

suited to formal manipulation.

A second adjustment, independent of the treatment of divergence, is also suggested

in this paper. In the original failures model of processes all refusal sets were finite. This

condition is natural when the processes have a finite alphabet of discourse, so that each

process is only capable of participation in events drawn from a finite set. However, when

processes are allowed to have infinite alphabets it still seems unnatural not to be able to

tell explicitly from the semantics of a process whether or not it can refuse an infinite set

of events. We will introduce here infinite refusal sets, but with a closure condition making

the change from the old model largely cosmetic. In particular, the old model will be seen

to "sit inside" the new one in the natural way, so that we are clearly making a reasonable

generalization. With this adjustment in place it becomes slightly easier to formulate some

of the deadlock properties of processes, since deadlock corresponds explicitly to the refusal

of the entire alphabet of events.

We revise the definitions of some of the process compositions from [3,4] to take

divergence into account more accurately, and we give examples to show inadequacies in

the earlier definitions in their handling of this phenomenon.

Outline.

The first two sections of the paper introduce the old and the new models, and use

them to give a semantics to the version of CSP described in [3,4]. Some intuitions are

given to justify the changes we have made in building the new model, and the relationship

between the old and new models is analysed. The third section gives some examples of

applications of the model, defining in the new model the semantics of some interesting

forms of process composition which were used in [3,4]. We see that, with care, all of the

applications discussed in those papers may be transferred to this more general setting. The

same is true of the proof techniques described in the appendix of [4]. The fourth section

contains a comparison of the work of this paper with that of other authors, setting our

3

work in a more general context. This section also contains some conclusions and points

the way forward to future research.

For obvious reasons the contents of this paper overlaps the material of [3,4] to a

substantial degree. In order to avoid too much repetition, and to restrict the length of this

paper, much of the material of the earlier papers is assumed.

Notation.

Throughout this paper we will use the following conventions in notation. Given a set

E of events, the set of finite sequences or traces over £ will be denoted E*. We use a, 6, c to

range over E, and s,t,u to range over E*. The empty sequence is () , and the sequence with

elements a\,..., an in that order is written (a\,..., a n) , although sometimes we may omit

the braces and write a\.. . a n . Given traces s and t, we write at for their concatenation.

We say 5 < t (s is a prefix of t) if there is a trace u such that su — t; such a trace u is

called a suffix of t. The powerset of E is denoted P(E), while v/e uso p(E) for the finite

powerset (the set of all finite subsets); of course, if E itself is finite these two powersets

coincide. Finally X , Y, Z range over P(E) or p(E), depending on the context.

2. T h e fai lures mode l .

In this section we begin by recalling the earlier failures model of [3,4] and its use to

give a semantics to a version of CSP.

A process is regarded as an agent which communicates with its environment by

performing actions or events drawn from an alphabet E. Each event can be thought

of as an atomic action. Sequential processes are characterised at least partially by the

set of possible sequences of events in which they may participate; this constitutes the so-

called trace set of a process [13]. However, since we are going to be modelling processes

with nondeterministic behaviour, traces are not enough. The trace set of a process does

not indicate the possibility that deadlock might occur as the result of a nondeterministic

decision by a process. The effect of a nondeterministic decision by a process is to restrict

its ability to communicate on the next step, by choosing a set of events which will not be

possible on that step. Accordingly, the concept of a failure suggests itself as a means of

modelling the effects of nondeterministic decisions. A failure has the form

where s is a finite sequence of events and X is a finite set of events. If a particular failure

(«s, X) is possible for a process, then the process may perform the sequence of events s and

then be unable to perform any of the events in the set X ; we say the process can do s then

refuse X .

4

Bearing in mind the intuition behind this notion of failures, the failure set of a process

satisfies four simple conditions (Ml)-(M4) below. We therefore define a failure set to be

any subset

F C S V X p(E)

satisfying these conditions:

« > , �) € F

(s , X) e F & Y C X (s , r) 6 F

{stX)€F & (s (c) ,0)£ 'F (a
r

U { c }) 6 f .

We will denote the failures model by M,

For any set F of failures we define

traces(F) = { s j 3X. {s,X) £F}

initials(F) = {c\{c)€ traces(F)}

refusals(F) = { X | ({), X) 6 F }

F after s = { (i , X) | (st, X) £F}.

By condition (M3), s is a trace of F if and only if (s,0) is a failure of F. Thus. (Ml) and

(M2) state that the traces of a process form a non-empty, prefix-closed set. (M2) says that

if a process can refuse all events in a set Y then it can also refuse all subsets of Y. Finally,

(M4) states that an event which is impossible on the next step can be included in a refusal

set. It is easy to see that for any trace s of F9 the set F after s also satisfies the conditions

above; this represents the behaviour of the process once it has performed the sequence s.

Since failures represent the results of nondeterministic decisions made by a process,

there is a natural partial ordering on failure sets:

Fx Q F2 & Fi D F2.

We read F± C F2 as saying that Fi is more nondeterministic than F2. The set of all

failure sets, ordered by this relation, forms a complete semi-lattice. This means that every

non-empty collection of processes has a greatest lower bound (union) and every directed

set of processes has a least upper bound (intersection); in particular, the intersection of a

chain of processes is again a process. The least element (called CHAOS in [3,4]) is simply

E* X p(E), the set containing all possible failures. The maximal elements, the so-called

deterministic processes, are characterised by the condition:

(s, X) £ F & X n initials(F after s) = 0,

or, equivalently, that their refusal sets contain only impossible events.

5

(Ml)

(M2)

(M3)

(M4)

CSP operations.

