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Abstract

Brain tumor is a group of anomalous cells. The brain is enclosed in a more rigid skull. The abnormal cell grows and initi-

ates a tumor. Detection of tumor is a complicated task due to irregular tumor shape. The proposed technique contains four 

phases, which are lesion enhancement, feature extraction and selection for classification, localization, and segmentation. 

The magnetic resonance imaging (MRI) images are noisy due to certain factors, such as image acquisition, and fluctuation 

in magnetic field coil. Therefore, a homomorphic wavelet filer is used for noise reduction. Later, extracted features from 

inceptionv3 pre-trained model and informative features are selected using a non-dominated sorted genetic algorithm (NSGA). 

The optimized features are forwarded for classification after which tumor slices are passed to YOLOv2-inceptionv3 model 

designed for the localization of tumor region such that features are extracted from depth-concatenation (mixed-4) layer of 

inceptionv3 model and supplied to YOLOv2. The localized images are passed to McCulloch’s Kapur entropy method to 

segment actual tumor region. Finally, the proposed technique is validated on three benchmark databases BRATS 2018, 

BRATS 2019, and BRATS 2020 for tumor detection. The proposed method achieved greater than 0.90 prediction scores 

in localization, segmentation and classification of brain lesions. Moreover, classification and segmentation outcomes are 

superior as compared to existing methods.

Keywords Gliomas · Magnetic resonance imaging · YOLOv2 · Fully connected · Homomorphic wavelet filter · NSGA

Introduction

The tumor is a mass of irregular cells called the primary 

brain tumor inside the brain. The common symptoms of 

brain tumors are headaches, seizures, difficulties in speech, 

vomiting, imbalance problem, sensation loss, changes in 

behavior, and personality [58]. In America, 700,000 persons 

are suffering from brain tumor, and expected to increase to 

more than 79,000 by the end of 2020. Among these, 25,000 

may suffer from malignant and remaining from non-malig-

nant tumor [15]. Glioma is a predominant form of brain 

tumor, broken into low- and high-grade brain tumors. such 

that high grade is more aggressive as compared to low grade 

[13]. MRI is utilized to examine anatomical body structure 

[20, 32], which is widely used for the detection of brain 

tumors. An error-prone and more exhaustive activity is man-

ual diagnosis of brain tumors using MRI. Therefore, auto-

mated approaches are used for anomalous detection which 

is helpful for accurate and fast detection [2, 8–10, 42–45]. 

Nowadays, several researchers are focused on different imag-

ing sequences of MRI to analyze the tumor region [9, 61, 

66]. Several techniques are introduced in literature based on 

clustering [19, 31, 47] and super pixels [54] for brain tumor 

detection. Appropriate extraction of features and optimiza-

tion is a difficult task i.e., [56], particle swarm optimiza-

tion (PSO) [31], local binary patterns (LBP), and histogram 
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features [1, 59] are utilized for the classification of tumor. 

The existing approaches have failed for the detection of more 

than one small volume of tumor per MRI slices [29]. These 

methods detect tumors on only Flair imaging modality such 

that SVM has been utilized for classification that performed 

better on small data. Hence, there is still a need of improved 

techniques for tumors detection on different views, such as 

saggital, coronal, and axial from large-scale imaging data [5, 

14]. Keeping this in view, an improved approach is presented 

in this article for classification, localization, and segmen-

tation of glioma lesions. The major article contribution is 

opted as follows:

• The homomorphic wavelet filer is applied on input MRI 

images for noise removal and passed to the pre-trained 

inceptionv3 model for feature extraction, where optimum 

features are selected using NSGA.

• After classification, infected region is localized based 

on YOLOv2-inceptionv3 model, where deep features are 

extracted using depth-concatenation (mixed-5) layer and 

passed to YOLOv2 model.

• McCulloch’s Kapur entropy is applied to localized 

images for 3D-segmentation of tumor region. The seg-

mentation outcome is also validated with truth annotated 

images to confirm the method’s effectiveness.

