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Massive young fruit abscission usually causes low and unstable yield in litchi (Litchi

chinensis Sonn.), an important fruit crop cultivated in tropical and subtropical areas.

However, the molecular mechanism of fruit drop has not been fully characterized. This

study aimed at identification of molecular components involved in fruitlet abscission

in litchi, for which reference genome is not available at present. An improved de

novo transcriptome assembly was firstly achieved by using an optimized assembly

software, Trinity. Using improved transcriptome assembly as reference, digital transcript

abundance (DTA) profiling was performed to screen and identify candidate genes

involved in fruit abscission induced by girdling plus defoliation (GPD), a treatment

significantly decreased the soluble sugar contents causing carbohydrate stress to fruit.

Our results showed that the increasing fruit abscission rate after GPD treatment was

associated with higher ethylene production and lower glucose levels in fruit. A total of

2,771 differentially expressed genes were identified as GPD-responsive genes, 857 of

which were defined by GO and KEGG enrichment analyses as the candidate genes

involved in fruit abscission process. These genes were involved in diverse metabolic

processes and pathways, including carbohydrate metabolism, plant hormone synthesis,

and signaling, transcription factor activity and cell wall modification that were rapidly

induced in the early stages (within 2 days after treatment). qRT-PCR was used to explore

the expression pattern of 15 selected candidate genes in the abscission zone, pericarp,

and seed, which confirmed the accuracy of our DTA data. More detailed information for

different functional categories was also analyzed. This study profiled the gene expression

related to fruit abscission induced by carbohydrate stress at whole transcriptome level

and thus provided a better understanding of the regulatory mechanism of young fruit

abscission in litchi.

Keywords: Litchi chinensis Sonn., transcriptome, carbohydrate stress, fruit abscission, de novo assembly, digital

transcript abundance, genes
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Introduction

Litchi (Litchi chinensis Sonn.) is one of the important economic

fruit crops widely grown in south China and Southeast Asian
areas. The excessive fruit drop during fruit development is a

major problem causing serious economic loss for the growers.
Yuan and Huang (1988) reported three to four waves of fruit

drop throughout fruit development in different cultivars based
on relative abscission rate. Wave I, wave II, and wave III
of abscission occurred around 1, 3, and 6–7 weeks after full

bloom, respectively, but wave IV was specific to cultivars with
aborted seeds and occurred 2–3 weeks before harvest. Overall,

less than 5% of the initial female flowers can develop into
mature fruit (Stern et al., 1993, 1995; Mitra et al., 2003).

Endogenous hormones (Yuan and Huang, 1988; Xiang et al.,
1995; Li et al., 2004) and carbohydrates (Yuan and Huang,

1992, 1993; Zhou et al., 1999; Hieke et al., 2002; Chang and
Lin, 2007, 2008; Yuan et al., 2009) are proposed to play key

roles in the regulation of fruit abscission in litchi. In citrus,
it has been suggested that the subsequent fruit development is

mostly supported by nutrient supply after hormonal activation
of initial fruit growth (Talon et al., 1997). Thus, once mineral

and water requirements are satisfied, competition for photo-
assimilates is thought to be responsible for fruit drop (Moss

et al., 1972; Powell and Krezdorn, 1977; Gómez-Cadenas et al.,
2000). Defoliation experiments showed that the sucrose status

of the fruitlet is a major factor in the regulatory mechanism
of fruit abscission in citrus (Mehouachi et al., 1995; Gómez-
Cadenas et al., 2000) and apple (Berüter and Droz, 1991). On

girdled macadamia branches, the number of fruit retained was
dependent on the number of available leaves, which determined

the availability of assimilates to the fruit (Trueman and Turnbull,
1994). When applying pedicel girdling at the proximal portion

to induce citrus fruitlet drop, reduction of soluble sugars
accumulation and induction of ethylene production occurred

as well (Iglesias et al., 2006). In litchi, Yuan and Huang
(1988) demonstrated that litchi fruit set was strongly dependent

on current photosynthesis. Treatment of girdling (a ring of
bark and cambium was removed from the branch base) plus

defoliation (100% leaf removal) in litchi reduced endogenous
IAA concentration and increased the transcript level of two

IAA-responsive genes (LcAUX/IAA1 and LcSAUR1), one cell wall
degrading enzyme gene (LcPG1) and one ethylene biosynthetic

gene (Lc-ACO1), in contrast to the decreasing accumulation of
auxin response factor (LcARF1) mRNA, with the concomitant

increase in fruit drop (Kuang et al., 2012; Peng et al., 2013; Wu
et al., 2013). However, a deep knowledge of the molecular events

involved in fruit abscission induced by carbohydrate stress is still
missing.

With the development of microarray and next generation

sequencing technology, global transcriptome analyses have been
widely used to investigate the molecular regulatory networks on

various organs abscission, such as flower (Cho et al., 2008; Meir

Abbreviations: AZ, abscission zone; CFAR, the cumulative fruit abscission rate;
CK, control; DEG, differentially expressed gene; DTA, digital transcript abundance;
GO, Gene Ontology; GPD, girdling plus defoliation; KEGG, Kyoto encyclopedia of
genes and genomes.

et al., 2010; Wang et al., 2013), leaves (Agustí et al., 2009), shoot

tips (Zhang et al., 2014), young fruit (Botton et al., 2011; Zhu
et al., 2011), and mature fruit (Corbacho et al., 2013; Gil-Amado

and Gomez-Jimenez, 2013). In litchi, the reference genome is
not available at present. We previously assembled the first fruit

transcriptome by SOAPdenovo software and discovered 1,039
differentially regulated unigenes responding to shading-induced

fruitlet abscission (Li et al., 2013). However, other assembly
software, such as Trinity and Oases, has been shown to obtain

superior overall results compared to SOAPdenovo (Zhao et al.,
2011; Ghangal et al., 2013). Here, we firstly used four publicly

available assemblers to assess the litchi fruit RNA-Seq data
generated previously (Li et al., 2013). And then, we compared

GPD-induced fruit drop with the CK via gene expression
profiling performed on the three pooled tissues (fruit AZ,

pericarp and seed), sampled 2, 4, and 7 days after GPD treatment.
A number of pathways and candidate genes associated with fruit
abscission were screened and identified. Our results provided

more clues for a better understanding of the mechanisms of fruit
abscission induced by carbohydrate stress in litchi.