Next we recall the abstract syntax given in [3,4] for a version of CSP. We use P , Q to

range over (syntactic) processes. The following BNF-style grammar defines the syntax of

our process language:

P : : = S T O P j SKIP | (a - * P) | PnQ \ PUQ \

P\\Q I P\\\Q I P)Q I p* I rl{P) I m \ P I

STOP represents a deadlocked process, and SKIP represents a process which terminates

successfully. Two forms of parallel composition arc represented by P j| Q and P| | |Q; the

former is known as synchronous parallel composition, the latter asynchronous. Sequential

composition is denoted P;Q, and prefixing a single event is denoted (a ~> P) . Two forms

of choice are represented by PQQ and P fl Q] the fir3t form is "controllable" and the

second "uncontrollable" or purely nondeterministic. The hiding operation P \ a conceals

all occurrences of the event a. We let / range over a set of alphabet transformations] these

are renaming functions / : £ — � £ satisfying the finite pre-image property, i.e. that for

every a £ £ the set /""
1

(a) = { 6 € £ | f{b) = a } is finite, so that only finitely many

events become identified under a renaming. The process f"l{P) can perform an event

b whenever P can perform the image event /(&). Conversely, the process / (P) performs

/ (a) whenever P can perform a. For further explanation of the nature and significance of

these syntactic operations see [4], In the final two clauses p ranges over a set of process

identifiers and jup.P is a recursive term, corresponding informally to a recursive process

definition of the form p — P.

We will denote the set of terms defined by this syntax by TCSP. A term is closed if

it has no free process identifiers. In order to interpret terms with free process identifiers

we will use an environment, which we take to be a function p from process identifiers to

failure sets. Let MEnv be the set of all environments of this type. We use the notation

P + [p »-+ F] for the environment which agrees with p except that it maps the process

identifier p to the failure set F.

The failures semantics of TCSP is summarized below; these clauses are essentially the

same as the definitions given in [3,4], except that we have made explicit use of environments

in order to treat the semantics of recursive terms rather more rigorously. In the earlier

papers we did not make an explicit distinction between syntax and semantics, preferring

rather to blur the distinction and use the same notation for the syntactic as well as semantic

operations. Here we are forced to emphasise the separation of syntax and semantics,

because we will later have another semantics to discuss.

This semantics is denotational, in that the failure sets of compound processes are

definable from the failure sets of their components. We assume familiarity with the basic

ideas of denotational semantics, as explained for example in [26]. We define the semantic

8

function

M : TCSP -+ [MEnv M)

by the clauses:

MMP - PSP!

XISTOPjp = { « > , X) | X < S p (S) }

At JSKIPlp = { (() , X) | y ^ X & X £ p (£) } U {(V, X) | X € p (S) }

XI(a-.P)l/» = {{(),X)\a#X & Xep&)}\Ji{(a),,X)\{8,X)Z M\Plp}

MfPHQlp = .MIPIPUMMP

MJIPDQIP^ {{{),X)\{()TX)<zMlPlPnMlQlp}

U{{S,X)\B^() & (�,J0€M|IP1PUWI«1P}

� M l P | | Q l / > = {(s,XuY)\(s>X)eMlPlp&(s,Y)eMlQ}p}

MlP\\\Qlp = { (« , X) I 3 s , t . u e m e r g e n t) &

(s , X) € M|Pj]/> & (4,X) € MMp}

MlP;Q]p = { (s , X) j stick-free & (« , X u { > / }) € A(|[P]|p}

U {(s* 5 X) | (V , 0) € M iPjp 8c s tick-free & (t, X) 6 X iQfp }

S\\P\a\p - { (s \ a , X) | (3 , X u { a » € M ! l P 3 p }

U {((�V*)*.*) | Vn.'(.«a
n

,0) 6 fllPJp}

M\T\P)\P = { (� , *) j (/ (,) , / (X)) e MlP\p}

Mif{P)\p - {(/(�),X) | (S , / "
l

(X)) € MlPlp}

>(I,ip.Plp = fix(XP.JKiPK,x+ [p -> F])).

For an open term the environment explicitly supplies a meaning for free identifiers. In

the clause for P | | | Q , we use the notation merge(s, t) for the set of all traces obtained by

interleaving the traces s and t. The special event >J is used to denote successful termination,

and is used in a sequential composition P) Q to signal the starting point of the second

process. A trace is tick-free if it does not contain an occurrence of this event, and a trace

ending with ^/ represents termination. In the definition of P\a, we use the notation s\a

for the result of removing ail occurrences of a from the trace s. Further explanation and

intuitions for these definitions will be found in [4].

As mentioned above, the failures model M forms a complete semi-lattice under the

superset ordering. This ordering amounts to a measure of the amount of nondeterminism

a process can exhibit. All of the failure set operations used in the semantic clauses above

are continuous, so we can appeal to the Knaster-Tarski Fixed Point Theorem to justify

the existence of least fixed points [26]. We have used the notation fix for the least fixed

point operator. Thus, the semantics of a recursively defined process is obtained as the

least fixed point of the corresponding function from failures to failures. By continuity, this

7

fixed point can be obtained in the usual way as a limit: the failure set of the process np.P

in environment p is generated as the intersection of the sequence

FQ = CHAOS,

Fn+{ = MlPl{p+[p<->Fn}) (n > 0) .

As an example, the term /*p.(a -» p) denotes a process which has the ability to perform an

unlimited number of a events:

Mlw.{a ~> p)lp = { (a
n

, X) | n > 0 & a f?X & l G f (S) } ,

This process satisfies the fixed point equation P — (a —> P). The recursion f.ip.p denotes

the failure set CHAOS, and is the most nondetormmi^tic of all processes. Mutual recursions

can be dealt with in a similar fashion.

We write

PQMQ <=> Vp.iMPlP 2 M\QM,

P = M Q <=> V P.[AILPL|P=X|QLP].

In other words, P == M Q when the two processes have identical failure sets (in this model).

When P Cj\,/ Q we say that P is more nondeterministic than Q. This relation induces a

pre-ordering on TCSP terms.

In view of the Fixed Point Theorem, a process defined by recursion should satisfy

its definition. This is expressed formally in the following way. Let P be a term with

free process identifier p. We write [Q\p]P for the term arising by replacing every free

occurrence of p in P by Q, with suitable name changes to avoid clashes. Then we have:

WP s s a , [{fip.P)\p]P.

We will often suppress the /i notation and simply define a process by the fixed point

equation it is required to satisfy; the implicit understanding when we do this is that we

are defining the least fixed point.

The following properties of processes will be assumed. Proofs may be found in the

earlier papers [3,4] or else in [19,20]. This is not an exhaustive list or a complete set of true

equivalences; [19] contains a complete set of axioms for a significant subset of our language

(omitting some of the operators).