The remaining manuscript is divided in different sections 

i.e., related work is in “Related work”, and proposed work 

with respected results are presented in “Proposed methodol-

ogy” and “Results and discussion”, respectively.

Related work

Extensive work has been done for brain tumor detection [11]. 

Enhancement is a more vital task for noise reduction that 

aids in the improvement of segmentation. Wavelet filter [50], 

median filter [7], Gaussian filter [52], PDDF filter, FNLM 

filter [49], and high-pass filter [7] are used in pre-processing 

step. Pereira et al. [41] applied CNN with 3 kernel sizes and 

obtained 0.88, 0.83, 0.77 dice scores of complete, enhance, 

and non-enhanced tumor regions, respectively. Sauwen et al. 

[48] proposed different methodologies to analyze tumor seg-

mentation results [26]. Goswami and Bhaiya [6] presented 

a hybrid framework consisting of fuzzy logic and neural 

network for tumor detection and classification [51]. A semi-

automatic method with spatial features is applied for tumor 

detection [24]. Different clustering approaches (K-means 

[8], PSO, MFKM) are used for the segmentation of tumor 

[60]. Watershed is utilized with GLCM for features extrac-

tion and supplied to SVM [53] for multi-fractals classifi-

cation with a higher precision rate. The transfer learning 

models are widely utilized to classify the tumor region, such 

as Alex-net, Google Net, and VGG-16. Two different types 

of neural networks are trained on augmented input images 

for brain lesions classification [52]. The pre-trained AlexNet 

has been utilized for glioma detection for the prediction of 

patient’s survival rate [53]. CNN model is trained on brain 

imaging data and classified input data into five classes, such 

as multiform glioma, astrocytoma, shapeless tumor, normal 

brain tissues, and oligodendroglioma [6]. M-net segmenta-

tion model has been utilized for features extraction and fed 

into the pre-trained VGG-16 for the classification of three 

different types of the tumor [63]. Fuzzy-c-means has been 

applied for segmentation followed by DWT features extrac-

tion and suitable features selection by PCA for classification 

[35]. Capsule Networks (CapsNets) has been utilized [3]. 

3-D CNN architecture has been utilized for glioma classi-

fication into different grades, such as low and high [23]. 

2-D-CNN has been used for increasing the precision rate of 

glioma classification [21, 22]. Deep CNN network has been 

applied for glioma classification. 3D-Unetwork has been 

used for glioma detection in which average global pooling 

layer is used for features mapping followed through 1 × 1 

cascade convolutional work as FC layer [7]. A CNN model is 

utilized for deep features extraction and informative features 

selection using GA for glioma classification [12]. While 

comprehensive tumor detection and classification work has 

been performed, but still accurate tumor detection is a chal-

lenging task and has room for improvement. Therefore, this 

research work provides an improved approach for classifica-

tion, localization, and segmentation of brain tumor.

Proposed methodology

The proposed method has four primary steps: (1) enhance-

ment, (2) classification, (3) localization, and 4) segmen-

tation as illustrated in Fig. 1 such that input images are 

enhanced using homomorphic wavelet filer and classified 

using extracted deep features from inceptionv3. The clas-

sified images are localized through the proposed YOLOv2-

inceptionv3 and segmented based on Kapur entropy.

Noise elimination using homomorphic wavelet filter

The images acquired from MRI protocol having adversa-

tive situations might be contaminated due to noise that 

degrades the disease detection rate. Several filters are pre-

sented for noise removal. These filters depend on noise type 

included in the images. Wavelet transform is used to rep-

resent the images into frequency domain. In this process, 

image decomposition is performed to process the image 

into high–high (HH), low–high (LH), and high–low (HL) 

bands. This research investigates a homomorphic wavelet 
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filter decomposition to eliminate speckle noise that is math-

ematically expressed as follows:

The noise removal process using a homomorphic filter 

with wavelet decomposition is visualized in Fig. 2 such 

that image is decomposed into 04 bands HL, LH, HH, and 

LH-HH. The HH band improves the image quality as com-

pared to other bands like HL, LH, and LH-HH. Thus, for 

further processing, HH band is utilized to perform accurate 

segmentation.