Materials and Methods

Plant Materials and Treatments
Three randomly selected 9-years-old litchi trees (Litchi chinensis
Sonn. cv.Wuye) grown in an orchard in South China Agricultural
University (Guangzhou, China) were chosen. Twenty fruit-

bearing shoots with similar diameter located in different
directions from each tree were tagged. Ten of them were treated

with girdling (a ring of bark about 0.5 cm in width and cambium
was removed from the branch base) followed by defoliation

(removing all leaves above the girdle) at 35 days after anthesis
(GPD treatment), while the remaining untreated shoots were

used as CK. Three out of ten treated shoots were used to monitor
fruit abscission dynamic and the others were used for sampling.

Samples were collected at 0, 2, 4, and 7 days after treatment. Fruit
were dissected using a sharp razor blade into pericarp and seed,

while AZ was excised by cutting around 2 mm at each side of the
abscission fracture plane. After separation, all tissues were quickly

frozen in liquid nitrogen and stored at −80◦C for future analysis.
Each tree was treated as a biological replicate.

Determination of Fruit Abscission and Ethylene
Production Rate of Fruit
Cumulative fruit abscission rate and relative fruit abscission
rate were calculated according to our previous method (Kuang

et al., 2012). Ethylene production was measured according to the
method described by Yan et al. (2011) with some modifications.

Two fruit from each treatment on each tree were collected and
enclosed in a 25 mL airtight syringe equipped with a rubber

piston for 2 h at 25◦C. Air within the syringe was forced into an
airtight container filled with saturated salt water with a needle

inserted to allow replacement. After all the air samples were
collected in the experiment, 1 mL air sample was then withdrawn

from the headspace of the container with a syringe and injected
into a GC-17A gas chromatograph (Shimadzu, Kyoto, Japan)
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fitted with a flame ionization detector and an activated alumina

column (200 cm × 0.3 cm). The injector temperature was 120◦C;
the column temperature was kept at 60◦C and the detector

temperature at 60◦C. Heliumwas used as carrier gas at a flow rate
of 30 mL·min−1. The ethylene production rate was expressed as

microliters of C2H4 kg
−1·h−1.

Extraction and Measurement of Sugars
Sugars were extracted and determined according to the protocol

of Hu et al. (2005) with modifications. Pericarp or seed samples
(200 mg) were ground in liquid nitrogen with a mortar and

then extracted with 5 mL of 80% ethanol (v/v) at 80◦C for
40 min. The extracts were then centrifuged at 12,000 g for

10 min at room temperature. The ethanol extraction step
was repeated once. The supernatant resulting from the two

extractions was combined and diluted with 80% ethanol to 10mL.
An aliquot 2 mL of the supernatant was dried with a rotary

evaporator for 8 h and then dissolved in 2 mL of distilled water.
After dissolution, the supernatant (1 mL) was passed through

a Sep-Pak R©1cc (100 mg) C18 cartridge (Waters Corporation,
Milford, MA, USA). Sugars were measured by high-performance

liquid chromatography (HPLC) using an Agilent 1200 HPLC
system (Agilent Technologies, Waldbronn, Germany) with a

G1362A refractive index detector cell maintained at 40◦C.
A Transgenomic CARB Sep Coregel 87◦C column (CHO-99-

5860) with a guard column cartridge (Transgenomic CARB
Sep Coregel 87◦C cartridge) was used. The column was
maintained at 80◦C with a thermostatic column compartment.

The injection volume was 10 µL. Samples were eluted with
double-distilled water. The flow rate was 0.6 mL·min−1. The

quantification of sugars was performed according to external
standard solution calibration (sugar standards were purchased

from Sigma Chemical Co.).

Comparison of Litchi Fruit Transcriptome
Assembly
In this study, we compared the performance of four commonly

used de novo short read assembly softwares including
SOAPdenovo1 (version 1.04, Li et al., 2009), SOAPdenovo-

Trans2 (version 1.03, Xie et al., 2014), Velvet-Oases3 (Velvet:
version 1.2.09, and Oases4: version 0.2.08, Schulz et al., 2012)

and Trinity5 (version 2013-02-25, Grabherr et al., 2011). These
programs have been developed for short reads assembly using

a de Bruijn graph algorithm (Zerbino and Birney, 2008).
SOAPdenovo-Trans was used to assemble k-mer lengths of 23–

41 with a step length of 4, Velvet-Oases were used to assemble
k-mer lengths of 19–43 with a step length of 6, SOAPdenovo

and Trinity was used to assemble a single k-mer length of 25.
Any redundant fragments generated from four softwares were

removed by TGICL (version 2.1) and Phrap (version release 23.0)
assembler to get final genes. Following parameters were used to

1http://soap.genomics.org.cn
2http://soap.genomics.org.cn/SOAPdenovo-Trans.html
3http://www.ebi.ac.uk/∼zerbino/velvet/
4http://www.ebi.ac.uk/∼zerbino/oases/
5http://sourceforge.net/projects/trinityrnaseq

ensure a high quality of assembly: a minimum of 95% identity,

a minimum of 35 overlapping bases, a minimum of 35 scores
and a maximum of 25 unmatched overhanging bases at sequence

ends. Based on sequence similarity, the genes were divided into
two classes: clusters (prefixed with ‘CL’) and singletons (prefixed

with ‘unigene’). In a cluster, the mutual similarity was more than
70%. Clean reads were mapped back onto respective assembled

genes using SOAPaligner (version: 2.21) to check the integrity of
assembled results. Total number of genes, N50 and average gene

length were also taken into consideration to evaluate the quality
of transcriptome assemblies. The best transcriptome assembly

was used for following analyses.
Functional annotation of the assembled genes was predicted

based on the highest similarity in the following databases:
Nr6 (NCBI non-redundant protein sequences), Nt6 (NCBI

non-redundant nucleotide sequences), COG6 (Clusters of
Orthologous Groups of proteins, COG), Swiss-Prot7 (A manually
annotated and reviewed protein sequence database), KO8 (KEGG

Orthology database) and GO. GO functional annotation was
performed by Blast2GO (v2.5.0) software (Conesa et al., 2005).

