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Most of the gene expression data analysis algorithms require the entire gene expressionmatrix without anymissing values. Hence, it
is necessary to devise methods which would impute missing data values accurately. �ere exist a number of imputation algorithms
to estimate those missing values. �is work starts with a microarray dataset containing multiple missing values. We �rst apply the
modi�ed version of the fuzzy theory based existing method LRFDVImpute to impute multiple missing values of time series gene
expression data and then validate the result of imputation by genetic algorithm (GA) based gene ranking methodology along with
some regular statistical validation techniques, like RMSE method. Gene ranking, as far as our knowledge, has not been used yet to
validate the result of missing value estimation. Firstly, the proposed method has been tested on the very popular Spellman dataset
and results show that error margins have been drastically reduced compared to some previous works, which indirectly validates the
statistical signi�cance of the proposed method. �en it has been applied on four other 2-class benchmark datasets, like Colorectal
Cancer tumours dataset (GDS4382), Breast Cancer dataset (GSE349-350), Prostate Cancer dataset, andDLBCL-FL (Leukaemia) for
both missing value estimation and ranking the genes, and the results show that the proposed method can reach 100% classi�cation
accuracy with very few dominant genes, which indirectly validates the biological signi�cance of the proposed method.

1. Introduction

Microarray expression analysis is a widely used technique
for pro�ling mRNA expression. �e mRNA carries genetic
information from DNA to the ribosome, where they specify
the amino acid sequence of the protein products of gene
expression. Microarray datasets oen contain missing values
which may occur due to various reasons including imper-
fections in data preparation steps (e.g., poor hybridization
and chip contamination by dust and scratches) that create
erroneous and low-quality values, which are usually dis-
carded and referred to as missing. It is common for gene
expression data to contain at least 5% missing values [1].
Most of the microarray data analysis algorithms, such as
gene clustering, disease (experiment) classi�cation, and gene

network design, require the complete information, that is,
the entire gene expression matrix without any missing val-
ues. Hence, di�erent imputation techniques should be used
which would accurately impute multiple missing data values.
Numerous imputation algorithms have been proposed to
estimate themissing values. At �rst, we have appliedmodi�ed
version of our existing imputation technique LRFDVImpute
[2] that �rst �nds a subset of similar genes using the fuzzy
di�erence vector (FDV) algorithm used in [3] where gene
expression pro�les have been considered as continuous time
series curves and then use linear regression on the subset to
estimate the missing value. We have considered estimating
only those genes with one, two, or three missing values since
these genes constitute 5–10% of the entire dataset. Absolute
error has been calculated from the di�erence between the
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Figure 1: Work�ow of the proposed missing value estimation technique.
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Figure 2: Work�ow of the proposed gene ranking technique.

original value and the estimated value. Root Mean Square
Error (RMSE) of those absolute errors is then determined.

�e work�ow for the �rst phase has been shown in
Figure 1.

Aer that we rank those genes to �nd the top ranked
genes [4].We have used a hypothesis test,Wilcoxon rank sum
test [5], to sort the features (genes) and rank them in order
of their � values and select top � genes from them, thereby
reducing the dimensionality, where � is the population size
that has been used later for GA. �e reduced set of genes
has then been ranked by our GA method. �e two ranks,
one by Wilcoxon method and the other by our GA method,
are then compared. �e top � genes (value of � de�ned
by the user) selected by our method are then used for
classi�cation using support vectormachine (SVM) classi�ers.
�e performance of classi�cation justi�es the e�ciency of the
ranking method used. Figure 2 shows the work�ow for this
phase.

Once this is done, we then forcibly make some cells
missing in the top ranked genes and again estimate them
using the same missing value estimation technique. Finally,
we rank them once more to �nd the top ranked genes.
Results show that most of the top ranked genes remain the
same, which validates the proposed missing value estimation
technique biologically as far as the estimation is concerned.

2. Present State of the Art

As discussed earlier, various statistical and analytical meth-
ods used for gene expression analysis are not robust to
missing values and require the complete gene expression
matrix for providing accurate results. Hence, it is neces-
sary to devise accurate methods which would impute data
values when they are missing. Many imputation methods
have been proposed. �e earliest method, named as row
averaging or �lling with zeroes, used to �ll in the gaps for the

missing values in gene dataset with zeroes or with the row
average.