Extracted deep features using pre-trained 
inceptionv3 architecture

Deep learning is widely utilized in artificial intelligence 

applications, such as speech recognition and computer 

(1)logf (x,y) = logg(x,y) + log
�m(x,y)

vision. However, with more interest in the area of deep 

learning, classification into corresponding categories is 

a major problem. This problem might be solved through 

transfer learning because accurate models and architecture 

are built in in a time-saving manner. In this process, learn-

ing is performed through already learned patterns to solve 

different problems instead of using features learning from 

scratch. Transfer learning uses pre-trained models that 

are learned on huge amount of data for problem-solving. 

Thus, this work utilizes an inceptionv3 pre-trained transfer 

learning model [55] for features learning which consists 

of 01 image, 094 Convolutional (Conv), 094 batch-nor-

malization (bn), 094 ReLU, 14 max-pooling, 015 depth 

concatenation, fully connected layers, and softmax with 

cross-entropy function. The features are extracted from 

fully connected layers named as prediction and further 

passed to NSGA [18] for improved features selection as 

displayed in Fig. 3.

Fig. 1  Proposed tumor segmentation and classification architecture
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Features Selection

A deep feature vector (1 × 1000) is obtained using incep-

tionv3 network. The features of engineering are performed 

to select optimum feature vector by applying NSGA II. 

The parameters of NSGA as are discussed in Table 1.

Localization using YOLOv2-inceptionv3 model

YOLOv2-inceptionv3 model with 174 layers is proposed 

to localize tumor region such that there is 165 layers of 

inceptionv3 with 01 input, 50 Conv, 50 bn, 50 activations 

ReLU, 06 mixed (depth concatenation) 03 max-pooling, 05 

average pooling, and 09 layers of tinyYOLOv2 [46] model. 

The optimum hyper-parameters are discussed in Table 2.

Fig. 2  Noise reduction process 

a input b HL c LH d HH e 

LH-HH

Fig. 3  Features extraction and 

optimization process

Table 1  Parameters of NSGA II

Maximum iterations 200

Size of total population 25

Crossover% 0.7

Offspring (total number of parents)
2 × round

(

Crossover% ×
25

2

)

Rate of mutation 0.1

Mutation% 0.4

Number of mutants round (Mutation% × 25)

Table 2  Adjusted hyper-parameters of YOLOv2-inceptionv3

Epochs 100

Batch-size 14

Rate of Learning 0.001

Momentum 0.9

Optimizer Stochastic gradi-

ent descent 

(Sgdm)
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The proposed model more accurately localizes tumor 

region as illustrated in Fig. 4.

YOLOv2 model optimized MSE loss among predicted 

bounding and ground truth boxes. The model training is 

performed on three different types of losses, such as locali-

zation, confidence, and classification. Among the expected 

and ground truth boxes, localization loss computes error 

using location, estimated box size, and ground truth. The 

confidence loss is utilized to compute objectiveness error 

with detected object in jth bounded box of grid i cell. The 

classification loss is used to calculate probability across each 

class of grid cell i. The mathematical formulation of these 

parameters is expressed as:

Here, s represents grid cell, p denotes probability, w1, 

w2,w3 and w4 show weights, gc presents grid cell, 
(

x̂i, ŷi

)

 

denotes center of bounding box, (xi, yi) shows center of 

ground truth.  (widthi, heighti) signifies width and height of 

bounding box and (ŵidth
ii
, ĥeight) presents width and height 

of ground truth.