The raw sequence data used in this study has been submitted to
National Center for Biotechnology Information (NCBI) Short

Read Archive (SRA) with accession number SRX255051 (Li et al.,
2013). The sequences assembled by Trinity have been stored in

NCBI’s Transcriptome Shotgun Assembly (TSA) database which
can be accessed using the Gene-IDs listed in Supplementary

Table S1.

Digital Transcript Abundance Library
Preparation and Illumina Sequencing
Total RNA from three tissues (AZ, pericarp, and seed) was
isolated using Column Plant RNAout 2.0 kit (TIANDZ, Inc.,

China). The quantity and quality of RNA samples were evaluated
using 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,

USA). Equal total RNA from different tissues sampled at specific
time points of the same treatment were pooled to construct six

libraries named CK2, CK4, CK7, GPD2, GPD4, and GPD7. For
example, CK2 andGPD2were the libraries from tissues harvested

at 2 days in the CK and the GPD treatment, respectively.
After RNA extraction, mRNA purification by Oligo (dT),

fragmentation, cDNA synthesis by random hexamer primers,
size selection and PCR amplification were sequentially performed

by BGI-Shenzhen as described previously (Li et al., 2013). DTA
datasets were deposited in the NCBI’s SRA database with the

accession numbers as follows: SRX847812 (CK2), SRX847822
(CK4), SRX847823 (CK7), SRX847824 (GPD2), SRX847825
(GPD4), and SRX847826 (GPD7).

Data Analysis for Digital Transcript Abundance
Profiles
High-quality reads filtered through the standard Illumina
pipeline to remove the low-quality reads and those containing

adaptor/primer contaminations were used for further

6http://www.ncbi.nlm.nih.gov
7http://www.expasy.ch/sprot
8http://www.genome.jp/kegg
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downstream processing. All clean reads were mapped back to the

updated transcriptome reference database using SOAPaligner
(version 2.21) allowing up to two nucleotide mismatches with

the parameters of “−m 0 −x 1000 −s 28 −l 32 −v 2 −r 2,” which
are specified on http://soap.genomics.org.cn/soapaligner.html.

For gene expression analysis, the number of unambiguous clean
reads for each gene was calculated and normalized to RPKM

(Reads Per Kilobase per Million reads; Mortazavi et al., 2008).
Three paired-libraries including CK2 vs. GPD2, CK4 vs. GPD4,

and CK7 vs. GPD7 were used to analyze the differential gene
expression, according to the method described in Audic and

Claverie (1997). Two filter criteria were used to identify DEGs:
a fold change in transcript levels ≥4 and a FDR (False Discovery

Rate) value ≤0.001. For functional and pathway-enrichment
analyses, all DEGs were mapped to terms in GO and KEGG

databases. Heatmaps showing expression profiles (log2 fold
change) were generated using the MultiExperiment Viewer
(MeV, v4.9). Hierarchical clustering was performed by Euclidean

distance matrix with a complete linkage rule using MeV. DEGs
significantly enriched in GO term analysis (FDR ≤ 0.05) or

enriched in KEGG pathway (Q value ≤ 0.05) were screened
to be the candidate genes involved in the fruit abscission

process.

Quantitative Real-Time PCR Analysis
To validate the accuracy of our DTA profiling results, 15

randomly selected candidate geneswere evaluated by quantitative
real-time PCR (qRT-PCR) after GPD-treatment in AZ, pericarp,

and seed of litchi. The list of gene-specific primers was shown
in Supplementary Table S2. RNA reverse transcription, qRT-PCR

reaction, data normalization, and calculation were performed as
described previously (Li et al., 2013). Values of each time point

were means of three biological replicates.

Results

Transcriptome Assembly Optimization
Here, four publicly available assemblers were used to assess

the litchi fruit RNA-Seq data generated previously (Li et al.,
2013). For SOAPdenovo-Trans, increased k-mer value (ranging

from 23 to 41) led to the quality deterioration in the generated
assembly with the reduction of average and N50 gene lengths,

so the 23-mer in SOAPdenovo-Trans was selected for final
assembly. In contrast, assembly generated by Velvet-Oases at

k = 31 was found to obtain better quality when different
k-mer lengths ranging from 19 to 43 (Supplementary Figure

S1) were tested. Compared to other three assembly software,
Trinity generated the best assembly with the largest average

(776 bp) and N50 (1,198 bp) gene lengths and utilized 88.70%
of the total reads, SOAPdenovo-Trans (k = 23) came in the

second, and SOAPdenovo used in our previous study was the
worst in the category due to the lowest utilized reads (Table 1).

Moreover, the assembly programs varied widely in the lengths
distributions of the genes. Trinity produced superior results in

much larger numbers of long-genes (>1 kb) and fewer short-
transcripts (200–500 bp; Supplementary Figure S2A). Thus, the

TABLE 1 | Comparison of different assembled softwares.

SOAPdenovo SOAPdenovo-

Trans

(k = 23)

Velvet-

oases

(k = 31)

Trinity

Number of genes 57,050 32,455 59,461 45,370

Maximum length (bp) 10,687 8,220 4,979 9,098

Average length (bp) 601 679 442 776

GC (%) 40.88 43.09 42.57 42.42

N (%) 1.37 0.07 0.50 0

N50 length (bp) 811 997 491 1,198

Reads utilization (%) 39.32 73.26 60.69 88.70

transcriptome assembled by Trinity was used for functional
annotation. This improved assembly had 45,370 non-redundant

genes without ‘N,’ comprising a total length of 35,197,676 bp, with
22,706 genes (50.05%) longer than 500 bp, 11,932 genes (26.30%)

longer than 1000 bp, and 2,918 (6.43%) genes longer than 2000 bp
(Supplementary Figure S2A). To evaluate the accuracy of the

assembled sequence, all the usable reads were re-aligned onto
the genes (Supplementary Figure S2B), showing that there were
42,661 genes (94.03%) with very high reads coverage (90 ∼

100%).