KNNImpute method proposed in [1] selects genes with
expression pro�les similar to the gene of interest to impute
missing values. Aer experimentingwith a number ofmetrics
to calculate the gene similarity, such as Pearson correla-
tion, Euclidian distance, and variance minimization, it was
found that Euclidian distance was a su�ciently accurate
norm.

�e SVDImpute method, proposed in [1], uses Singular
Value Decomposition of matrices to estimate the missing
values of a DNA microarray. �is method works by decom-
posing the gene data matrix into a set of mutually orthogonal
expression patterns that can be linearly combined to approxi-
mate the expression of all genes in the dataset.�ese patterns,
which in this case are identical to the principle components
of the gene expression matrix, are further referred to as
eigengenes [6, 7].

Another method named as LLSImpute [8] represents a
target gene with missing values as a linear combination of
similar genes. �e similar genes are chosen by �-nearest
neighbours or � coherent genes that have large absolute values
of correlation coe�cients followed by least square regression
and estimation.

BPCAImpute method, proposed in [9], uses a Bayesian
estimation algorithm to predict missing values. BPCA sug-
gests using the number of samples minus 1 as the number
of principal axes. Since BPCA uses an EM-like repetitive
algorithm to estimate missing values, it needs intensive
computations to impute missing values.

Another algorithm for time series gene expression anal-
ysis is presented in [10] that permits the principled esti-
mation of unobserved time points, clustering, and dataset
alignment. Each expression pro�le is modelled as a cubic
spline (piecewise polynomial) that is estimated from the
observed data and every time point in�uences the overall
smooth expression curve. �e alignment algorithm uses the
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same spline representation of continuous time series gene
expression pro�les.

FDVImpute method, proposed in [11], incorporates some
fuzziness to estimate the missing value of a DNAmicroarray.
�e �rst step selects nearest (most similar) genes of the
target gene (whose some component is missing) using fuzzy
di�erence vector algorithm.�en themissing cell is estimated
by using least square �t on the selected genes in the second
step.

FDVSplineImpute, presented in [3], takes into account
the time series nature of gene expression data and permits the
estimation of missing observations using B-splines of similar
genes from fuzzy di�erence vectors.

Another method, LRFDVImpute, proposed in [2], esti-
mates multiple missing observations by �rst �nding the most
similar genes of the target gene and then applying the linear
regression on those similar genes. �is approach works in
two stages. At the �rst stage, it estimates the real missing cells
of SPELLMAN COMBINED dataset and at the later stage, it
makes some cells miss forcefully of the same dataset and then
using the estimated results from the �rst step, this approach
estimates those missed cells using the same approach used
earlier. Absolute error has been calculated from the di�erence
between the original value and the estimated value. Root
Mean Square Error (RMSE) of those absolute errors is then
determined.

Extracting relevant information from microarray data is
also di�cult because of the inherent characteristics of the
datasets, where there are the thousands of variables (genes)
and very few numbers of samples. Finding out the set of
signi�cant genes or, in other words, the most di�erentially
expressed genes, by studying data from tissues a�ected or
una�ected by cancer cells, is an important task.�is problem
can be termed as gene selection. Several techniques have been
used to rank genes and �nd out the most signi�cant ones.

In [12], the algorithm used discriminant partial least
squares (DPLS) and fuzzy clustering methods to interpret
the gene expression patterns of acute leukemia and identify
leukemia subtypes.

In [13], the proposed method used Mann-Whitney test
and �-sample Kruskal-Wallis ANOVA test to rank genes.
Dimension reductionwas done using �-means clustering and
PCA and classi�cation performed using ANN trained during
8-fold cross-validation with recursive feature elimination
(RFE) and leave-one-out testing.

In [14], the algorithm proposed a gene selection method
based on Wilcoxon rank sum test and SVM. Wilcoxon rank
sum test was used to select a subset of genes and then each
selected gene is trained and tested using SVM classi�er with
linear kernel separately, and genes with high testing accuracy
rates were chosen to form the �nal reduced gene subset.
Classi�cation was performed on two datasets: Breast Cancer
[15] and ALL/AML Leukemia [16] using leave-one-out cross-
validation (LOOCV).

