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Abstract: With an increase in both global warming and the human population, forest fires have
become a major global concern. This can lead to climatic shifts and the greenhouse effect, among
other adverse outcomes. Surprisingly, human activities have caused a disproportionate number of
forest fires. Fast detection with high accuracy is the key to controlling this unexpected event. To
address this, we proposed an improved forest fire detection method to classify fires based on a new
version of the Detectron2 platform (a ground-up rewrite of the Detectron library) using deep learning
approaches. Furthermore, a custom dataset was created and labeled for the training model, and it
achieved higher precision than the other models. This robust result was achieved by improving the
Detectron2 model in various experimental scenarios with a custom dataset and 5200 images. The
proposed model can detect small fires over long distances during the day and night. The advantage of
using the Detectron2 algorithm is its long-distance detection of the object of interest. The experimental
results proved that the proposed forest fire detection method successfully detected fires with an
improved precision of 99.3%.
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1. Introduction

Forest fires, also known as wildfires, are one of the most devastating events that
have occurred in recent years, causing loss of life and damage to property. Between
2002 and 2016, an estimated 4,225,000 km2 of land was burned due to uncontrollable
fires [1]. Forest fires can be classified into two main categories: natural and human-
caused. Dry weather, wind, lightning, volcanoes, meteors, coal-seam fires, heating, and
smoking are examples of natural causes, while cooking, accidental, or intentional acts
of negligence are examples of human-created fires. Both natural and human-created
fires significantly affect wildlife and human life. Early detection of fire can be key
to preventing this kind of unexpected event and can save many lives and resources.
In 2022, a wildfire reported in Hapcheon County (approximately 35 km southwest of
Daegu city, southeastern South Korea) burned an area of approximately 675 hectares,
and approximately 460 residents from Hapcheon and Goryeong counties were evacuated.
Human activity accounts for 90% of all wildfires, and lightning is the highest among the
remaining 10% of fires [2]. Wildfire toxic gases affect tropospheric ozone levels, which in
turn affect humans and wildlife [3].

Fast detection is key to reducing the overall effect. Traditional human surveillance is
expensive and not as efficient as a detection model [4]. The management of humans and
the maintenance of resources are time-consuming and costly. Automation is a much better
and more accurate approach. Weather conditions, temperature, rain, and wind can affect
fire detection. Therefore, collecting data in real time is much better with a lower cost [5].
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Object detection began with the machine-learning concept, which was first introduced
in 1986. However, owing to technological limitations, the machine-learning approach did
not contribute significantly. In late 2000, deep learning was introduced, leading to a faster
and more accurate deep learning object detection algorithm. Compared to other deep
learning algorithms, such as Mask R-CNN and Faster R-CNN, the efficiency, robustness,
and accuracy of Detectron2 for object identification increased significantly in 2017. Detec-
tion systems can be divided into three main categories: wireless, satellite, and large-area
monitoring. The sensor has almost the same approach, but its range is limited [6], with a
shorter lifetime.

Detectron2 is a robust, reliable, and automatic fire detection approach using a mask-
RCNN. Detecting fire is challenging because of the size, color, motion, speed, approach,
sunlight, and a combination of these different factors. Although these factors make fire
detection challenging, the use of the dataset, training model, and data angle can achieve
maximum accuracy.

The major contributions of the proposed method are as follows:

(1) An automated forest fire detection method was developed to reduce natural disasters
and forest resource loss.

(2) To train the proposed model, we collected a large custom dataset with two classes,
fire, and non-fire, with different scenarios (day and night) of fire and flame, light, and
shadows. The dataset is available on GitHub for public use. We used the LabelMe
data annotation tool, which annotates fires and non-fires using a polygon instead of
a rectangle.

(3) The forest fire detection accuracy was improved using fire and non-fire images and
data augmentation techniques. In addition, the proposed model significantly increases
the precision and decreases the false detection rate, even in small fire regions.

The rest of the study is structured as follows: Section 2 reviews the literature on
traditional and deep learning methods used to identify particular fire regions. The proposed
fire detection method is described in detail in Section 3. In Section 4, we discuss the
experimental findings derived from quantitative and qualitative experiments and our
dataset. Some of the limitations of the proposed approach are discussed in Section 5. The
paper concludes with a summary of our results and directions for further research in
Section 6.

2. Related Work

Forest fire detection technologies can be divided into two main categories: machine
learning, deep learning, and computer vision methods and the use of sensor-based
methods. The sensor-based method is limited to some extent. To overcome these
limitations, we designed and developed a deep learning method (Detectron2) for object
detection, with additional information requirements on location and shape [7]. The most
common approaches to detect objects in deep learning are image-based convolutional
neural networks (CNNs) [8–11], fully convolutional networks [12], cost-effective deep
CNN architecture for fire detection from video [13], and faster R-CNNs [14]. In recent
studies, it was observed that object-based detection in the industry had gained popularity
over deep learning [15,16].