Changes in Fruit Abscission Rate, Ethylene
Production, and Sugars Contents in Response
to GPD Treatment
Cumulative fruit abscission rate and ethylene production in
fruit were compared between the GPD treatment and the CK

(Figure 1). The CFARs showed similar trends (Figure 1A),
which gradually increased during the first 2 days and had

no visible difference. Four days after treatment, the CFAR in
GPD-treated fruit was significantly higher than that in the CK.

Consequently, 88.0% of the fruit had dropped by 7 days after
the GPD treatment, in contrast to the 28.0% loss in the CK,

indicating that GPD treatment significantly accelerated fruit
drop. In addition to the induction of fruit drop, a clear impact

on ethylene production was also observed in GPD treated fruit.
Within the 7 days of observation, ethylene production of CK

fruit remained at a low level below 2 µl·kg−1·h−1. In contrast,
ethylene production of GPD treated fruit increased rapidly and

FIGURE 1 | Effect of the GPD treatment on fruit abscission (A) and

ethylene production (B) in litchi. Each value represented the means of

three biological replicates from three different trees, with the SE indicated by

vertical bars. Significant differences at 0.05 level are indicated with asterisk (∗)

according to t-test.
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became 15-fold higher at days 2, then decreased slightly but

remained higher level than the CK (sixfolds higher than the
CK) until 7 days after treatment (Figure 1B). The increase in

ethylene production suggested that the GPD treatment probably
accelerated fruit drop through the induction of fruit ethylene

production.
Girdling plus defoliation treatment also led to obvious changes

in soluble sugar contents in fruit. The contents of sucrose,
glucose, and fructose were determined in both the pericarp

and seed tissues. The sucrose content in the GPD treated fruit
decreased more quickly, and therefore was significantly lower

than those in the CK from 2 to 7 days after treatment in
both tissues (Figures 2A,B). Although the glucose and fructose

concentrations showed a similar change pattern, both of them
in CK were significantly higher than those in GPD treated fruit

from 2 to 7 days in pericarp (Figures 2C,E), and at 7 days in
seed (Figures 2D,F). These results indicated that blocking carbon
nutrient supply to fruit by the GPD treatment caused decrease

in soluble sugar contents in fruit, generating carbohydrate stress
which might aggravate the fruit abscission.

Digital Transcript Abundance Profile Analysis
and Clustering of Differentially Expressed
Genes
To explore the transcriptional changes of litchi fruit in response
to carbohydrate stress induced by the GPD treatment, six DTA

tag profile libraries of the CK and GPD treated tissue samples
(CK2, CK4, CK7, GPD2, GPD4, and GPD7) were constructed

FIGURE 2 | Change in soluble sugar contents (sucrose, glucose, and

fructose) in the fruit pericarp (A,C,E) and seed (B,D,F) of litchi after the

GPD treatment. Each value represented the means of three biological

replicates from three different trees, with the SE indicated by vertical bars.

Significant differences at 0.05 level are indicated with asterisk (∗ ) according to

t-test.

TABLE 2 | Statistics of DTA libraries.

Total reads Total mapped reads∗ Unique match reads

CK2 6,053,801 5,092,795 (84.13%) 4,258,546 (70.34%)

CK4 5,064,253 4,120,052 (81.36%) 3,450,681 (68.14%)

CK7 5,225,695 4,253,551 (81.40%) 3,599,995 (68.89%)

GPD2 5,897,341 5,032,315 (85.33%) 4,373,685 (74.16%)

GPD4 5,898,762 5,255,458 (89.09%) 4,655,256 (78.92%)

GPD7 5,898,257 5,047,765 (85.58%) 4,483,144 (76.01%)

∗Number and percentage of reads mapped onto litchi fruit transcriptome

assembled by Trinity.

and sequenced (Table 2). After quality filtering, a total of 34
million reads were generated from the above six libraries (5–

6 million reads for each library). The tag sequences of the six
libraries were mapped to the litchi fruit transcriptome assembled

by Trinity, and 81–89% of all clean reads were matched (Table 2),
suggesting that we obtained a good quality of sequencing DTA

libraries.
After comparing the three paired-libraries (CK2 vs. GPD2,

CK4 vs. GPD4, and CK7 vs. GPD7), a total of 2,771 DEGs
were identified (Supplementary Table S3). Among which, 1,110,

1,368, and 866 DEGs were down-regulated and 180, 92, and 80
were up-regulated in GPD2/CK2, GPD4/CK4, and GPD7/CK7,

respectively (Supplementary Figure S3A). GPD2/CK2 and
GPD4/CK4 had more DEGs than GPD7/CK7, suggesting that

more genes were differentially regulated at the early and middle
stages (2 and 4 days) of carbohydrate stress treatment. Venn

diagram analysis and a hierarchical clustering showed significant
differences in the gene expression profiles between GPD2/CK2
and GPD4/CK4 or between GPD4/CK4 and GPD7/CK7, in

contrast to the relatively high similarity between GPD2/CK2 and
GPD7/CK7 (Supplementary Figures S3B,C). Noteworthy, a total

of 162 DEGs (27 and 135 genes were up- and down-regulated,
respectively) were shared in the three comparisons and may

represent typical GPD responsive genes.
Based on similar kinetic patterns of expression, all 2,771 DEGs

were classified into 14 types of clusters. They could be further
divided into four groups based on their temporal pattern of

expression (Figure 3). Group I included 1,128 early-responsive
genes whose expression were up- or down-regulated early at

2 days after treatment; Group II had 1,129 middle-responsive
genes whose expression were not induced or suppressed until

4 days after treatment; Group III contained 353 late-responsive
genes that were not regulated until 7 days after treatment; Group

IV consisted of 162 constant-responsive genes that up- or down-
regulated early and whose expression was maintained constant

during the treatment. The genes in Group I and Group IV were
considered to function in the early stage of fruit abscission,
while Group II and Group III were regulators of the late

stage.