8

PUP = M P

PUQ = M QtiP

PU{QUR) =M {PUQ)UR

PU{Qr\R) s M {PDQ)n{PQR)

Pn(QDR) = M {PnQ)U(PnR)

P D S T O P SSM P

(o - > {PHQ)) = m (o P) n (a - > Q)

(a - P) D (a - Q) ~ M (A - P) n (a - > Q)

p n p = m P

P n Q s M Q n P

p n (Q n P) s M (P n Q) n i e

p || g = A f g II P

PUQ\\R)MU{P\\Q)\\R

P\\(Qr\R) MU.{P\\Q)n(P.\\R)

(a - P) II (6 — Q) = = A f S T O P i f a ^ 6

=M (a - (P || Q)) i f a = 6

P |j S T O P = = M S T O P

' P | | | Q - s s M

(P j | ! 0) | | | P = M P | | | (Q | | | i 2)

PHKQHP) = m (P | | | Q) n (P | | | P)

(« - P) | | | (6 - Q) = = M (a - . (P | j | (6 - . «))) � (& - > ((o - . P) | | | Q))

P\{Q\R) SSU {P\Q)\R

S T O P I H Q = M Q

S K I P ; Q = M Q

S T O P j Q = M S T O P

P ; (Q n P) s M (P ; Q) n (P ; B)

(P n Q) ; i 2 = m (P ; i 2) n (Q ; P)

(a - P) ; Q = M (a -+ P; Q) i f a ^ ^

(P \ a) \ 6 = M (P \ 6) \ a

(P \ o) \ o s s M P \ a

(a -.� P) \ 6 = m (a -> P \ 6) i f a ^ 6

= M P\b i f a = &

(p n < 3) \ o = M (P\a)n(QV)

T A B L E 1

9

3. T h e new mode l .

The failures model is unable to provide an adequate treatment of the phenomenon of

divergence. In addition, all refusal sets were taken to be finite. The new model has the

same basic structure but with two modifications.

1. Divergence. A process is said to diverge at some stage if it is possible for it to

engage in an unbounded sequence of internal actions, invisible to its environment. Such

behaviour is introduced when hiding an infinite sequence of events; if such a sequence is

rendered invisible to the environment of the process, the resulting process diverges. An

example of this is provided by the term

(/xp.(a -+ p))\a.

Here the recursively defined process is able to perform an unbounded sequence of a

events, which become internal actions when the hiding operation is applied. Divergence

is also introduced by ill-defined recursive definitions, because we regard the initiation of

a recursive call as an internal action; an example is provided by the recursive term jup.p,

whose execution results in an infinite sequence of recursive calls. In the failures model

Ma, divergence caused by hiding w a 3 modelled as CHAOS, although another plausible

version of the hiding operation regarded this type of divergence as indistinguishable from

deadlock. Some of the properties of this version of hiding were investigated in [2], This

alternate form of hiding, which models divergence by STOP and thus identifies divergence

with deadlock, does not have such appealing algebraic properties, and the chaotic form

was preferred in [3,4]. In particular, the chaotic form of hiding is a continuous operation,

unlike the deadlocking version. However, CHAOS is simply the process which can at any

stage in its execution refuse any set of events; that is, CHAOS always responds to its

environment by either refusing or performing ail event. It can therefore be argued that

it is unreasonable to identify divergence with CHAOS, the ability to fail to respond at

all to the environment, since divergence is more accurately represented by the inability

to respond in any finite time. Indeed, CHAOS does not possess all of the combinational

properties we would like to associate with a diverging process. In particular, the following

equivalences do not generally hold in the failures model:

P � CHAOS = M CHAOS,

P || CHAOS = M CHAOS,

P| | |CHAOS ~M CHAOS,

CHAOS; Q = M CHAOS.

In each of these cases we would expect divergence of the component process to cause the

possibility of divergence in the compound process. Similar problems were encountered by

Hennessy and de Nicola [12,19], in trying to axiomatize the failures model, and by Roscoe

[23] when trying to make connections between the failures semantics and an operational

10

interpretation of process behaviour. The use of CHAOS for the purpose of modelling

divergence does not quite fit properly with operational intuitions. Thus, the failures model

alone is insufficiently powerful to give a satisfactory or convincing account of divergence. In

order to provide a more pleasing treatment of divergence, we introduce an extra component

into the semantic description of a process. In addition to a failure set, a process will be

associated with a divergence set this will be a set of traces. If s is a divergence trace of a

process we interpret this as saying that the process may be diverging once it has performed

the sequence s.

2. Infinite refusal sets. Secondly, if E is infinite we will allow refusal sets to be

infinite; but we also add a closure condition which makes this change largely cosmetic.

Specifically, an infinite set will be a possible refusal if and only if all of its finite subsets are

refusable. Thus, infinite refusal sets are determined by their finite subsets being refusable.

In this new model, which we will denote N, processes are modelled as pairs

(F,D)

with

FCT/X />(E),

D C E*.

In such a pair (F, D) the failure set is F and the divergence set is D. We will extract these

two components with the functions failures and div. We require the following conditions

on F, which should be compared with (M1)-(M4) of the previous section.

({),*) eF (Ni)

{st, $)€F (* , 0) e F (N2)

{s,X)eF & Y CX =*(s,Y)eF (N3)

(s, X)� € F & (Vc € Y. ((s(c), 0) #F)) =� {s,X\jY)eF (N4)

(VT € p(X) . («, Y)eF) {s, X) G F. (N5)

The only difference between (N1)-(N4) and the previous conditions is that Y is allowed

to be infinite in (N4), whereas from use of (M4) only finite sets of impossible events can

be included. (N5) states that a set is refusable if all of its finite subsets are refusable; the

converse is implied by (N3).

We also impose a condition on the divergence set, corresponding to the intuition that

divergence is a persistent phenomenon: once a process is diverging it diverges forever.

Moreover, it is impossible to determine finitely any information about a diverging process,

so that we cannot rule out the possibility that it might engage at some stage in some

sequence of events. In other words, we regard divergence as catastrophic. These considera-

tions lead us to formulate some conditions relating the divergence set D and failure set F

11

of a process:

s £ D st € D (Dl)

se D =» (s t , X) 6 F . (D2)

Condition (Dl) states that the divergence set of a process is suffix-closed. The other

condition states the catastrophic or chaotic nature of divergence. A similar argument

was used in [3,4] to suggest that the failure set of a diverging process should be the most

nondeterministic.