2.1. Forest Fire Detection Using Machine Learning and Deep Learning Approaches

Toulouse et al. [17] developed a new method to detect the geometrical characteristics
of a fire depending on its position, surface, and length. In this study, the fire color was
categorized into pixels. Moreover, the pixels were classified based on the average intensity
of the non-refractory images. Jian et al. [18] introduced an upgraded boundary detection
operator, and their model used a multistep operation. However, the abstraction of the
model was only applied to simple and stable fire and flame images. Researchers worldwide
have used a new algorithm based on fast Fourier transform (FFT) to detect fires. Turgay [19]
developed a real-time fire detector that combined background and foreground color frames.
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However, the real-time color-based program does not provide a better output because of
the smoke and shadow. In [20], based on the dynamic textures of smoke and flame, fire
was detected using dynamic systems (LDS).

Recently, deep-learning-based object detection has become more popular than sensor-
based object detection. In [21], Park et al. proposed the ELSTIC-YOLOv3 model to detect
small objects, and in the same study, they mentioned the dynamic fire tube, a characteristic
of fire. The research team in [22] proposed a CNN-based model with an average precision
accuracy of 83.7%. Furthermore, in [23–26], an approach to improve fire detection technol-
ogy was presented. In CNN, the challenge is to achieve high accuracy by training with a
large dataset, which is an expensive process. Recent studies show fire detection systems
have changed from traditional approaches to object-based detection systems [14], which
have been rising in popularity in the industry.

2.2. Forest Fire Detection Based on YOLO, Transformers, and Detectron Approaches

The use of object-based detection algorithms has been recently reviewed, from initial
algorithms, stemming from the viola-Jones detectors, from the main research line that
can be separated into two groups based on the number of stages. Single-stage detectors
are associated with only one look algorithm. YOLO version (v2, v3, v4 and v5) and the
single shot multi-box Detector (SSD) are the best examples of single-stage detection [27–30].
This type of detector has some limitations. The large class imbalance between foreground
and background boxes affects the prediction accuracy. The main features of single-stage
detectors are the detection of the boundary boxes and the object classification done by the
same single feed-forward fully convolution network. On the Detectron2 platform, a deep
learning object identification model for detecting forest fires and accompanying smoke
plumes was implemented [31].

Transformers were proposed to eliminate the limitation and to model the long-range
interactions between input patches using a self-attention mechanism, which is at the core
of transformers. Transformers showed good performance when applied in computer vi-
sion tasks such as video processing [32], image super-resolution [33], object detection [34]
and segmentation [35], and image classification [36], i.e., Vision Transformer (ViT) [37],
DeiT (Data-efficient Image Transformers) [38], and Medical Transformer (MedT) [39]. Re-
searchers presented the first study in [40], which investigated the possibility of using
vision transformers in the context of forest fire segmentation. TransUNet and MedT, two
vision-based transformers, were used. Two frameworks were created based on the previous
picture transformers that were tailored to their complicated, non-structured environment,
which they tested using different backbones with optimization for forest fire segmentation.
Self-attention has three advantages for effectively detecting fire pixels: There are fewer
parameters. The model’s complexity is reduced, as are the number of parameters. As a
result, the computational power required is even lower, and the pace is faster. Because each
phase of the attention mechanism is independent of the preceding step’s calculation results,
it can be processed in parallel similar to a CNN, with good results. Close attention must be
paid to the crucial points. Even if the text or visual material is somewhat long, the vital
points can be grasped from the center without losing important information. In general,
limited attention can be focused on crucial information, saving resources and receiving the
most useful information as rapidly as possible [41].

Two-stage detectors originate from the Region-Based Convolutional Neural Net-
work (R-CNN) family [42]. Two-stage detectors follow the initial single-stage detector
stage of a compilation of bounding boxes succeeded by the feature extraction method
and then the final stage based on extracted features. This feature is sometimes slow,
which prompted the development of a modified accelerated first step, the so-called Fast
R-CNN model that is used in pretrained image classification backbone models such as
ResNet for a faster approach [43].

In terms of fire detection, remote and close image sensing systems apply CNNs
for object detection tasks. The majority of the previous image processing development
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was tailored to specific sets of images, as designing an algorithm could achieve high
specificity. However, due to the important use of datasets, organization necessity is still
the greatest challenge. In [7], Guede-Fernández proposed a Detectron2-based object
detection system for forest fire detection. The model detects forest fires with quite high
accuracy, but for close fire detection, the accuracy is not up to the mark. Moreover, at
night and on a cloudy day, the model shows its own limitations. In our proposed model,
we upgrade forest fire detection by using Detectron2 with high accuracy to overcome
these limitations.

3. Proposed Forest Fire Detection
3.1. Forest Fire Dataset

In object detection, the main limitation is the collection of data for implementation
in a custom training model. To address this problem, we collected forest fire data from
different databases and used several computer vision techniques to enhance the dataset.
To achieve more accurate results, we created two classes of datasets: fire and non-fire.
The dataset was publicly available, and some images were collected from Google. To
train our dataset first, we resized all images at the same height and width to avoid
unexpected results or errors. After data collection, the dataset was small. To increase
the dataset, we searched the Internet for videos of forest fires and captured frames of
those videos. Our training dataset was compressed with 5200 day and night forest fire
images and non-fire images to differentiate fire images from non-fire images to achieve
maximum accuracy. Small datasets prevented us from achieving the desired accuracy, as
shown in Table 1. Consequently, we employed data-augmentation techniques to expand
the dataset. The following section describes the collection and expansion of the custom
dataset in detail.

Table 1. The custom dataset of the forest fires.