Analysis of the Candidate Genes Involved in
Fruit Abscission
According to the results of GO and KEGG enrichment analysis,

907 and 1,124 DEGs were identified in GO (FDR ≤ 0.05)
and KEGG pathway (Q value ≤ 0.05) with significant
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FIGURE 3 | Gene expression pattern obtained by kinetics-based

clustering. Group I, cluster of DEGs with early and transient changes

after GPD-treatment; Group II, clusters of genes modified in their

expression until 4 days after GPD-treatment; Group III, cluster of genes

with expression kinetics exhibiting late changes after GPD-treatment;

Group IV, cluster of DEGs with persistent changes during the whole

abscission process. The + and – signs in bracket represent up- and

down-regulated of genes, respectively, while 0 represents no change. The

numbers on the right of bracket indicate the total numbers of DEGs in

each cluster. All of these changes were based on a fourfold change

criterion (log2 ratio) indicated in the blue dotted lines. Average values of

gene-expression level in clusters were showed in the red solid lines.

enrichment, respectively, (Supplementary Table S4). After
eliminating duplicated genes, 857 of the 2,771 DEGs were

identified as the candidate genes involved in fruit abscission
process induced by the GPD treatment. The up- and down-

regulated genes accounted for 13.6 and 86.7%, respectively.
According to function annotation, these candidate genes

significantly affected by the GPD treatment were divided
into 17 functional categories (Table 3; Supplementary

Table S5).

Genes Involved in Carbohydrate Metabolism

Seventy-seven carbohydrate metabolism genes were found to

be associated with glycolysis, starch, and sucrose degradation,
transferase, gluconeogenesis. There were 57 genes expression

down-regulated, and among them, 18, 23, 13, and 3 genes
belonged to Group I, Group II, Group III, and Group IV,

respectively. Of these, many are involved in glycolysis and starch
synthesis such as pyruvate dehydrogenase, ATP-citrate synthase,

alcohol dehydrogenase, and sucrose phosphate synthase (SPS), as

Frontiers in Plant Science | www.frontiersin.org 6 June 2015 | Volume 6 | Article 439

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Li et al. Fruit abscission in litchi

TABLE 3 | Functional categorization of GPD-responsive DEGs.

Functional categories Genes number Regulation Group Description

I II III IV

Carbohydrate metabolism 77 Up 13 2 0 5 Sugar degradation, glycolysis, gluconeogenesis

Down 18 23 13 3 Sucrose synthesis, glycolysis, transferase, sugar degradation

Chloroplast/photosynthesis 18 Up 0 8 0 0 PSI/II activity, cytochrome b complex

Down 2 6 2 0 Carbon fixation

Energy/mitochondria 16 Up 0 10 0 0 Electron transport chain

Down 3 2 1 0 Alternative oxidase

Hormone response 71 Up 5 0 1 1 Ethylene, gibberellin

Down 36 10 13 5 Abscisic acid, auxin, brassinosteroids, cytokinin, Jasmonic acid

Cell wall modification 144 Up 9 0 1 3 Degradation,

Down 66 37 18 10 Biosynthesis, degradation, loosening

Transcription factor (TF) 30 Up 2 0 0 0 HEC, LBD

Down 12 10 5 1 AP2/ERF, bHLH, LBD, GRAS

Signal transduction 78 Up 1 0 0 0 LRR

Down 29 31 7 10 LRR, CLV, PERK, PI4KB

Cytoskeleton/intracellular transport 40 Up 0 1 0 0 Proton

Down 9 24 3 3 ABC transporter, microtubule, proton

Cell cycle 6 Up 0 0 0 0 –

Down 3 2 1 0 Cell division, cyclin

Apoptosis/proteolysis 15 Up 0 0 0 1 –

Down 5 6 3 0 Protein ubiquitination, protein degradation

Oxidation/reduction 52 Up 7 2 0 1 POD

Down 26 10 4 2 Rboh, POD, LAC, AO, Rboh

DNA/RNA/protein 39 Up 1 0 0 0

Down 7 25 4 2

Stress/pathogenesis 49 Up 9 2 2 2 Chitinase, PR gene

Down 17 14 3 0 R gene, lectin

Amino acid metabolism 32 Up 7 0 0 0 Asparagine synthetase, cysteine synthase

Down 13 9 3 0 Amino acid metabolic process

Lipid metabolism 48 Up 2 0 0 0 –

Down 23 21 2 0 Lipid/fatty acid synthesis and catabolism

Secondary metabolism 112 Up 11 0 3 1 Alkaloid, flavonoid

Down 53 24 15 5 Flavonoid, phenolics, phenylpropanoid, terpenoid, vitamin

Others 30 Up 2 0 1 2 –

Down 11 7 6 1 Cytochrome P450

A total of 857 GPD-responsive DEGs were classified into 17 functional categories.

well as various classes of glycosidase and transferase. In addition,
three genes encoding trehalase-6-phosphate phosphatase and
trehalose phosphate synthase are also included. In contrast,

only 20 carbohydrate metabolism genes were up-regulated.
These results indicated that carbohydrate metabolism and sugar

signaling pathway were largely inhibited during the entire GPD
treatment.

Photosynthesis and Energy/Mitochondria Related

Genes

We found 18 photosynthesis and 16 energy/mitochondria related
genes, 10 and 6 of them were down-regulated, respectively,

while the remaining genes were up-regulated. Over 70% genes
belonged to Group II, indicating that most genes of these

two groups were largely affected at 4 days after the GPD
treatment. The expression of genes related to carbon fixation

and alternative oxidase was repressed, while the expression
of genes associated with PSI and PSII activities, cytochrome
b complex and electron transport chain of mitochondria was

induced.