As in the old model, there is a natural partial order on the set of pairs (F, D) :

(FuDi) C (F2fD2) <=» FXDF2 & Dt D A*.

The interpretation of this is that a process Pi is more nondeterministic than P2 if it

can diverge whenever P2 can diverge and fail whenever P2 can fail. Again this ordering

produces a complete semi-lattice structure; the least element, the most nondeterministic

process, denoted J_, has divergence set E* and failure set E* X P(E). Since our model

identifies all terms which diverge, we find ifc convenient to abuse notation slightly and

introduce a constant term J_to the syntax of TCSP, representing divergence explicirjy.

V/e say that a process is divcrgence-frcz if its divergence sst is empty. The divergence-

free processes form a semi-lattice which is clearly isomorphic to the old failures model,

with bottom element CHAOS. The isomorphism <!> : M N, given by

« ({ x) | v r € r) e F } , 0),

merely assumes no divergence and introduces infinite refusal sets when required by (N5).

Thus, in this model there is a distinction between the processes

i = (s
.

x ; (s) , n

$(CIIAOS) = (S* X />(£), 0).

Note that the deterministic processes in the new model (the maximal elements) axe precisely

the images of deterministic processes in the old model, under this isomorphism. In

particular, deterministic processes are divergence-free.

Semantics.

To give a semantics to our TCSP language we define a mapping M from processes

to failure sets and divergence sets, when supplied with an environment for the meanings

of free identifiers. Now we need an environment which maps process identifiers to pairs

(F, D). Thus, an environment e will be a function c : TCSP - > N. As remarked earlier, we

12

use the functions failures and DIV to extract the two components of a pair {F, D). We* write

« + [p H (F9D)) for the environment which agrees with e except at p, which is mapped to

the given pair. Let NEnv be the set of environments of this type. The type of the semantic

function is thus

M : TCSP — [NEnv ~> N).

For presentation purposes it is sometimes convenient to factor M into two component

functions, by defining auxiliary semantic functions 7 and D such that

HPh = (HPk, DIP}*).

With this notation, y|Pj]€ is the failure set of P and P[[Pj]e is the divergence set. This

enables us, when desirable, to define A/([P|| in terms of the two components. Strictly speak-

ing, the intention is to define both components simultaneously (using mutual recursion).

This is illustrated in the definition for recursive terms:

Mlw.Ple = Bx(\(F, D).MlPl(e + (p -+ {F, D)])).

For the other syntactic constructs, we define the divergence semantics first and then give

the failure sets. For the other syntactic constructs, the divergence semantics

0 : TCSP ->. [NEnv -> />(E*)]

is provided by the clauses:-

PfiSTOPj* = 0

PiSKIPje = 0

Dla-+P\e « { (o) « | « € P | P l « }

PIPnQh =WPhuWQh

PlPDQh ^DlPjeUDlQh

PJP| |Qje = {si \s£ {D\P\T fl traces(/|[Q]|e)) U {V\Q\T fl traces(f |P]]e))}

P t t ^ l l l G l * = i u I 3

»-«'€ merge(s,t)&

(3 £ 0\P\e & t £ traces^HQjJe) V * £ t>\Q\e &s£ traces(7fPfe)) }

D|P;Q]]e = VjPfle U { st | s is tick-free & 9 y / £ teaces(7|[PJe) & t £ PjQlJe }

D\P\a\e = { (s \a) t \ s £ D\P\e } U {{s\a)t j Vn . so
n

 £ traces(7 \P\e)}

t>ir\P)V ={s\M£D\P\e}

W(P)h - { / (�) * I � € P I P 1 « >

Notice from this definition that STOP and SKIP have empty divergence sets, while

a nondeterministic composition P fl Q or P � Q may diverge if one of the components

13

diverges. In a parallel composition P\\Q or divergence can start at some stage if

either of the component processes can diverge. A sequential composition P;Q can diverge

if either the first component diverges or if the second diverges after the first one has

terminated successfully. The biding operation explicitly introduces divergence in a case

where the original process is capable of unboundedly many hidden actions; this accords

with our intuitions about divergence, as stated above. Finally, the divergent traces of a

renamed process are obtained by renaming from those of the original process. It should

be noted that each of these divergence set constructions preserves property (Dl).

The failures semantic function has type:

7 : CSP -»� [NEnv -> P(S* X />(£))].

We have already specified 7\np.P\e. For the other syntactic constructs, we specify the

following clauses. Apart from the need to close up under condition (D2), these definitions

are essentially those of [4], and the reader will find further explanation there.

7\p\e = fa i lures^]])

/ l S T O P S f i = { (() , X) | X € ? (E) }

J U S K I P j J e = { (() , X) | V #X } U { W, X)\XeP{Z)}

7\a -+ P\c « { ((), X) | a #X } U { ««>«, X) | X) £ 7\P* }

T\PUQ* -={{{),x)\ ((),x) e TiPlenHQb}

U{{s,X)\s^()&(3,X)e HPh u 7\Q\e }

U { (� , *) I � € / > | P U Q l « }

HPWQh * ((a u r) | (B,X) e ?fP\e&i[;Y) € 7\Q\t}

U{{s,X)\seDlP\\Q\e}

7lP\\\Qh = {(u,X) \3s,t.{S,X) € 7lPje & {t,X)<=7lQ}e & u 6 merge(a, t)}

U { M r) l « € P | P | | | Q l e }

7\P)Q\e = { (« , X) | s tick-free & (a ,X U { v
7

}) € 7\P\e }

U{{st,X) | (« . / ,0) € 7\P\e & stick-free & (t,X) € 7\Q\e}

\j{(S,X)\se?lPle}

7lP\aje = { (s \ o , X) | (s, X U { a }) 6 7\P\e }

U { (« , X) | i i € P l P \ c l e }

nrX{P)h = { (s , X) | (/(�), f(X)) e 7\P* }

Hf(P)h - {(/(.),JQ I (s>/~
X

PO) 6 7 I P J « } U I � € P I / (P) 1 « > .