Dataset Google, Bing, Kaggle,
Flickr Images Video Frames Total

Forest Fire Images 2336 2864 5200

We increased our dataset using a computer vision algorithm to rotate each image
at 15◦ angles to 360◦, as shown in Figure 1. Our dataset increased by 23 times by
applying this technique. As mentioned earlier, we compressed 5200 images in our
dataset. After augmentation, the total number of images was extended to 119,600,
and we had 10,120 fire-like images to prevent false-positive results, as presented in
Table 2, and Scheme 1 shows the flow chart. The simple linear algebra will provide the
equations to rotate any point p and q with an angle. Detectron2 provides good results
on a small dataset.

Table 2. Distribution of fire and non-fire images in the dataset.

Dataset Training Images Testing Images Total

Fire Images 119,600 3300 122,900
Non-fire Images 10,120 0 10,120

However, with a large dataset, the fire detection accuracy showed improved results
compared with the small dataset. Therefore, it was preferable to extend the training dataset.
Second, we rotated all forest fire images to 90◦, 180◦, and 270◦ (Figure 2). When image
rotation values are greater than 15◦, the output is almost similar, whereas when image
rotation is approximately 90◦, we lose our forest fire image’s region of interest.



Sensors 2023, 23, 1512 5 of 19
Sensors 2023, 23, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 1. Example images of forest fire rotation from different angles. 

Table 2. Distribution of fire and non-fire images in the dataset. 

Dataset Training Images Testing Images Total 
Fire Images 119,600 3300 122,900 

Non-fire Images 10,120 0 10,120 

However, with a large dataset, the fire detection accuracy showed improved results 
compared with the small dataset. Therefore, it was preferable to extend the training da-
taset. Second, we rotated all forest fire images to 90°, 180°, and 270° (Figure 2). When im-
age rotation values are greater than 15°, the output is almost similar, whereas when image 
rotation is approximately 90°, we lose our forest fire image’s region of interest. 

    
(a) (b) (c) (d) 

Figure 2. Example images of forest fire rotation from different angles. (a) 90° rotation; (b) 180° rota-
tion, and (c) 270° rotation; (d) is the original image. 

We used LabelMe software to annotate our images, which is an important step in the 
training process for Detectron2 as shown in Figure 3. Our level file was a JSON file that 
was saved in the same folder as the training file. In addition, in Detectron2, all image sizes 
must have the exact size (height and width). Therefore, before annotating the images, we 
resized all images to the same height and width using OpenCV. Furthermore, we added 
non-fire images to our training set and labeled them as such. The purpose of training non-
fire images was to reduce the number of false detections. 

Figure 1. Example images of forest fire rotation from different angles.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 18 
 

 

tailored to specific sets of images, as designing an algorithm could achieve high specific-
ity. However, due to the important use of datasets, organization necessity is still the great-
est challenge. In [7], Guede-Fernández proposed a Detectron2-based object detection system 
for forest fire detection. The model detects forest fires with quite high accuracy, but for close 
fire detection, the accuracy is not up to the mark. Moreover, at night and on a cloudy day, the 
model shows its own limitations. In our proposed model, we upgrade forest fire detection by 
using Detectron2 with high accuracy to overcome these limitations. 

3. Proposed Forest Fire Detection 
3.1. Forest Fire Dataset 

In object detection, the main limitation is the collection of data for implementation in 
a custom training model. To address this problem, we collected forest fire data from dif-
ferent databases and used several computer vision techniques to enhance the dataset. To 
achieve more accurate results, we created two classes of datasets: fire and non-fire. The 
dataset was publicly available, and some images were collected from Google. To train our 
dataset first, we resized all images at the same height and width to avoid unexpected re-
sults or errors. After data collection, the dataset was small. To increase the dataset, we searched 
the Internet for videos of forest fires and captured frames of those videos. Our training dataset 
was compressed with 5200 day and night forest fire images and non-fire images to differenti-
ate fire images from non-fire images to achieve maximum accuracy. Small datasets prevented 
us from achieving the desired accuracy, as shown in Table 1. Consequently, we employed 
data-augmentation techniques to expand the dataset. The following section describes the col-
lection and expansion of the custom dataset in detail. 

Table 1. The custom dataset of the forest fires. 

Dataset Google, Bing, Kaggle, Flickr Images Video Frames Total 
Forest Fire Images 2336 2864 5200 

We increased our dataset using a computer vision algorithm to rotate each image at 
15° angles to 360°, as shown in Figure 1. Our dataset increased by 23 times by applying 
this technique. As mentioned earlier, we compressed 5200 images in our dataset. After 
augmentation, the total number of images was extended to 119,600, and we had 10,120 
fire-like images to prevent false-positive results, as presented in Table 2, and Scheme 1 
shows the flow chart. The simple linear algebra will provide the equations to rotate any 
point p and q with an angle. Detectron2 provides good results on a small dataset. 

 
Scheme 1. Image processing (rotation). Scheme 1. Image processing (rotation).

Sensors 2023, 23, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 1. Example images of forest fire rotation from different angles. 

Table 2. Distribution of fire and non-fire images in the dataset. 