Plant Hormone Pathway

Seventy one genes were found to be related to plant hormone
synthesis and signaling pathways, including those related to

auxin (IAA, 17 genes), abscisic acid (ABA, 14 genes), ethylene
(13 genes), cytokinin (10 genes), brassinosteroid (BR, 8 genes),

gibberellin (GA, 5 genes), and jasmonic acid (JA, 4 genes).
Among them, 41, 10, 14, and 6 genes belonged to Group

I, Group II, Group III, and Group IV, respectively. Five
1-aminocyclopropane-1-carboxylate oxidase (ACO) genes and

another two genes encoding carboxylesterase were induced
during the early fruit abscission process after the GPD
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treatment, and the other six genes were down-regulated.

Taking all 17 IAA-related genes as an example, six out
of eight genes encoding auxin induced proteins (Aux/IAA)

and two genes encoding indole-3-acetic acid-amido synthetase
(GH3) were immediately down-regulated at 2 days after

the GPD treatment. Five genes encoding ARFs were also
repressed at 2 days or 4 days after the GPD treatment. Two

genes related to polar auxin transport (auxin influx carrier
protein) were affected at 7 days after the GPD treatment.

These results indicated that most plant hormone related
genes were down-regulated at the early stage of the GPD

treatment.

Responses of Cell Wall Modification

One-hundred and forty four candidate genes, which formed the
largest functional category affected by the GPD treatment in our

study, were found to be associated with cell wall biosynthesis,
loosening, degradation, and modification. Among them, not only

all transcripts related to cell wall biosynthesis such as cellulose
synthase, but also numerous cell wall degradation and loosening

related genes like extensin and pectinesterase were found to
be down-regulated. There were only 12 genes associated with
cell wall degradation including β-1,3-glucanase, β-D-xylosidase,

endoglucanase, xyloglucan endotransglucosylase/hydrolase,
pectinesterase, polygalacturonase, and β-D-xylosidase were

induced.

Expression of Transcription Factor Genes

A total of 30 candidate genes were identified as TFs, including
AP2/ERF, bHLH, GRAS, LOB domain protein, et cetera. Of

them, 14, 10, 5, and 1 genes belonged to Group I, Group II,
Group III, andGroup IV, respectively, indicating most genes were

largely affected at 2 days after the GPD treatment. Apart from
LOB domain-containing protein and TF HEC1 in Group I, the

remaining 28 genes were down-regulated, suggesting that the vast
majority of TFs displayed a repressed expression.

Genes Involved in Signal Transduction and

Membrane/Cytoskeleton/Intracellular Transport

Seventy-eight GPD-responsive DEGs were found to be
associated with signal transduction. Except one gene encoding

serine/threonine-protein kinase, the expression of all other
77 genes was repressed. Among them, 29, 31, 7, and 10

genes belonged to Group I, Group II, Group III, and Group
IV, respectively, indicating most genes were at low level of

expression at 2 and 4 days after the GPD treatment. Of these,
many were encoding for LRR receptor-like serine/threonine-

protein kinase, receptor protein kinase CLAVATA1 and
proline-rich receptor-like protein kinase. On the other

hand, 40 genes were found to be involved in cytoskeleton
or intracellular transport. Among them, all genes were repressed

except one gene encoding for H+-transporting two-sector
ATPase. These repressed genes included 22 ATP-bind cassette

transporters (ABC transporters) and a class of genes related to
cytoskeleton function, including those encoding CLIP-associated

proteins, formin-like proteins and microtubule-associated
proteins.

Impacts on Cell Cycle and Proteolysis

Our results showed that only six genes were found to be

associated with cell cycle, including two cyclin D genes (Group
I), one cyclin-dependent kinase inhibitor gene (Group III),

and three cell division related genes (Group I and II). They
were largely repressed by the GPD treatment. Moreover,
15 genes involved in proteolysis were also found to be

down-regulated. These genes encoded F-box proteins, U-box
proteins and other members of the ubiquitin ligase complex

in potential ubiquitylation pathway, like E3 ubiquitin-protein
ligase and the RING-H2 finger protein. A few genes related to

protein hydrolysis, such as subtilisin-like protease and serine
carboxypeptidase, were repressed as well.

Responses of Stress/Pathogenesis and

Oxidation/Reduction

There were 49 genes involved in stress/pathogenesis response

pathway. Among them, 26, 16, 5, and 2 genes belonged to
Group I, Group II, Group III, and Group IV, respectively,

indicating most genes showed great difference in expression
at the early stage. Of them, 11 genes exhibited abrupt up-

regulated expression at 2 days, including those encoding
chitinase, pathogenesis-related proteins, and wound-induced

proteins. Whereas, most of the other remaining genes were
down-regulation at early or late fruit abscission.

Fifty-two genes were found to be involved in
oxidation/reduction processes. Among them, 33, 12, 4, and

3 genes belonged to Group I, Group II, Group III, and Group
IV, respectively. Of 10 up-regulated genes, seven genes showed

increased transcript abundance at 2 days after the GPD treatment,
including those encoding peroxidase, inositol oxygenase, and

thioredoxin. Forty-two genes with inhibited expression included
genes encoded for laccases (13 genes), peroxidases (10 genes),

respiratory burst oxidase homolog proteins (three genes),
glutaredoxins (four genes), and L-ascorbate oxidases (three
genes).