A hybrid GA/SVM approach is proposed for gene selec-
tion in [17], where a fuzzy logic based preprocessing tool is
used to reduce dimensionality, GA for �nding out the most
frequent genes, and a SVM classi�er used for classi�cation.
Experiments were performed on two well-known cancer

datasets, Leukemia [16] and Colon [18], and results were
compared with six other methods.

A multiobjective genetic approach is proposed in [19] for
simultaneous clustering and gene ranking where a method to
simultaneously optimize the feature ranking and clustering
has been used. NSGA-II (Nondominated Sorting Genetic
Algorithm-II) [20] has been used as a multiobjective evolu-
tionary algorithm to optimize the chromosomes.

In [21], the proposed algorithm uses feature selection
method based on genetic algorithms (GAs) and classi�cation
methods focusing on constructive neural networks (CNNs),
C-Mantec. Several comparison results on six public cancer
databases are provided using other feature selection strategy
(Stepwise Forward Selectionmethod) and di�erent classi�ca-
tion techniques (LDA, SVM, and Naive Bayes).

A PSO based graph theoretic approach, proposed in [22],
is used for identifying the nonredundant gene markers from
microarray gene expression data. �e microarray data is �rst
converted into a weighted undirected complete feature graph
where the nodes represent the genes having gene’s relevance
as node weights and the edges are weighted in order of
correlation among the genes. �e densest subgraph having
minimum average edge weight (similarity) and maximum
average node weight (relevance) is then identi�ed from the
original feature graph. Binary particle swarm optimization
is then applied for minimizing the average edge weight
(correlation) and maximizing the average node weight (gene
relevance) through a single objective function.

A web based tool DWFS, proposed in [23], is used to
select signi�cant features for a variety of problems e�ciently.
�e search strategy is implemented using Parallel Genetic
Algorithm. DWFS also applies various �ltering methods as
a preprocessing step in the feature selection process. It also
uses three classi�ers, like KNN classi�er, Naive Bayes Clas-
si�er, and the combination of these two. Experiments using
datasets taken from di�erent biomedical applications show
the e�ciency of DWFS and lead to a signi�cant reduction
of the number of features without sacri�cing performance as
compared to several widely used existing methods.

3. Proposed Method

3.1. Missing Value Estimation Using Linear Regression. �is
phase of the work modi�es an existing method LRFDVIm-
pute for estimating missing values present in the microarray
dataset using linear regression. Earlier version of LRFDVIm-
pute inserts the newly estimated gene into the training data
aer estimation of each target gene. In this way, the newly
estimated gene is taken into consideration while estimating
the next target gene.�is process has the risk of increasing the
error while estimating the subsequent genes since the error
term is cumulatively multiplied. To overcome this problem,
modi�ed LRFDVImpute does not add the target gene to
the training data aer it has been estimated. �is way, the
training gene set size remains constant and with increasing
membership values of �, the size of training data reduces.
�e e�ects of modi�cations have been studied and results are
shown in the experimental results section. In our problem,
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the genes with missing values in the (� × �) (� is the number
of genes and � is the number of samples) dataset are to be
estimated.�emethod of �nding a similar gene as used in [3]
using fuzzy di�erence vector (FDV) algorithm is described
below.

Target Row/Testing Data. �e row whose missing value is
being estimated: a target row may have multiple missing
values but in a single run, a single value is estimated.

Similar Rows/Training Data. �e rows that are similar to the
target row: in this case only those rows are selected that have
no missing values. Before applying the similarity measures
all the columns from the complete matrix are removed that
correspond to missing values in target row.

Let �1, �2, . . . , �� be the set of genes in the dataset. Let
	th �� be the target gene, that is, the gene with � missing
values. We remove the columns having missing values from
the entire dataset. Let the resultant matrix contain (� − �)
columns. Each target gene 	 is compared with each of the
similar rows in the dataset. For the 	th gene ��, the di�erence
vector 
� of �� is calculated as follows:

Di�erenceTable�,� = �� (�) − �� (� + 1) ,
1 ≤ � ≤ � − � − 1.