Dataset Training Images Testing Images Total 
Fire Images 119,600 3300 122,900 

Non-fire Images 10,120 0 10,120 

However, with a large dataset, the fire detection accuracy showed improved results 
compared with the small dataset. Therefore, it was preferable to extend the training da-
taset. Second, we rotated all forest fire images to 90°, 180°, and 270° (Figure 2). When im-
age rotation values are greater than 15°, the output is almost similar, whereas when image 
rotation is approximately 90°, we lose our forest fire image’s region of interest. 

    
(a) (b) (c) (d) 

Figure 2. Example images of forest fire rotation from different angles. (a) 90° rotation; (b) 180° rota-
tion, and (c) 270° rotation; (d) is the original image. 

We used LabelMe software to annotate our images, which is an important step in the 
training process for Detectron2 as shown in Figure 3. Our level file was a JSON file that 
was saved in the same folder as the training file. In addition, in Detectron2, all image sizes 
must have the exact size (height and width). Therefore, before annotating the images, we 
resized all images to the same height and width using OpenCV. Furthermore, we added 
non-fire images to our training set and labeled them as such. The purpose of training non-
fire images was to reduce the number of false detections. 

Figure 2. Example images of forest fire rotation from different angles. (a) 90◦ rotation; (b) 180◦

rotation, and (c) 270◦ rotation; (d) is the original image.

We used LabelMe software to annotate our images, which is an important step in the
training process for Detectron2 as shown in Figure 3. Our level file was a JSON file that
was saved in the same folder as the training file. In addition, in Detectron2, all image sizes
must have the exact size (height and width). Therefore, before annotating the images, we
resized all images to the same height and width using OpenCV. Furthermore, we added
non-fire images to our training set and labeled them as such. The purpose of training
non-fire images was to reduce the number of false detections.
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In our dataset, each image was rotated by 15◦ to 360◦, resulting in 23 images from the
same image. If the images are labeled manually, we lose considerable time in performing
the same task repeatedly. Hence, we used the affine transformation method to rotate the
same image. Image transformation was presented in a matrix using NumPy [9].

3.2. System Overview

In this subsection, we propose a method to detect fires more accurately and quickly.
We resized and shaped the forest fire images. Several techniques were applied to develop
the dataset. First, we resized the input images to 224 × 224, 320 × 320, and 512 × 512 using
OpenCV2, as shown in Figure 4. In our study, we used 416 × 416 images to increase the
accuracy and reduce the false detection rate of our forest fire model. Before training our
model in the CNN, we implemented data augmentation and image contrast information
processing. In Scheme 2, the flow chart of image resizing is shown; i.e., output_image. It
has the size new_size (when it is non-zero) or the size computed from input_image.size(),
fx, and fy.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 18 
 

 

  
(a) (b) 

Figure 3. Image annotation; (a) fire, (b) non-fire. 

In our dataset, each image was rotated by 15° to 360°, resulting in 23 images from the 
same image. If the images are labeled manually, we lose considerable time in performing 
the same task repeatedly. Hence, we used the affine transformation method to rotate the 
same image. Image transformation was presented in a matrix using NumPy [9]. 

3.2. System Overview 
In this subsection, we propose a method to detect fires more accurately and quickly. 

We resized and shaped the forest fire images. Several techniques were applied to develop 
the dataset. First, we resized the input images to 224 × 224, 320 × 320, and 512 × 512 using 
OpenCV2, as shown in Figure 4. In our study, we used 416 × 416 images to increase the accu-
racy and reduce the false detection rate of our forest fire model. Before training our model in 
the CNN, we implemented data augmentation and image contrast information processing. In 
Scheme 2, the flow chart of image resizing is shown; i.e., output_image. It has the size new_size 
(when it is non-zero) or the size computed from input_image.size(), fx, and fy. 

 
Scheme 2. Image resizing. 

 
Figure 4. The overall process of resizing images. 

3.3. Forest Fire Detection 
In recent years, Detectron2 has been used to detect both moving and static objects in 

commercial research. Detectron2 has better accuracy compared to other object detection 
libraries or frameworks. Detectron2 is implemented in PyTorch and Cuda, providing a 
robust, fast, and more accurate result. As mentioned earlier, we used 5200 forest fire im-
ages. Real-time object detection using Detectron2 was faster and more accurate. De-
tectron2 uses a deep-learning approach to detect objects. PyTorch (1.13.0) and Cuda 
(11.7.0) were used to verify the accuracy of the model-tested images. We used the default 

Figure 4. The overall process of resizing images.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 18 
 

 

  
(a) (b) 

Figure 3. Image annotation; (a) fire, (b) non-fire. 

In our dataset, each image was rotated by 15° to 360°, resulting in 23 images from the 
same image. If the images are labeled manually, we lose considerable time in performing 
the same task repeatedly. Hence, we used the affine transformation method to rotate the 
same image. Image transformation was presented in a matrix using NumPy [9]. 

3.2. System Overview 
In this subsection, we propose a method to detect fires more accurately and quickly. 

We resized and shaped the forest fire images. Several techniques were applied to develop 
the dataset. First, we resized the input images to 224 × 224, 320 × 320, and 512 × 512 using 
OpenCV2, as shown in Figure 4. In our study, we used 416 × 416 images to increase the accu-
racy and reduce the false detection rate of our forest fire model. Before training our model in 
the CNN, we implemented data augmentation and image contrast information processing. In 
Scheme 2, the flow chart of image resizing is shown; i.e., output_image. It has the size new_size 
(when it is non-zero) or the size computed from input_image.size(), fx, and fy. 