The next result establishes that our semantic definitions make sense.

14

T H E O R E M 1. All CSP operations defined above are well defined and continuous.

Proof. Well definedness is easy to show, except for the synchronous parallel operator. In

each case we have to establish that the failure set operations and divergence set operations

corresponding to the syntactic constructions preserve the properties (M l) ~ (N 5) and (Dl)~

(D2). Only the proof for the synchronous parallel operator is non-trivial. A full proof may

be found in [23] or in the full version of this paper [5]. Continuity proofs are relatively

straightforward, along the lines of the proofs given in [4],[2], and [23j. 8

Since all of our operators are continuous, we can justify our use of least fixed points

in defining the meaning of recursive definitions, and we know that these fixed points are

explicitly constructible, as was the case in the earlier model.

Examples.

1. The process defined by the recursion P = [a —> P) is denoted jup.(a —� p). This

process has:

7\w.{a p)\e = {{an,X) \ n > 0 & a gX }

Dlfxp.{a -> p)\e = 0.

2. The recursive term \ip.p denotes the most nondeterministic process J _ , which can

do anything at all:

JJ/ip.pfle = ST X P(X),

Note that our notation implies that

�MJMP-PIIP = CHAOS

Mlftp.ple = ±.

This is an example in which the two semantics produce distinct results. We should be

careful to distinguish between the meanings of terms in the two models. However, we can

show that the old semantics and the new essentially coincide except in their treatment

of divergence. This is stated precisely as follows. First we need to define an appropriate

notion of matching between the environments used in the M semantics and those used in

the ft semantics.

Definition. The operation $: M N induces a function $: R Env by:

(� P) W = (*(P&PH)>0>.

The environments p and $ p can be said to match.

L E M M A 1. If P is a TCSP term, then for all p,

- V I ^ I (* P) E n *{MIPIP).

15

file:///ip.p
ftp://ftp.ple

THEOREM 2 . If P is a TCSP term and p an environment such that = 0, then

^ I ^ J (* p) « * (A « I p 1 p) .

Many algebraic properties of processes and these operators can be proved. The

identities listed in Table 1 for the failures model are also true in this model (with

replaced by ^ A v) , except that

P (j STOP ~ i V STOP

is valid only if P f^/v as we regard divergence as catastrophic. It is important to

remember, then, that not all equivalences remain true in the passage from the failures

model to the extended model, because of the superior treatment of divergence in the new

model. Additional identities for the new semantics include the following.

P D ± = N ±

F || I = A T J ,

l \ a =N JL

TABLE 2

The fixed point theorem also holds in the new model. We have the identity

M p . P = N [(/xp-P)\p]P.

Strictness.

It can be argued [4] that most of the operators introduced so far ought to be strict, in

that they should preserve divergence. The identities listed in Table 2 reflect this property.

An exception is the prefixing operation (a —� P) , where divergence of P cannot manifest

itself until after the initial occurrence of a; a similar exception is the second argument of a

sequential composition, whose divergence cannot come into effect until the first component

has terminated. Some further exceptions to strictness will be discussed in the next section,

where we define the semantics of some operations introduced in [3,4].

1 6

4. Further operators*

It is possible to devise many useful operations, notably some interesting forms of

parallel composition. In this section we revise the delinitions of a few interesting forms of

composition ^vhich were described in [3,4], bringing out certain inadequacies in the earlier

treatment of divergence and showing that a cleaner treatment is obtained with our new

definitions. By redefining the semantics of these operations in this way we achieve a better

match with operational intuitions.

1. Mixed parallel composition.

We can define a parallel composition in which two processes operate with named

alphabets and are required to cooperate on events common to both of their alphabets, but

may progress independently on events belonging solely to their own alphabet. This mixed

parallel composition is less restrictive than the synchronous version and not as generous

as the asynchronous form. It is closely related to the ignoring operator of [3,4] and to the

mixed parallel composition of [2,23]. When P and Q are to run in parallel, with P using

alphabet A and Q using alphabet B, the resulting process is denoted:

[PAWBQ].

Its divergence sat and failure set, built up as usual from those of the constituent processes,

a r e :

DlPA\\DQh = {uv I it 6 (A U B)* & either ((u U € V\P\e ScuW <= traces(/|[Qje))

or (u\A e traccs(7[[P]]e) & u\B € D\Q\e))}

?IPA\\BQV = {{u,XuYU Z) | ti € (AUB)*,X CA,YCB,ZC AuB,

{u\A,X) e 7LPLE,{u\B,Y) € J\Q\e} U {{u,X) \ u € d\PA\\BQh}�

Here we introduce the notation u\A for the trace resulting from u after the removal of all

events outside of the set A. We also use C for the complement of a set C. According to

this definition, the traces u of P* \\BQ we built up from events in A and J3, and filtering

out only those events which belong to A produces a trace u\A of P , while filtering out the

events in B produces a trace u\B of Q. The compound process diverges after performing

the sequence u if either P can diverge after u\A or Q can diverge after u\B. Events in A

are refused if P refuses them, while Q chooses whether or not to perform the events in B.

Events common to A and B can be refused by either process. Events outside of A and B

are always impossible.

It is easy to check, given the well-definedness of the synchronous parallel composition

[5], that this construction produces a process when applied to processes, i.e. that conditions

(N1)-(N5) and (Dl)-(D2) are preserved. The following associativity property.can also be

proved; see [2] for details.

17

LEMMA 3. For all processes P, Q} R, and all sets of events A, B, C,

/[PA\\BUC[QB\\CR]) =N [[PA\\BQ]AUB\\CR]*

In view of this result, this notation generalizes to a parallel composition of more than

three processes. Given an indexed collection V — { (P ^ A ,) | 1 < i < n } we will write

PAR(V) H I ? - ! (Pi,Ai)

for the parallel composition. Using this notation the mixed parallel composition [P a | | b Q]

may be rendered (P ,A) || {Q>B), This type of composition can be useful in analysing the

deadlock behaviour of networks of parallel processes, as shown in [6].

Another interesting identity concerns the result of hiding an event which is involved

in a parallel composition. This identity did not in general hold in the eld model, in some

cases where hiding the ^vent introduces divergence.