(1)

Once the di�erence vectors are calculated for each of
the target rows and the similar rows, say Di�erenceTable1
(for target row) and Di�erenceTable2 (for similar row),
we then calculate Membership(	) to obtain the number
of matches between di�erence vectors Di�erenceTable1
and Di�erenceTable2 for each target gene ��. A match in
the �th component of the vectors Di�erenceTable1 and
Di�erenceTable2 is determined by whether the signs of
Di�erenceTable1(	, �) and Di�erenceTable2(	, �) are the same
or not. Membership(	) de�nes the degree of match between
the distribution of the target gene and the similar gene. We
then de�ne a membership grade for �� as follows:

memgrade (	) = Membership (	)
(� − � − 1) . (2)

�e genes in the training data that have a membership value
greater than a chosen membership grade � are considered to
be a part of the similar genes.

�e steps for estimation can be summarized below:

(1) Load the dataset with missing values.

(2) Calculate the missing number of columns for each
gene and start with the �rst rowwith the least number
of missing values (for our dataset it is 1).

(3) Compute the corresponding membership grade for
the target gene from the training data using the FDV
algorithm as shown above.

(4) Estimate the missing value using linear regression.

(5) Obtain coe�cients of the regression from the linear
model object lmObj.

(6) Add a bias of 1 at the beginning of the target row to
allow for the bias parameter.

(7) Perform a vectormultiplication between themodi�ed
target row and the coe�cients of regression and add
the obtained vector’s elements together to get the
estimated value.

(8) Replace the missing value with the estimated value.

(9) Go to step (2) and repeat the above steps to �ll the
missing values unless thementioned “least number of
missing values” in step (2) is less than or equal to 3.

Although we mentioned here that we go on �lling the
missing value till a point, it is not true. In between we stop
this �lling in process to do assessment of our algorithm.

Aer we have �lled in all the missing values correspond-
ing to rows with single missing values we select a particular
collection of row-column positions corresponding to rows
that did not havemissing values initially and deliberately treat
the values at these positions asmissing and use the exact same
process to estimate the values.

�e same collection of row-column positions are again
used when the algorithm has �lled up all the rows up to two
missing vales and then when it has �lled up missing values
existing in rows with up to three missing values.

3.2. Gene Ranking Using Genetic Algorithm. In phase 2 of the
proposed work, the result of the missing value estimation
procedure carried out in phase 1 is biologically validated by
ranking the genes using GA. Since a characteristic of gene
expression microarray data is that the number of variables
(genes) far exceeds the number of samples �, we must reduce
its dimension. Executing GA on the original dataset is quite
impractical and time consuming. As a preprocessing step, we
have reduced the dimension using Wilcoxon rank sum test.

3.2.1. Dimension Reduction Using Wilcoxon Rank Sum Test
(WRST). �e inputs to the Wilcoxon rank sum test function
are the two gene sets, the diseased set and the normal set,
both of which have individually undergone the missing value
estimation procedure (if there was any missing value). �e
two gene sets may have di�erent number of samples. Let
us consider that the diseased set is a (� × �1) sized gene
expression data, where � is the number of genes and �1 is the
number of samples, and the normal set has a size (� × �2),
where �2 is the number of samples. �e Wilcoxon rank sum
function processes the two datasets in order to �nd out for
which genes the null hypothesis is accepted or rejected. It
returns two values, � value and ℎ-value, as discussed earlier.
�e null hypothesis for our problem is that the genes are not
di�erentially expressed; that is, either all the samples have
come from diseased patients or they have come from normal
patients. �e alternative hypothesis can be that genes are
di�erentially expressed. We record the � values and ℎ-values
for each gene.

In the next step, we consider only those genes for which
the alternative hypothesis holds (ℎ = 1) at the signi�cance
level alpha and sort the genes according to the � values
thereby ranking the genes. We then select the topmost �
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genes, where � is the population size that has been used
for GA later. �us, we have two reduced populations, one
representing diseased and the other representing normal
tissues. Let (���)�×�1 be the diseased set, where � is the

reduced set of genes and �1 is the number of samples,
respectively, and let (���)�×�2 be the normal set, where �2 is
the number of samples.

3.2.2. Chromosome Representation and Initial Population for
GA. �e reduced gene sets (���)�×�1and (���)�×�2 serve as the
initial population for the genetic algorithm step.�ey contain
pop size number of geneswhich is preselected by the user.We
use real value encoding to represent each chromosome; that
is,��� and ��� are the measurements recorded for the 	th gene
and �th sample for each population, respectively.