 
Scheme 2. Image resizing. 

 
Figure 4. The overall process of resizing images. 

3.3. Forest Fire Detection 
In recent years, Detectron2 has been used to detect both moving and static objects in 

commercial research. Detectron2 has better accuracy compared to other object detection 
libraries or frameworks. Detectron2 is implemented in PyTorch and Cuda, providing a 
robust, fast, and more accurate result. As mentioned earlier, we used 5200 forest fire im-
ages. Real-time object detection using Detectron2 was faster and more accurate. De-
tectron2 uses a deep-learning approach to detect objects. PyTorch (1.13.0) and Cuda 
(11.7.0) were used to verify the accuracy of the model-tested images. We used the default 
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3.3. Forest Fire Detection

In recent years, Detectron2 has been used to detect both moving and static objects in
commercial research. Detectron2 has better accuracy compared to other object detection
libraries or frameworks. Detectron2 is implemented in PyTorch and Cuda, providing a
robust, fast, and more accurate result. As mentioned earlier, we used 5200 forest fire images.
Real-time object detection using Detectron2 was faster and more accurate. Detectron2 uses
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a deep-learning approach to detect objects. PyTorch (1.13.0) and Cuda (11.7.0) were used to
verify the accuracy of the model-tested images. We used the default algorithm without any
change in the training model, and the results after 50,000 iterations are presented in Table 3.
Furthermore, a default image hue of 0.1, saturation of 1.5, and exposure of 1.5 were used.

Table 3. Pre-trained weights were obtained using a limited dataset.

Models Input
Size

Training
Accuracy

(AP50)

Testing
Accuracy

(AP50)
Weight Size Iteration

Number Training Time

Mask_rcnn_50_FPN_3x
512 × 512

83.8% 79.8% 186 MB
50,000

62 h
Panoptic_fpn_R_101_3x 79.1% 76.9% 77 MB 47 h

Keypoint_rcnn_R_50_FPN_3x 82.4% 77.8% 152 MB 53 h

In Detectron2, we set the input images of forest fire and non-fire to 512 × 512 in
the same manner. As shown in Table 3, the results were obtained for the training and
testing accuracies with different indicators. Mask_rcnn_50_FPN_3x had a high train-
ing accuracy of 83.8% and 79.8% in 62 h. The following results were obtained: Key-
point_rcnn_R_50_FPN_3x, 82.4%, and testing accuracy of 77.8%. The accuracy and testing
of Mask_rcnn_50_FPN_3x and Keypoint_rcnn_R_50_FPN_3x were similar. However, the
difference was in the model training time with a small weight. Increasing accuracy requires
more training time, which is costly. The challenge of training in Detectron2 is to find Py-
Torch’s capability with Cuda in the GPU mode. Human eyes can easily differentiate forest
fire images from non-fire images based on the color of the fire, size, shape, and reflection [5].
Unlike human eyes, our model can differentiate between non-fire and fire images owing to
the shape, color, and similar environment, which can lead to false detection. Therefore, a
large dataset leads to more accurate object detection. Figure 5 shows forest fire-like lights
images such as sun, haze and others.

False detection in real-time is inconvenient. After detecting these errors, we upgraded
our experiment using new training parameters. Thus, we realized that the mask-RCNN
model was more accurate than improving our parameters. Fire has no specific shape and
color and has different hues, saturation, and exposure as shown in Figure 6. Therefore,
during training, changing those parameters randomly provides better results.

We changed our approach to our dataset owing to false image detection of hue and
opacity. In our dataset, there were low-quality images with sizes smaller than 512 × 512.
Therefore, we decided not to use automatic hue, exposure, or saturation values. Moreover,
before training our model, we increased our dataset using an algorithm depending on the
pixel value, brightness, and contrast value, and the example of the pixel transformation is
as follows:
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(x) = α f(x) + β (α > 0) (1)

In Equation (1), the parameters α > 0 and β are often called the gain and bias param-
eters. Here, these parameters are called to control contrast and brightness, respectively.
f (x) refers to the source image pixels, and g(x) is the output image pixels. Then, more
conveniently we can write the expression as Equation (2):
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(i, j) = α f (i, j) + β (2)

where i and j refer to the pixel locations in the i-th row and j-th column, respectively. The
contrast value differs by changing the value of α from 1.0 to 3.0, and β refers to a brightness
value of 0 to 100. Using this formula, we can change the contrast and brightness of the
new data in our database, as shown in Figure 7. Scheme 3 shows the flow chart of image

brightness. Here, PutPixelColour(x, y) is the representation of
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(i, j) function, and the color
image with three-channel parameter values is changed by using three variables: newRed,
newGreen, and newBlue.



Sensors 2023, 23, 1512 8 of 19

Sensors 2023, 23, x FOR PEER REVIEW 7 of 18 
 

 

algorithm without any change in the training model, and the results after 50,000 iterations 
are presented in Table 3. Furthermore, a default image hue of 0.1, saturation of 1.5, and 
exposure of 1.5 were used. 

Table 3. Pre-trained weights were obtained using a limited dataset. 