LEMMA 4. Let A,B kc subsets of 2 , let c gB, and let C — A U {c}. Then for all

processes P , Q,

[POWBQW s a t [{PVMBQV

This result is important in analysing the effect of hiding internal communications in

networks of communicating processes. It enables us to move hiding operators (in some

cases) inside a parallel composition. This result is used in [6] to prove some useful results

on deadlock analysis.

If we wish to run P and Q in parallel using alphabets A and J3, we use the composition

[PA \\B Q] as above; events in the intersection A D B are synchronized and correspond to

communications between the two processes. These internal events may be concealed from

the environment by applying the hiding operation. Provided this intersection is finite, we

can define the process in which these internal communications are hidden as:

{pA\\BQ}\AnB).

This makes sense because hiding is associative. It is convenient to introduce a notation

for this composition: we will denote it [P A & BQ]- Now if we wish to extend this to a

network of several processes we may do so. The key associativity property is as follows.

Provided Ar\Bf)C = 0, and provided each of AClB, Bf]C} and Cf\A is finite, we have:

[[PA** BQ] (AUB) cR] —N [P A *=� (SU.C?) [Q B c P]]-

This follows from Lemmas 3 and 4.

18

2. Chaining.

In [3,4] we also defined a form of "chaining", a parallel composition P ^> Q in which all

outputs of P are fed into Q as inputs and hidden from their common environment. Assume

that all events are communications between processes along named channels. An event

consists of two parts m.t, where M is a channel name and t a value. Normally, the channel

name "in" is associated with input, and "out" with output. We use the abbreviations

(?s:T -> P(x)) ' for Q e T (in.* - P(i)) ,

It for (out.* -> SKIP).

It is convenient also to allow' the abbreviated form ?£ to stand for the correspoding event.

In order to cope with a form of channel naming, we also use the abbreviations:

(c?x:T P(x)) for Q 6 T (cin.t P{t)),

c\t for (c.out.i SKIP).

We also allow the abbreviated form c?t to stand for the corresponding event. The construct

(c?x:T —* P(x)) represents a process which initially inputs on channel c a value for x from

the set T (a value of type T); similarly, clt represents output of the value t along the

channel. For example, a simple buffer of type T using inp*it channel in and output channel

out is:

Bi — /ip.(in?x:.T —> out!x;p).

The chaining operation can be defined by combining a renaming with the mixed parallel

operation and hiding. First we rename the output events of P and the input eveuts of Q

so that they become identical events; then we run the renamed versions of P and Q in

parallel, using the renamed alphabets. This forces P to synchronize its outputs with the

inputs of Q. Finally we hide all events common to these alphabets, which are precisely

the internal communications between the two processes. Let a be a label distinct from in

and out. Let swap(a, /?) be the alphabet transformation defined:

swap(<*,/?)(x) = x if x ga.T U fiJT

= p.t if x^a.t (t£T)

= a.t if x — F3.t (TE T).

Then if we put A = in.T U a.T and B = out.T U a.T, we can define

(P » Q) = [swap(out, a)(P) A & B swap(in, a)(Q)].

As an example of the use of the chaining operation, the result of chaining two simple

buffers Bi together is again a buffer process, Bi B\} capable of holding at most two

values. Several interesting properties of buffer processes built from the chaining operation

were discussed in [4]. Most of these carry over without problems to the new model. In

particular, we have the identities (Bn ^> 2? m) = J ? n + m for all n, m > 0.

19

Interestingly, the version of the chaining operation defined in the failures model can

fail to be associative: it is not always true that P ^> (Q R) and (P 3 > Q) ^> R denote

the same failure set. This property can fail to hold when divergence can arise between two

of the processes, so that either (P r§> Q) or (Q 3 > R) diverges. Recall that in the failures

model divergence is represented by CHAOS; it is not generally true that

CHAOS > Q = M P » CHAOS = M CHAOS.

Again, the use of CHAOS to represent divergence is unsatisfactory.. In the new model the

chaining operation is associative. The identities

(_ L » Q) =N {P > J L) = x v _ L

are true for all P and Q.

LEMMA 5. For all processes P,Q9R,

P>{Q> R) s e a , (P » Q) » R.

3. Master-slave operation.

In [3,4] we also defined a "master-slave" construction [P || ru:Q], in which the master

process P refers to its slave Q by tho name m. The communications between master and

slave are hidden in this construction. The definition here is similar to the previous version,

except that we do not make the construction strict in the "slave" argument. The reason

for this is that we do not want a master-slave pair to diverge unless either the master is

diverging or the slave has been asked to perform some action and is diverging. In other

words, the master's activity will only be affected by a divergence of the slave if the master

is actually waiting for a response from the slave. Let C = T U in.2'
1

 U out.T and let m

be chosen to be distinct from in and out. We define first, for traces w, v & compatibility

condition:

c o m p a t m (u , v) «=> v £ C* & u\(m.C) — m.swap(in, out)(v).

If u is a trace of the master process, then u\{m.C) is the sequence of events involving the

slave named m. If we interchange the roles of input and output in this sequence we should

get a trace of the slave process; this is the essence of the compatibility condition. For

two compatible traces u and v, define [u \\ m:v] to be the trace t*f(E — m.C). This is the

sequence of events performed by the master process which do not involve the slave. Then

we can define the master-slave operation on processes as follows:

DIP || m:Qle = {[u\\ m:v]w \ compat m (u ,v) & u G D\P\e & v G traces(/[Q]|«)}

U {(t* || m:v]w | compat m (u , v) & u 6 t races (/ |P je) & v € D\Q\e & v ^ {)}

\j{sw | 3°°{u9v).ue traces(7|P]]e) 8c v G traces(?"[[Q]]e) & compat m (u ,v) &

s = [u || m:v]}.

20

For the failure set we define:

T\P II m:Q\e = {(S,X) | s £ D\P || m : * }

U {([« || m:v),X) | (u, U) £ J\P\e & (v,V) € J\Qh &

compat m (u , v) & U U m.swap(in, out)(V H C) — X U m.C } .

Thus, the traces of the compound process are built from a master trace and a compatible

slave trace; and an event not involving the slave process can be refused if the master

process refuses it and there is no possibility of an internal action. On the other hand, an

event involving the slave process may be refused if either the slave or the master refuses

it.