(2)
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Lesion segmentation

A key challenge in medical images is variability in medical 

data. In human anatomy, variations occur in different modal-

ities including X-ray, MRI, CT, and PET, etc. The segmenta-

tion region is used to analyze the disease severity levels. In 

the proposed method, McCulloch’s Kapur entropy method 

[28] is utilized for tumor segmentation. In this method, prob-

ability of intensity values distribution is measured from the 

foreground and background regions after which entropy is 

calculated separately from both regions. The optimum value 

of threshold is applied to increase the sum of their entropies. 

The Kapur entropy is mathematically expressed as:

Here

(3)

Entropy0 = −

t1−1
∑

i=0

(

probi

�0

)

log2

(

probi

�0

)

;

Entropy1 = −

t2−1
∑

i=t1

(

probi

�1

)

log2

(

probi

�1

)

;

Entropyj = −

tj+1−1
∑

i=tj

(

probi

�j

)

log2

(

probi

�j

)

;

Entropym = −

N−1
∑

i=tm

(

probi

�m

)

log2

(

probi

�m

)

;

�0 = −

t1−1
∑

i=0

probi;�1 = −

t2−1
∑

i=t1

probi;

�j = −

tj+1−1
∑

i=tj

probi;�m = −

N−1
∑

i=tm

probi;

Fig. 4  Localization of brain tumor with class label and confidence scores (classified image)
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Figure 5 visualizes the effects of tumor segmentation.

Results and discussion

The method is evaluated on BRATS series including 2018, 

2019, and 2020 [16, 30, 33]. BRATS 2018 contains 266 MRI 

patients with 191 high and 75 low glioma grade, BRATS 

2019 composes of 285 patients, and BRATS 2020 has 335 

patients such that each patient contains 155 slices. The 

detailed description of benchmark databases is illustrated 

in Fig. 6.

The 0.5 hold-out validation approach is utilized for tumor 

slices classification, where half data are used for training and 

remaining for validation. The summary of classified images 

is given in Table 3.

Fig. 5  Segmented lesion region a input b Kapur entropy c binariza-

tion d burn binary mask into input image

Benchmark Datasets

BRATS 2018

(191 HGG and 

75 LGG)

BRATS 2019

(210 HGG and 

75 LGG)

BRATS 2020

(259 HGG and 

76 LGG)

Fig. 6  Overview of benchmark datasets

Table 3  Dataset description Dataset 

(BRATS)

Training Testing

2018 20,615 20,615

2019 22,087 22,087

2020 25,962 25,962

Table 4  Different enhancement measures

PSNR SNR MSE

01 84.06 72.77 0.00058

82.11 70.82 0.00029

86.68 75.39 0.00011

83.19 71.90 0.00023

02 82.63 72.49 0.00025

82.16 72.02 0.00039

88.34 78.20 0.00013

83.05 72.91 0.00031

03 81.34 70.46 0.00035

80.08 69.19 0.00039

84.36 73.47 0.00032

81.18 70.29 9.51644

04 84.88 72.97 0.00047

81.02 69.12 0.00063

88.86 76.95 0.00023

81.41 69.50 0.00049

05 85.01 70.44 8.44152

82.78 68.21 0.00051

88.42 73.85 0.00021

83.37 68.80 0.00046

06 75.58 64.17 0.00020

75.21 63.80 0.00034

76.01 64.60 0.00029

79.58 68.17 9.35181

07 76.55 65.80 0.00179

76.04 65.29 0.00195

77.01 66.26 0.00071

79.80 69.04 0.00162

08 75.70 64.70 0.00143

75.42 64.42 0.00161

76.81 65.81 0.00129

78.68 67.68 0.00068

09 82.10 70.73 0.00040

82.06 70.69 0.00040

89.40 78.03 0.00036

82.44 71.07 7.44924

10 73.20 61.46 0.00174

72.90 61.17 0.00186

73.60 61.87 0.00135

77.43 65.70 0.00087
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The proposed work is evaluated on experiments imple-

mented on MATLAB 2020-Ra toolbox with 2070 Nvidia 

Graphic Card and Gamming Laptop G5-5500 to validate the 

enhancement method, classification approach, localization 

technique, and segmentation method, respectively.