Models Input 
Size 

Training Accuracy 
(AP50) 

Testing Accuracy 
(AP50) 

Weight 
Size 

Iteration 
Number 

Training 
Time 

Mask_rcnn_50_FPN_3x 
512 × 512 

83.8% 79.8% 186 MB 
50,000 

62 h 
Panoptic_fpn_R_101_3x 79.1% 76.9% 77 MB 47 h 

Keypoint_rcnn_R_50_FPN_3x 82.4% 77.8% 152 MB 53 h 

In Detectron2, we set the input images of forest fire and non-fire to 512 × 512 in the 
same manner. As shown in Table 3, the results were obtained for the training and testing 
accuracies with different indicators. Mask_rcnn_50_FPN_3x had a high training accuracy 
of 83.8% and 79.8% in 62 h. The following results were obtained: Key-
point_rcnn_R_50_FPN_3x, 82.4%, and testing accuracy of 77.8%. The accuracy and testing 
of Mask_rcnn_50_FPN_3x and Keypoint_rcnn_R_50_FPN_3x were similar. However, the 
difference was in the model training time with a small weight. Increasing accuracy re-
quires more training time, which is costly. The challenge of training in Detectron2 is to 
find PyTorch’s capability with Cuda in the GPU mode. Human eyes can easily differenti-
ate forest fire images from non-fire images based on the color of the fire, size, shape, and 
reflection [5]. Unlike human eyes, our model can differentiate between non-fire and fire 
images owing to the shape, color, and similar environment, which can lead to false detec-
tion. Therefore, a large dataset leads to more accurate object detection. Figure 5 shows 
forest fire-like lights images such as sun, haze and others. 

 
Figure 5. Forest fire-like lights (non-fire) [6]. 

False detection in real-time is inconvenient. After detecting these errors, we up-
graded our experiment using new training parameters. Thus, we realized that the mask-

Figure 5. Forest fire-like lights (non-fire) [6].

Sensors 2023, 23, x FOR PEER REVIEW 8 of 18 
 

 

RCNN model was more accurate than improving our parameters. Fire has no specific 
shape and color and has different hues, saturation, and exposure as shown in Figure 6. 
Therefore, during training, changing those parameters randomly provides better results. 

   
(a) 

   
(b) 

Figure 6. Fire images with different shapes (a) close by and (b) far away. (a) Close-distance fire 
images. (b) Long-distance fire images [6]. 

We changed our approach to our dataset owing to false image detection of hue and opac-
ity. In our dataset, there were low-quality images with sizes smaller than 512 × 512. Therefore, 
we decided not to use automatic hue, exposure, or saturation values. Moreover, before train-
ing our model, we increased our dataset using an algorithm depending on the pixel value, 
brightness, and contrast value, and the example of the pixel transformation is as follows: 

Ց (x) = α f(x) + β   (α > 0) (1)

In Equation (1), the parameters α > 0 and β are often called the gain and bias param-
eters. Here, these parameters are called to control contrast and brightness, respectively. 
f(x) refers to the source image pixels, and g(x) is the output image pixels. Then, more con-
veniently we can write the expression as Equation (2): 

ց (i, j) = α f(i, j) + β  (2)

where i and j refer to the pixel locations in the i-th row and j-th column, respectively. The 
contrast value differs by changing the value of α from 1.0 to 3.0, and β refers to a brightness 
value of 0 to 100. Using this formula, we can change the contrast and brightness of the 
new data in our database, as shown in Figure 7. Scheme 3 shows the flow chart of image 
brightness. Here, PutPixelColour(x, y) is the representation of ց (i, j) function, and the 
color image with three-channel parameter values is changed by using three variables: 
newRed, newGreen, and newBlue. 

 
Figure 7. Fire images before and after hue augmentation. 

Figure 6. Fire images with different shapes (a) close by and (b) far away. (a) Close-distance fire
images. (b) Long-distance fire images [6].



Sensors 2023, 23, 1512 9 of 19

Scheme 4 shows the flow chart of image contrast. Here, PutPixelColour(x, y) is the

representation of the

Sensors 2023, 23, x FOR PEER REVIEW 8 of 18 
 

 

RCNN model was more accurate than improving our parameters. Fire has no specific 
shape and color and has different hues, saturation, and exposure as shown in Figure 6. 
Therefore, during training, changing those parameters randomly provides better results. 

   
(a) 

   
(b) 

Figure 6. Fire images with different shapes (a) close by and (b) far away. (a) Close-distance fire 
images. (b) Long-distance fire images [6]. 

We changed our approach to our dataset owing to false image detection of hue and opac-
ity. In our dataset, there were low-quality images with sizes smaller than 512 × 512. Therefore, 
we decided not to use automatic hue, exposure, or saturation values. Moreover, before train-
ing our model, we increased our dataset using an algorithm depending on the pixel value, 
brightness, and contrast value, and the example of the pixel transformation is as follows: 

Ց (x) = α f(x) + β   (α > 0) (1)

In Equation (1), the parameters α > 0 and β are often called the gain and bias param-
eters. Here, these parameters are called to control contrast and brightness, respectively. 
f(x) refers to the source image pixels, and g(x) is the output image pixels. Then, more con-
veniently we can write the expression as Equation (2): 

ց (i, j) = α f(i, j) + β  (2)

where i and j refer to the pixel locations in the i-th row and j-th column, respectively. The 
contrast value differs by changing the value of α from 1.0 to 3.0, and β refers to a brightness 
value of 0 to 100. Using this formula, we can change the contrast and brightness of the 
new data in our database, as shown in Figure 7. Scheme 3 shows the flow chart of image 
brightness. Here, PutPixelColour(x, y) is the representation of ց (i, j) function, and the 
color image with three-channel parameter values is changed by using three variables: 
newRed, newGreen, and newBlue. 