The version of master-slave operation used in the old failures model had some slight

problems, in particular in its behaviour in recursive definitions. For example, in the failures

model we have the identity

/ip.((?x -* mix) || m:p] = M (?x STOP),

although intuitively we can see that there is a possibility of divergence after the first input.

In the new model, with the above definition, we do indeed get

#p.((?x -> mix) jj m:p] = j v (?s —� J j .

Another problem was that in the failures model, the order in which a master process binds

his slaves could make a difference in the behaviour of the system. In other words, the

following identity does not always hold in the failures model:

[[P || m:Q] || n:R] = M [[P || n:R] || m:Q] (n ^ m).

Again this deficiency appears when divergence can occur between the master and one of the

slaves. In the new model the order in which a master process binds his slaves is irrelevant,

and we do have

[[P || m:Q) || n:R] = N [[P || n:R] \\ m:Q) (n ^ m).

5. Conc lus ions .

The revised model of processes described here enjoys the mathematical properties

of a complete semi-lattice under the componentwise ordering C^v introduced earlier.

All of the techniques used in [4] to specify and prove properties of processes may be

adapted with ease to this setting. In particular, it is possible to use the notions of

constructivity and non-destructivity in the analysis of recursively defined processes. Thus,

with minor modifications to fit with the revised definitions of some of the operators, the

21

examples described in [4] and the proofs of their properties described in that paper can be

reformulated in the revised setting.

The failures model of communicating processes was introduced in [3,4]. This model

was itself an extension of Hoare's earlier traces model of processes [13], which was incapable

of supporting any reasonable treatment of deadlock properties since it is impossible to

represent the ability to refuse to perform an action in a model based solely on sequences

of possible actions. Our motives in designing the failures model were therefore driven by a

desire to model deadlock satisfactorily. Several other authors have also discovered models

which can be related to failures. Milner's CCS [18] is founded on a rather different (more

discriminating) notion of observation equivalence^ and his synchronization trees provide

an alternative framework in which our results can be formulated [2]. Our development

of the failures model has clearly been strongly influenced by the work of Milner and his

colleagues.

As we observed earlier, a model based on failures alone is inadequate for reasoning

about the phenomenon of divergence. Problems related to this fact have been pointed

out by [23], [12]. This led to the inclusion in [2] and [23] of an explicit and distinguished

representation of divergence in the semantics of processes, producing models isomorphic

to the one used in this paper. In a simitar vein, Hennessy and de Nicola have constructed

several models based on synchronization trees augmented by. acceptance sets, and they

have introduced the noUon of representation trees [11,12,1&,20]. Ilennesay pointed out

in [11] that the model known as RTa *s closely related to a submodel of ours based on

extra assumptions on finite branching, although there are subtle differences between the

treatments of internal actions in their model and ours. In fact, this submodel with finite

branching can be thought of as containing all of the denoiable elements of our model.

Similar observations were made by de Nicola in [19,20], where he suggested an adjustment

to the failures model to handle divergence in a more subtle way than was done in that

model: this was the Bounded Refusal Sets model, and again this model can be seen as

an alternative presentation of a submodel of ours. The full model JV, as it stands, does

allow a (pessimistic) treatment of unbounded nondeterminism, in the sense that many

unboundedly nondeterministic processes can be represented in this model but any process

will be identified with its closure.

If one focusses solely on the finitely branching submodel of ours, it is largely a matter

of taste as to which presentation one prefers, as any theorem provable in one formula-

tion of the model will be adaptable to the alternative settings. This is an observation

due to Matthew Hennessy. He has proved in [11] some general results on the congruence

of denotational and operational semantics and these can be adapted to our setting to

demonstrate that our semantics is indeed in accordance with operational intuitions. It is

possible to define an operational semantics for our language based on Milner's synchroniza-

tion trees, extending the definitions of [2,23] and following the lines of the presentations in

22

[11,12,20,23]. Essentially the idea is that a term denotes a synchronization tree whose arcs

are labelled by events or by a special symbol r denoting an internal event. Recursively

defined terms will in general denote infinite trees, and divergence corresponds to the

presence of an infinite path of r arcs. Each syntactic construct of our language then

corresponds to an operation on synchronization trees. There is a natural notion of im-

plementability of operations on these trees, and all of the CSP operations turn out to be

iraplementable. Moreover, the denotational semantics of this paper can be shown to agree

with the operational semantics, a property that failed for the earlier model because of its

inadequate treatment of divergence.

Kennaway [15,16] described a model for processes from which failures can be derived

[2], but in which the underlying partial ordering is different because of his decision to regard

deadlock as disastrous. The notion of implementation sets, given in [2,4], is closely related

to Kennaway's idea of a nondeterministic process as a set of deterministic processes. We

defined a notion of implementation for the failures model of CSP. A deterministic process

Q is said to implement a process P if P C a,/ Q. For divergence-free processes in the new

modei the same ideas can be adapted. A divergence-free process can be identified with its

set of deterministic implementations,

imp(P) ^ { Q | P C i V Q & Q deterministic}.

In the absence of divergence, the CSP operations on processes arc fully determined by

their effect cn deterministic processes. Thus, if o is a binary CSP operation (such as ||),

and if P , Q are divergence-free processes, we have

?V O Qh = IK HP' O Q'h | P ' g imp(P), Q' 6 imp(G)}

0\P o Q\E = l j { ° Q'V I P' € imp(P), Q' € imp(Q)} .

Similar results hold for unary CSP operations. As stated here, these definitions and results

apply only to divergence-free processes. It is possible to extend these results to cover

all processes, by redefining the notion of an implementation to include only "minimal"

� divergent processes. We will not discuss this issue here.