Validation of the Candidate Genes by qRT-PCR
In order to verify the expression pattern of those genes involved

in fruit abscission, seven up-regulated and eight down-regulated
genes were selected for further qRT-PCR analysis. These genes

belonged to divergent functional categories or pathways. Six
genes (ACO1, ACO2, AUX, Aux/IAA, NCED, and CCD) were

implicated in plant hormones (ethylene, auxin, and abscisic acid)
regulation pathway, four genes (PG1, PG2, EG, and XYL) were

involved in cell wall modification, the remaining five genes (SPS,
AP2/ERF,U-box, andCHI1,CHI2) were assigned to carbohydrate

metabolism, TFs, potential ubiquitylation and stress response.
Figure 4 showed that the expressions of ACO1 and ACO2

were increased and AUX and CCD transcript abundance were
decreased in three tissues (AZ, pericarp and seed) at 2 and 7 days

after the GPD treatment; the expressions of NCED in AZ and
AUX/IAA in pericarp were also depressed. The transcript mRNAr

level of PG1, EG, XYL, CHI1, and CHI2 were increased and
PG2, SPS, AP2/ERF, and U-box were inhibited in all the tissues

(Figures 5 and 6). Although the exact fold changes of the selected
genes at several data points varied between DTA profile and
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FIGURE 4 | Real-time quantitative PCR analysis of the expression of GPD-responsive DEGs related to hormone signaling and metabolism. The results

are means of three biological replicates (±SE). The value of transcript levels in CK was arbitrarily set to 1.
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FIGURE 5 | Real-time quantitative PCR analysis of the expression of GPD-responsive DEGs related to cell wall degradation. The results are means of

three biological replicates (±SE). The value of transcript levels in CK was arbitrarily set to 1.

qRT-PCR analysis, their expression trends found from the two

different approaches were similar. These results re-confirmed the
accuracy of our DTA profile data and indicated that AZ was the

more important tissue than pericarp and seed during the fruit
abscission caused by the GPD treatment in litchi.

Discussion

Fruit is a heterotrophic organ dependent mainly on the supply

of photosynthetic products from leaves. A strong connection
between the carbohydrate availability for fruit and their

probability of abscission has been described in citrus (Ruiz et al.,
2001; Iglesias et al., 2006), apple (Zhu et al., 2011), and also

litchi (Yuan and Huang, 1988). In this study, almost 90% of

the fruits on branches dropped after treated by GPD for 7 days,
about three times higher than the CK. In the meantime, GPD

also significantly decreased the content of sugars and increased
ethylene production in fruit. GPD completely blocks the supply

of carbohydrate to fruit, which has been proved to be reliable and
repeatable experimental model for the research of fruit abscission

under carbohydrate stress in litchi (Kuang et al., 2012; Peng
et al., 2013). Our previous studies used this experimental model

to verify few cloned genes related to auxin signaling (Kuang
et al., 2012), cell wall degradation (Peng et al., 2013) and ethylene

biosynthesis (Wu et al., 2013) involved in litchi fruitlet drop. Our
present work aimed at identification of molecular components

involved in fruit abscission in litchi, an important fruit crop, for
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FIGURE 6 | Real-time quantitative PCR analysis of the expression of GPD-responsive DEGs related to carbohydrate metabolism, transcription factor

(TF) activities, potential ubiquitylation and stress response. The results are means of three biological replicates (±SE). The value of transcript levels in CK was

arbitrarily set to 1.

which reference genome is not available now. Thus, this study

provided the first report of gene expression profile related to
fruit abscission in response to carbohydrate stress on the whole

transcriptome level in litchi.

RNA-Seq has been successfully used to sequence the

transcriptome of many non-model organisms. De novo
transcriptome assembly from short reads is improving with

the development of advanced bioinformatics softwares (Schulz
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et al., 2012). In this study, four publicly available assemblers

were used to evaluate the litchi fruit RNA-Seq data generated
previously (Li et al., 2013). Trinity resulted in a better de novo

transcriptome assembly compared to other software tested,
while previously used SOAPdenovo performed the worst due to

its lowest utilized reads. Similar results were reported by Garg
et al. (2011) and Zhao et al. (2011). It is not surprising, but

having a better assembly for litchi transcriptome is worthwhile
and highly desirable. A total of 2,771 significantly DEGs were

screened as GPD-responsive genes and 857 of them were
identified as the candidate genes involved in fruit abscission

process. In general, abscission is considered to develop through
four major steps: the AZ differentiation, the competence

to abscission signals, the activation of abscission, and the
differentiation of a protective layer (Estornell et al., 2013).

In litchi, differentiation of fruit AZ may have occurred very
early during flower differentiation (unpublished data). And
the second abscission step may occur 0–2 days after the GPD

treatment, which might be considered as the early phase of
GPD-induced fruit abscission. In this phase, CFAR in the GPD

treatment was slowly increased and almost same as the CK,
but ethylene release was rapidly risen and significantly higher

than the CK. Meanwhile, the expression of 403 and 58 genes
belonging to Group I and Group IV, respectively, were changed,

which probably leads to acquisition of abscission sensitivity and
competence. Therefore, all these genes related to carbohydrate

metabolism, hormone response, TFs, and kinase activities,
could be directly response to GPD and play an important

role on fruit abscission. From 2 to 7 days after treatment,
the CFAR in the GPD treatment was largely aggravated at an

increasing rate and significantly higher than that in the CK,
indicating fruit abscission was being activated and executed.

It might be regarded as the late phase of GPD-induced fruit
abscission, involving changes in expression of genes in Group

II and Group III. A key step in this stage is cell separation,
which is mostly induced by cell wall degrading enzymes such as
polygalacturonase.

With carbohydrate supply being cut off, it is not surprising
that a sharp decline in the soluble sugars level in pericarp

and seed occurred after GPD treatment. A reduction of sugar
concentration was already reported as a reaction to sugar

starvation in citrus (Gómez-Cadenas et al., 2000; Iglesias et al.,
2006). In the early phase of the abscission process, we observed

a high expression level of genes involved in starch and sucrose
degradation, glycolysis and gluconeogenesis, and a decrease in

the expression of genes for sucrose synthesis, such as SPS. While
in the late phase of the abscission process, a high expression

level of genes related to energy metabolism and PSI/II activity
and a low expression level of genes associated with carbon

fixation and carbohydrate metabolism occurred. These results
implicated the reduction in sink storage of GPD-treated fruit and

the energy consumption for maintenance. The high expression
of carbohydrate metabolism genes was also found in apple (Zhu

et al., 2011) and litchi (Li et al., 2013) after shading treatment,
while the photosynthesis related genes were inhibited. However,

sorbitol metabolism seemed to be more important in apple
fruitlet drop (Zhu et al., 2011), which was not found in litchi.