Experiment#1

In this experiment, the enhancement technique is evaluated 

in terms of different performance metrics, such as SSIM, 

MSE, and PSNR. The enhancements results are mentioned 

in Table 4 as well as visually presented in Fig. 7.

In Fig. 7, quantitative results are computed in terms of 

MSE, SNR, and PSNR using four bands, such as HL, LH, 

HH, and LH-HH. In this procedure, 80.46 PSNR, 70.70 

SNR, 4.8 MSE on LH band, 83.43 PSNR, 73.68 SNR, 2.9 

MSE on LH band, 87.68 PSNR, 77.92 SNR, 1.1 MSE on HH 

band, and 84.46 PSNR, 74.71 SNR, 2.3 MSE are achieved 

on LH-HH band, hence concluding that HH band showed 

highest measures. Ten sample images are taken to compute 

the metrics as shown in Table 4.

The results in Table  4 depict that proposed method 

a t ta ined maximum 89.4096815346192 PSNR, 

Fig. 7  Performance metrics on 

different frequency bands

Fig. 8  Graphically representation of performance measures

Table 5  Classification results 

with Softmax classifier
Dataset ACC (%) SP (%) SE (%) FPR (%) FNR (%) PPV (%)

BRATS 2018 Challenge 99.1 99 100 0.0019 0.0000 99

BRATS 2019 Challenge 99.2 100 99 0.0000 0.0069 100

BRATS 2020 Challenge 99.0 99 98 0.0055 0.0138 99
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Table 6  Classification results 

on 2018 Challenge of BRATS
Dataset ACC (%) SP (%) SE (%) PPV (%) FPR FNR

DT [17] 95 97 88 85 0.0300 0.1132

LDA (Linear) [64] 97 98 96 91 0.0168 0.0381

LDA (Quadratic) 98 97 99 90 0.0204 0.0100

Logistic regression 98 99 92 96 0.0076 0.0702

SVM (Linear) [25] 98 98 98 92 0.0149 0.0192

SVM (Quadratic) 98 98 96 93 0.0131 0.0374

SVM (Cubic) 98 99 97 96 0.0075 0.0275

KNN 98 98 95 93 0.0132 0.0463

Ensemble [17] 97 97 97 87 0.0258 0.0204

Table 7  Classification results 

on BRATS 2019 Challenge
Dataset ACC (%) SP (%) SE (%) PPV (%) FPR FNR

DT 94 94 94 92 0.0588 0.0567

LDA (Linear) 97 96 100 95 0.0366 0.0000

LDA (Quadratic) 98 98 99 97 0.0161 0.0070

Logistic regression 98 97 99 96 0.0266 0.0071

SVM (Linear) 98 98 98 97 0.0162 0.0140

SVM (Quadratic) 99 99 99 99 0.0054 0.0069

SVM (Cubic) 99 100 99 100 0.0000 0.0071

KNN 98 98 97 98 0.0110 0.0274

Ensemble 97 98 96 97 0.0165 0.0342

Table 8  Classification results 

on BRATS 2020 Challenge
Dataset ACC (%) SP (%) SE PPV (%) FPR FNR

DT 93 91 95% 88 0.0825 0.0448

LDA (Linear) 98 98 97% 98 0.0110 0.0274

LDA (Quadratic) 98 97 99% 96 0.0266 0.0070

Logistic regression 99 98 100 98 0.0108 0.0000

SVM (Linear) 97 97 97% 97 0.0217 0.0278

SVM (Quadratic) 99 100 98% 100 0.0000 0.0137

SVM (Cubic) 99 98 99% 98 0.0108 0.0070

KNN 98 100 97% 100 0.0000 0.0270

Ensemble 95 95 95% 94 0.0430 0.0423

Fig. 9  Confusion matrices on benchmark BRATS datasets a 2018 b 2019 c 2020
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78.0342291390692 SNR, and 0.000369981932768593 

MSE. The overall performance is represented in Fig. 8.