Darondeau [8] gave an "enlarged definition of observation congruence" for finite processes

which essentially coincides with the failure equivalence [2] induced by focussing on failures;

Darondeau's paper only considered finite terms. In [25] a model including acceptance sets

in addition to refusal sets was discussed, although this seems not to possess such elegant

mathematical properties as the failures model and appears as a result to be less well suited

to analysis of deadlock. Olderog [21] introduced a model involving "readiness sets", which

are analogous to acceptance sets; again there are connections with failure sets, since a

readiness set can be regarded as the dual of a refusal set. The readiness model is based

on a slightly different notion of equivalence than the one induced by failures. Broy intro-

duces in [7] a somewhat complicated model in which rather more distinctions between

23

processes are possible; in particular, he chooses not to regard the possibility of divergence

as necessarily catastrophic (so that, for instance, P O _ L t ^ J_in general in his model). His

fixed point theory and operator definitions are made more complicated by this and by the

intricate structure of his model.

There are several directions in which we want to develop our techniques and results.

In the full version of this paper, proofs are given of some of the most interesting theorems.

In [6] we discuss some useful results pertaining to the analysis of deadlock behaviour in

networks of communicating processes. It is possible to adapt our semantics to imperative

communicating processes such as Hoare's original CSP, in which processes have disjoint

local states and can perform assignments to update their own state. An example in this vein

is provided by Roscoe's semantics for occam [24], which arises from a failure set semantics

by adjoining local states and building a "hybrid" semantic model. We plan to adopt similar

techniques for CSP in a future paper. This should lead to a semantic model closely related

to the linear history model developed by Pnueli, Lehmann and Frances [9], which uses

expectation sets rather than refusal sets and is based on a different notion of equivalence.

Connections with earlier models such as the one described in [10] should also become

apparent. We also believe that this should lead us to a semantics supporting a partial

correctness analysis which takes deadlock fully and explicitly into account, unlike many

existing CSP semantics which have served as the basis for partial correctness reasoning.

We hope to be able to make some connections with existing proof systems for CSP, such

as those described in [1,17], and with Plotkin's structural operational semantics for CSP

[22].

Acknowledgements.

The authors would like to thank C. A. R. Hoare for his many helpful suggestions and

discussions, and for his encouragement and guidance during the development of this work.

We have been strongly influenced by the work of Robin Milner, Matthew Hennessy and

Rocco de Nicola. Discussions with them and with Bill Rounds and Ern3t-Rudiger Olderog

have been very useful.

6. Re ferences .

[1] Apt, K. R., Francez, N., and de Roever, W. P., A Proof System for Communicating

Sequential Processes, ACM TOPLAS, Vol. 2 No. 3, July 1980.

[2] Brookes, S. D., A Model for Communicating Sequential Processes, Ph. D, thesis,

Oxford University (1983). Available as CMU Technical Report CMU-CS-83-149 and PRG

Monograph.

24

[3] Brookes, S. D., Hoare, C. A. R., and Roscoe, A. W., A Theory of Communicating

Sequential Processes, Oxford University Computing Laboratory, Programming Research

Group, Technical Report PRC-16.

[4] Brookes, S. D., Hoare, C. A. R., and Roscoe, A. W., A Theory of Communicating

Sequential Processes, JACM July 1984.

[5] Brookes, S. D., and Roscoe, A. W., An Improved failures Model for Communicating

Processes (full version of this paper), to appear, CMU Technical Report.

[6] Brookes, S. D., and Roscoe, A. W., Deadlock Analysis in Networks of Processes,

to appear in Proceedings of the NATO Advanced Seminar on Concurrency, La Colle-Sur-

Loup, Springer Verlag LNCS (1985).

[7] Broy, M., Semantics of Communicating Processes, preprint, Ins tit ut fur Informatik,

Technische Universitat Munchen (1983).

[8] Darondeau, Ph., An enlarged definition and complete axiomatvzation of observar

tional congruence of finite processes, Springer Verlag LNCS vol. 137, pp. 47-82 (1982).

[9] Francez, N., Lehmann, D., and Pnueli, A., A Linear History Semantics for Communicating

Processes. Theoretical Computer Science 32 (1984) 25-46.

[10] Francez, N., Hoare, C. A. R., Lehmann, D., and de Roover, W. P., Semantics of

nondeterminism, concurrency and communication, JCSS vol. 19 no. 3 (1979).

[11] Hennessy, M., Synchronous and Asynchronous Experiments on Processes, Information

and Control, Vol. 59, Nos 1-3, pp. 36-83 (1983).

[12] Hennessy, M., and de Nicola, R., Testing equivalences for processes, Proc. ICALP

1983, Springer LNCS 154 (1983).

[13] Hoare, C. A. R., A Model for Communicating Sequential Processes, Oxford

University Computing Laboratory, Programming Research Croup, Technical Report PRG-

22.

[14] Hoare, C. A. R., Communicating Sequential Processes, CACM 1978.

[15] Kennaway, J., Formal semantics of nondeterminism and parallelism, D. Phil thesis,

Oxford University (1981).

[16] Kennaway, J., A theory of nondeterminism, Springer LNCS vol. 85, pp 338-350

(1980).

25

[17] Levin, G. M. r and Cries, D., A Proof Technique for Communicating Sequential

Processes, Acta Informatica 15 (1981).

[18] Milner, R., A Calculus of Communicating Systems, Springer Verlag LNCS 92.

[19] de Nicola, R., Two Complete Sets of Axioms for a Theory of Communicating

Sequential Processes, Proc. International Conference on Foundations of Computation

Theory, Borgholm, Sweden, Springer LNCS (1983).

[20] de Nicola, R., Models and Operators for Nondeterministic Processes, Proceedings

of the Conference on Mathematical Foundations of Computer Science, Springer Verlag

LNCS (1984).

[21] Olderog, E-R, Specification-oriented semantics of communicating processes, P r o c

ICALP 1983, Springer LNCS 154 (1983).

[22] Plotkin, An Operational Semantics for CSP, W.G.2.2 Conference proceedings
(1982).

[23] Roscoe, A. W., A Mathematical Theory of Communicating Processes, Ph. D.

thesis, Oxford University (1982).

[24] Roscoe, A. W., A Denotational Semantics for occam, Proc. NSF-S&RC Seminar

on Concurrency, to appear in Springer Lecture Notes series (1984).

[25] Rounds, W. C , and Brookes, S. D., Possible futures, acceptances, refusals and

communicating processes, Proc. 22
n <

* IEEE Symposium on Foundations of Computer

Science (1981).

[26] Stoy, J. E., Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory, MIT Press, Cambridge, Mass. (1977).

26