 
Figure 7. Fire images before and after hue augmentation. 

(i, j) function, and the color image with the three-channel parameter
value is changed by using three variables: newRed, newGreen, and newBlue. The factor
variable stores the main algorithm.
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As mentioned in Section 3.1, our dataset contained 109,480 forest fires and
10,120 non-fire images. After a custom analysis of our database, we deleted low-quality
and low-resolution images and obtained 116,200 images. After using the formula and
algorithm for contrast and brightness of fire images, our dataset size increased to 348,600
from 119,600 images, as shown in Table 4. First, in our dataset, we doubled the contrast
and reduced the brightness by half compared with the original images.

Table 4. Distribution of all fire images in the dataset.

Before After Filtering After Contrast
Increased (Double)

After Contrast
Decreased (Half)

119,600 116,200 116,200 116,200

In the next subsection, we train our Detectron2 model using the same dataset and im-
ages of the same size. However, we observed that our training model provided significantly
better results than before. The accuracies achieved are summarized in Table 5.

Table 5. Pre-trained weights using Detectron2.

Algorithm Input
Size

Training
Accuracy

(AP50)

Testing
Accuracy

(AP50)
Weight Size Iteration

Number Training Time

Mask_rcnn_50_FPN_3x
512 × 512

98.3% 97.8% 186 MB
50,000

89 h
Panoptic_fpn_R_101_3x 88.3% 85.1% 77 MB 71 h

Keypoint_rcnn_R_50_FPN_3x 96.1% 95.3% 152 MB 97 h

Using our new dataset, which has 348,600 images, we trained our model, as shown
in Table 5. According to Table 5, Mask_rccn_50_FPN_3x had a high training accuracy
of 98.3% and a testing accuracy of 97.8%, followed Keypoint_rcnn_R_50_FPN_3x, with
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96.1% training accuracy and 95.3% testing accuracy, with a difference of less than 2%.
Panoptic_fpn_R_101_3x also improved the training and testing accuracies by 88.3% and
85.1%, respectively. However, all models demonstrated increased training times compared
to the last proposed model because of the large dataset.

To achieve better accuracy in real-time, we also included 13,800 non-fire images, similar
to the fire images. As previously mentioned, non-fire images achieve better real-time forest
fire detection, which reduces false alarms. In general, sunlight is the most destructive
method for the real-time detection of forest fires. Because of this, our large dataset will
allow us to distinguish sunlight under different forest weather conditions, as shown in
Figure 8 for sunrise and sunset during the day.

We tested our different algorithms, and, as shown in Figure 9, Mask_rcnn_50_FPN_3x
scored the lowest. In contrast, Panoptic_fpn_R_101_3x scored the highest.

According to Figure 10, our model showed a more positive output. After adding
non-fire images to our dataset, our model dramatically improved, as shown.

We achieved a maximum of 98.3% accuracy with our model. However, our approach
failed to detect small forest fires. To achieve better accuracy, we included small images in
our dataset to improve our final model, as shown in Figure 11. We employed a large-scale
feature map to detect small moving objects and concatenated them with a feature map from
earlier layers, which helped to preserve the fine-grained feature, as mentioned in [44]. This
large-scale feature map with the location information of the previous layers and complex
features of deeper layers was applied to identify small-sized fire pixels.
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After the final training, our model accuracy increased to 99.3%, and it was possi-
ble to detect the size and color of the forest fires. Finally, we implemented our Mask
_rcnn_50_FPN_3x model in Raspberry PI 3B+, as shown in Figure 12. The proposed
method can be used for different CNNs. However, it responds faster in a small CNN than
in a large CNN model. Our model achieved 99.3% accuracy performance, and compared
with other state-of-the-art approaches, this model had fewer fire pixel misclassifications.
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In Table 6, we compare our proposed model with an existing model to analyze its
performance. An explanation is shown in the Section 4.

Table 6. Comparison between different models.

Features R-CNN Faster R-CNN Our Method (Detectron2)

Test speed/s 49 s 2.3 s Faster than 2 s
Real-time implementation Not possible Possible Possible

Small object detection Possible (accuracy less than
that of Faster R-CNN

Possible (accuracy less than
that of Mask R-CNN Possible (highly accurate)