Experiment#2

In experiment#2, tumor predictions are done on 0.5 hold-out 

validation that is mentioned in Tables 5, 6, 7, 8. The method 

classified brain images (normal (0) and abnormal (1)) as 

shown in confusion matrices in Fig. 9. Figure 10 shows ROC 

on BRATS datasets with maximum 1.00 AUC and minimum 

0.98 AUC.

In terms of performance metrics, BRATS 2018 obtained 

0.0000 FNR while BRATS 2020 achieved 0.0138 FNR.

Table 6 shows analysis of applying different classifiers to 

final features vector, where DT achieves 95% ACC, 97% SP, 

88% SE, 85% PPV, 0.0300 FPR, and 0.1132 FNR. On discri-

minant analysis, quadratic kernel obtains highest results in 

comparison with linear kernel, such as 98% ACC on quad-

ratic and 97% on linear kernel of LDA. On SVM, quadratic 

kernel attains 93% PPV and linear kernel shows 92% PPV.

The results in Table 7 show that DT achieves 94% ACC, 

while discriminant analysis shows 98% ACC using quadratic 

and 97% ACC using linear kernel. In geometrical family, 

SVM achieves 98% ACC on linear and 99% ACC on quad-

ratic and cubic kernels.

From the results in Tables 5, 6, 7, 8, SVM (cubic kernel) 

achieves maximum 0.9891 ACC whereas minimum 0.9563 

ACC is obtained using DT on BRATS 2018. Likewise, on 

BRATS 2019, SVM (cubic kernel) attains maximum 0.9970 

ACC and minimum 0.9421 ACC is obtained using DT. On 

BRATS 2020, SVM (quadratic kernel) shows maximum 

0.9939 ACC while minimum 0.9329 ACC is attained with 

DT. Finally, it is observed that SVM performs better than 

other classifiers. Proposed method results comparison is 

stated in Table 9.

Table 9 shows the results comparison with existing work, 

such as [4, 37, 65, 67], such that 94% SE and 95% SE are 

obtained on BRATS 2018 while 96% SE is attained on 

BRATS 2019 datasets, respectively. However, SE of 100% 

and 99% are shown on BRATS 2018 and BRATS 2019 data-

sets, respectively, using proposed method.

Experiment#3

In this experiment, YOLOv2-inceptionv3 model is validated 

on performance metrics, such as mAP and IoU, as shown in 

Table 10 such that proposed method achieved mAP of 0.98, 

0.99 and 1.00 on BRATS 2018, 2019 and 2020, respectively. 

The recommended approach localizes tumor region with 

highest confidence scores presented in the Fig. 11.

Fig. 10  ROC a BRATS 2018 b BRATS 2019 c BRATS 2020

Table 9  Results comparison on similar benchmark datasets

Datasets Ref Year Results

BRATS 2018 Challenge [67] 2020 94% SE

[37] 2020 95% SE

Proposed Method 100% SE

BRATS 2019 Challenge [4] 2020 96% SE

[65] 2019 84% ACC 

Proposed Method 99% SE

Table 10  Localization results of 

proposed method
Datasets 

(BRATS series)

mAP IoU

2018 0.98 0.97

2019 0.99 0.98

2020 1.00 1.00
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Experiment#4

In this experiment, localized images are segmented to ana-

lyze actual infected region more precisiely. The mathmati-

cal formulation of segmentation measures, such as dice and 

jaccard index, is defined as:

In this experiment, localized images are segmented to 

analyze the actual infected region more precisiely. The 

numerical computed results are also discussed in Table 11.