Although the relationships among the hormonal signals,

carbohydrate shortage and abscission are still not clearly
elucidated, it is widely believed that the endogenous balance

of ethylene and auxin in the AZ affects organ abscission. In
this study, ethylene production increased and peaked in GPD-

treated fruit, coinciding with the up-regulation of genes encoding
ethylene biosynthesis (ACO1 and ACO2), and it happened prior

to massive fruit drop. On the contrary, auxin responsive, and
transport related genes, such as Aux/IAA and AUX, were all

repressed by GPD. These results agreed with a previous report,
where the GPD treatment consistently reduced endogenous

auxin content and altered auxin responsive genes in litchi
(Kuang et al., 2012). It indicated that auxin signaling and influx

were impaired prior to the onset of fruit drop. These results
were consistent with other studies on abscission, like mature

fruit abscission in melon (Corbacho et al., 2013) and olive

FIGURE 7 | A preliminary framework of the gene network involved in

litchi fruit abscission induced by carbohydrate stress. Firstly fruit

perceive carbohydrate stress induced by the GPD treatment. The sugar

starvation signal induces changes of cellular metabolisms, such as hormone

signal transduction (e.g., ethylene, auxin, and ABA), protein kinase activities

(e.g., LRR-RLKs), and TF activities (e.g., AP2/ERF, bHLH, LBD, GRAS). Other

metabolism pathways involving integrity of cytoskeleton, smoothness of

intracellular transport, lipid/fatty acid metabolism, amino acid metabolism as

well as secondary metabolism also take place during the process. Finally,

protein hydrolysis, cell separation and cell death occur, leading to the litchi fruit

abscission through the breakdown of the balance between cell damage and

development.
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(Gil-Amado and Gomez-Jimenez, 2013), young fruit drop

induced by NAA and shading in apple (Zhu et al., 2011). It
has been proposed that ABA might be implicated in response

to nutrient stress (Yang et al., 2003), and correlate with the
activation of ethylene-associated abscission in citrus fruitlet

(Gómez-Cadenas et al., 2000), shading-induced abscission of
apple fruitlet (Zhu et al., 2011), and mature abscission in

melon fruit (Corbacho et al., 2013). However, we observed
a low expression of genes involved in ABA biosynthesis and

signaling during the early and/or late stages of fruit abscission
in response to the GPD treatment, suggesting that ABA might

be involved in litchi fruit abscission through another pathway,
rather than integrating with ethylene pathway, as shown in

apple (Zhu et al., 2011). In addition, our study indicated that
besides the participation of ethylene and auxin in controlling

abscission events, other hormones, such as ABA, BR, JA, GA,
and cytokinin apparently participated in an intricate interaction
network regulating the abscission of GPD-treated fruits.

In Arabidopsis floral abscission (Burr et al., 2011) and
melon fruit abscission (Corbacho et al., 2013), LRR receptor-

like protein kinase (LRR-RLKs) has been thought to be a
potential controller by competing activities. Here, expression

analysis detected many LRR-RLKs down-regulated during the
whole fruit abscission process induced by the GPD treatment,

suggesting the involvement of LRR-RLKs in regulating litchi fruit
abscission. In addition, a subset of genes involved in microtubule

depolymerization and a group of gene encoding ABC transporter
showed low abundance at 4–7 days after the GPD treatment.

These results indicated that changes in integrity of cytoskeleton
and the intracellular transport system might be involved in the

late stage of litchi fruit abscission. On the other hand, late events
were potentially controlled by down-regulation of AP2/ERF and

GRAS TFs, while the early events may be controlled by down-
regulation of AP2/ERF, bHLH, and LOB domain proteins.

The last key step in promoting AZ cell separation that
eventually result in the shedding of organs is the induction
of cell wall degrading and modifying enzymes, such as PGs,

cellulases, xyloglucan endotransglucosylase/hydrolases (XTHs),
and expansins (Singh et al., 2011; Zhu et al., 2011; Corbacho et al.,

2013). However, not only numerous transcripts related to cell wall
biosynthesis but also cell wall degradation and loosening related

genes were found to be down-regulated during GPD-induced
abscission process. Several cell wall degradation genes, such as

PG1, EG, and XYL, was strongly up-regulated, indicating that
these genes might play an essential and positive regulation role

in cell separation at the early stage of litchi fruit abscission.
Based on our results, a preliminary framework of the

gene network involved in litchi fruit abscission was proposed
(Figure 7). Fruit may first perceive carbohydrate stress induced

by the GPD treatment. Then, the sugar starvation signal
transduction might induce changes of cellular metabolisms,

such as hormone signal transduction (e.g., ethylene, auxin,

and ABA), protein kinase activities (e.g., LRR-RLKs), and TF
activities (e.g., AP2/ERF, bHLH, LBD, GRAS). Other metabolism

pathways could also take place in this process, such as integrity
of cytoskeleton, smoothness of intracellular transport, lipid/fatty

acid metabolism, amino acid metabolism as well as secondary
metabolism. Finally, protein hydrolysis, cell separation, and cell

death occur, leading to the litchi fruit abscission through the
break of the balance between cell damage and development.

Conclusion

A litchi fruit transcriptome assembly was greatly improved in this
work using Trinity software. 857 GPD-responsive DEGs were

identified as candidate genes involved in the process of litchi
fruit abscission induced by carbohydrate stress. A hypothetical

molecular model for litchi fruit abscission induced by the
GPD treatment was proposed based on the results. Our study

provided the first information about gene expression profile
related to fruit abscission induced by carbohydrate stress

on whole transcriptome level, which contributes to a better
understanding for the molecular regulatory mechanism of fruit

abscission in litchi. Further studies should focus on the functional
characterization of genes involved in the above pathways.
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