Algorithm Selective search Selective search segmentation

4. Experimental Results and Discussion
Test with Fire and Non-Fire Images

We implemented and tested our model using Visual Studio 2022 C++ on our laptop
with a CPU speed of 3.20 Hz, 32 GB RAM, and 3GPU. To test our forest fire detection
model, we implemented it in different environments. In previous sections, we discussed
and implemented our model using Detectron2. This section discusses the strengths and
limitations of the proposed model. Traditionally, the Faster-RCNN framework has been
used to detect real-time fire, and its accuracy is quite high. However, our proposed model
improved fire detection more than traditional forest fire detection methods and showed
that the mask RCNN can achieve an accuracy of 99.3%. To achieve high accuracy, our
model was trained with different parameters: hue, saturation, opacity, and small image
pixels. In addition, the proposed model worked effectively under different circumstances,
as shown in Figures 13 and 14.
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In this subsection, we discuss the compression of our model using different pa-
rameters and approaches. We used Detectron2 deep learning with a custom dataset to
accurately detect forest fires with our model. In preparation for our study, we analyzed
previous approaches. However, owing to the limitation of excess source code being
publicly available and true object detection collaboration when initializing our model,
as we mentioned earlier, our approach used a three-layer upgrade to reach the highest
accuracy of 99.3% in our model. We tested the F-measure (FM), which measures the
weighted average and balances the precision and recall rates. This score considers the
false-negative and true-positive rates. Because measuring the accuracy rate is difficult,
the FM is the most commonly used parameter to detect an object. In a detection model
using the same weight, false negatives and true positives were better. However, if true
positives and false negatives are dissimilar, precision and recall must be considered.
Precision is the ratio of true positive observations.

In contrast, recall is a false-positive observation ratio, as detailed in previous re-
search [45–52]. The precision of our proposed model was 99.3%, and the false detection
rate was 0.7%. The following equations can be used to calculate the average precision and
recall rates of our proposed method.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

where TP refers to the true positive correctly detecting a forest fire and FP refers to false-
negative detection regions. The relationship between precision and recall using the FM is
shown in Equation (5):

FM =
2 × precision × recall

precision + recall
(5)
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Depending on the weather, reflection, darkness, and sunlight, actual forest fire images
can be darker and blurred. Table 7 compares the recently published fire detection methods
with the proposed method.

Table 7. Quantitative results of fire detection.

Algorithm P (%) R (%) FM (%) Average (%)

Dilated CNNs [7] 98.9 97.4 98.2 98.1

AlexNet [53] 73.3 61.3 75.1 79.9

Faster R-CNN [54] 81.7 94.5 87.2 97.8

ResNet [55] 94.8 93.6 94.2 94.3

VGG16 [56] 97.5 87.9 92.7 92.6

Our Method
(Detectron2) 99.3 99.4 99.5 98.9

In Table 8, we compare our proposed model with other models according to different
criteria. Based on the comparison, it is evident that our model does not suffer from extreme
environments, such as dark, rainy, or sunny days, because of the inclusion of different sizes
and contrast images for training. In addition, our model is more accurate under extreme
weather conditions than other methods (Table 8).

Table 8. Forest fire detection performance comparison using various features.

Criterion Dilated CNNs [6] Faster R-CNN [14] Our Method
(Detectron2)

Scene independence powerful normal powerful
Object independence powerful powerful normal

Fire independence powerful normal powerful
Robust to color normal not strong powerful
Robust to noise normal powerful powerful

Fire-spread detection no strong not strong powerful
Computational load powerful normal powerful

The results of the model differ depending on different types of classifications as pow-
erful, normal, and not strong (weak) among the seven aforementioned criteria. Powerful
implies that the algorithm can be implemented for all kinds of events, and normal means
the algorithm can fail in sudden cases. However, neither strong nor weak implies that the
algorithm fails frequently based on color, opacity, image noise, and even size.

5. Limitations

As mentioned in Table 8, a good or bad model cannot be determined based on specific
criteria other than overall performance. Our proposed model has some limitations; for
example, electric light or sun was considered fire in some cases when we tested the model
in different environments, as shown in Figure 15. We intend to upgrade the proposed
model using more datasets from different environments to solve this problem [57–59].
Furthermore, we did not create any classes for smoke in the custom dataset. Therefore, in
the initial fire stage, if only smoke is present, our model waits until it detects a fire. As afore-
mentioned, we are working on improving our model to overcome the aforementioned issue
employing very large-scale datasets such as JFT-300M [60,61], which contains 300 million
labelled images.
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6. Conclusions

Numerous studies have been conducted to improve forest-fire detection systems
using CNN-based deep-learning models. However, the Detectron2 deep learning model
has not been explored for its potential in forest fire detection. Collecting sufficient
image data for training models in forest fire detection is challenging, leading to data
imbalance or overfitting concerns that impair the model’s effectiveness. In this study,
we proposed a method to detect forest fires using the improved Detectron2 model and
created a dataset.

First, we detected forest fires with a model to detect fires and subsequently with a
different deep-learning object detection model. Next, we prepared our dataset, and to
detect fire more accurately in the different stages and scenarios, we upgraded the dataset
with small images and deleted low-quality pixel images. In addition, to expand our
dataset, we used data augmentation algorithms to create 23 times more varied images
from the original image. We experimentally compared the proposed method with
existing methods to verify the model’s accuracy. After achieving the highest accuracy,
we implemented our model in Raspberry Pi 3B+, which allowed us to run both the CPU
and GPU details.

Furthermore, we observed some limitations in real-time applications, such as not la-
beling smoke images from our dataset. Future tasks include solving blurry problems under
dark conditions and increasing the accuracy of the approach. We plan to develop a small
model with reliable fire detection performance using 3D CNN/U-Net in the recognition
and healthcare environments [62–68].
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