From the results in Table 11, it is observed that on HGG 

glioma, maximum 1.00 (dice, Jaccard index) and minimum 

0.99, 0.98 (dice, Jaccard index) are obtained. On LGG, 

maximum 1.00 and minimum 0.99 (dice, Jaccard index) are 

achieved, respectively. The average segmentation outcomes 

on BRATS series are listed in Table 12.

Table 12 shows that proposed framework achieved dice 

of 0.98, 0.96 and 0.97 on BRATS 2018, 2019 and 2020 

datasets. The segmentation results on HGG and LGG are 

visualized in Figs. 12, 13, 14.

The results comparison is given in Table 13.

The proposed segmented results are compared with 

eight recent published works, such as [27, 34, 36, 38, 40, 

57, 62]. The existing methods achieved maximum 0.82 

dice score on 2018 BRATS, 0.89 dice score on 2019 

BRATS and 0.84 dice score on BRATS 2020 datasets. In 

comparison with existing methods, presented framework 

achieved 0.98, 0.96 and 0.97 scores on BRATS 2018, 2019 

and 2020 databases, respectively.

(4)

Jaccard Index =
�

� + � + �
∴�, �&�

denotes true positive, true negative and false positive

(5)Dice =
2 ∗ �

(2 ∗ � + � + �)

Fig. 11  Localization outcomes a input MRI b localization c localiza-

tion score

Table 11  Results of segmentation on BRATS 2020

Tumor grade No. images Dice Jaccard Index

HGG 01 0.99 0.98

02 1.00 1.00

03 1.00 1.00

04 1.00 1.00

05 1.00 1.00

06 1.00 1.00

07 1.00 1.00

08 1.00 1.00

09 1.00 1.00

010 1.00 1.00

LGG 01 0.99 0.99

02 1.00 1.00

03 1.00 1.00

04 1.00 1.00

05 0.99 0.99

06 1.00 1.00

07 1.00 1.00

08 1.00 1.00

09 1.00 1.00

010 1.00 1.00

Table 12  Average segmentation 

outcomes on benchmark 

BRATS Challenge (2018, 2019, 

2020)

Ref Dice Jaccard Index

2018 0.98 0.98

2019 0.96 0.95

2020 0.97 0.98
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Conclusion

The comprehensive experiments are conducted to evalu-

ate the proposed method performance using recent TOP 

MICCAI Challenging datasets. The enhancement results 

are improved using homomorphic wavelet decomposition 

analysis and achieved 89.4 PSNR, 78.03 SNR, and 0.00036 

MSE. The pixel-wise (segmentation results) depict 1.00 

DSC. The softmax as well as multiple classifiers (KNN, 

SVM, LDA, ensemble and DT) with 0.5 hold-out is used 

to classify healthy and unhealthy slices. Finally, it is con-

cluded that softmax provided competitive outcomes with 

0.99 ACC as compared to other classifiers. These evalua-

tion results prove that this research provided help to clas-

sify tumor accurately. After classification, the classified 

tumor images are localized using proposed YOLOv2-

inceptionv3 model. The proposed model more accurately 

detected the tumor region in terms of mAP 0.98, 0.99 and 

1.00 on BRATS 2018, 2019 and 2020 databases, respec-

tively. The localized region is segmented using proposed 

Fig. 12  Segmentation outcome 

on BRATS 2018 Challenge 

a image b segmented tumor 

region c truth annotated d burn 

binary mask on input image

Fig. 13  Segmentation results on BRATS 2019 Challenge a input image b segmented tumor region c ground truth d burn binary mask on input 

image
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Kapur entropy method. The experimental results conclude 

that proposed approach achieved competitive results than 

the recent published work. The improved hybrid approach 

can be utilized in real-time applications to diagnose brain 

tumor at a premature stage. This research will be further 

expanded in future for the study of brain tumors using 

algorithms of quantum computation.
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