3.2.3. Fitness Calculation. �e �tness for each gene in the
reduced gene sets is again calculated by a method similar to
that used in [14] where gene expression pro�les have been
considered as continuous time series curves.

In our problem, we have two populations, one for the
diseased tissues and the other for the normal tissues.�e two
populations contain the same number of genes � but may
have di�erent number of samples. In that case, we consider
the minimum of the two and extract the same number of
samples from each set.

Let �1, �2, . . . , �� be the reduced set of genes in each
population. If � = min(�1, �2), then for each population, the
di�erence vector
� of �� is calculated using (1). Once the dif-
ference vectors are calculated for each of the two populations,
say Di�erenceTable1 (for diseased) andDi�erenceTable2 (for
normal), the number of matches between the di�erence
vectors Membership(	) and the membership grade for �� is
computed using (2).

�e �tness of gene �� is the reciprocal ofmemgrade(	) and
is calculated as

�t (	) = 1
memgrade (	) . (3)

�is signi�es that themore similar the distributions of gene��
in the two populations are, the less di�erentially expressed the
gene is, and vice versa. �us, a �tter gene will have di�erent
distributions in the two populations. We then rank the genes
in order of their �tness.

3.2.4. Elitism. Wehave used an elitist version ofGAwhere the
best chromosomes are carried forward to the next generation
unchanged; that is, the crossover and mutation operators are
not applied on the best chromosomes.�is technique ensures
faster convergence of the process by keeping track of the best
solutions.

3.2.5. Selection. For selection, we have used a roulette wheel
technique where genes are selected based on their relative
�tness values. �e better the chromosomes are, the more
chances to be selected they have. Let count be the number of
elite children. We construct a roulette wheel as follows [22]:

(i) Calculate the �tness value �t(	) for each chromosome
��, count + 1 ≤ 	 ≤ �.

(ii) Find the total �tness of the population � =

∑pop size

�=count+1 �t(��).
(iii) Calculate the probability of selection �� for each

chromosome ��, count + 1 ≤ 	 ≤ �:

�� =
�t (��)
� . (4)

(iv) Calculate a cumulative probability �� for each chromo-
some ��, count + 1 ≤ 	 ≤ �:

�� =
�
∑
�=1
��. (5)

We now spin the wheel (pop size − count) times and select a
single chromosome as follows:

(i) Generate a random number (�oat) � between 0 and 1.

(ii) If � < �1, we select the �rst chromosome�1; otherwise,
select the 	th chromosome �� (2 ≤ 	 ≤ pop size −
count) such that ��−1 < � ≤ ��.

Some chromosomes get selected more than once. According
to Schema �eorem [24], the best chromosomes get more
copies, the average stay even, and the worst die o�.

3.2.6. Crossover. For crossover, we proceed as follows.
For each chromosome �� in the population,

(i) generate a random number (�oat) � between 0 and 1,

(ii) if � < �cross (crossover probability), we select the given
chromosome for crossover.

We have used single point crossover where the crossover site
is also generated randomly in the range [1 ⋅ ⋅ ⋅ �−1], where � is
the number of samples. �us aer crossover, a pair of parent
chromosomes generates a pair of o�spring chromosomes
[25]. �e new population obtained aer crossover contains
the new generation produced by crossover as well as the elite
children that did not undergo crossover.�is new population
is used in the mutation process.

3.2.7. Mutation. A nonuniform mutation operator as pro-
posed in literature [25] has been used here.�e new operator
is de�ned as follows:

(i) A random experiment is carried out which produces
an outcome which is either 0 or 1.

(ii) Another random number pos is generated in the
range [1 ⋅ ⋅ ⋅ � − 1], where � is the number of samples,
to select the mutation site.

(iii) Let ��� = [��(1), ��(2), . . . , ��(�), . . . , ��(�)], 1 ≤ � ≤
�, be the chromosome, and let ��(�) be selected for
mutation.Domain of�� is [lb, ub]; the resultant vector
��+1� = [��(1), ��(2), . . . , ��(�)�, . . . , ��(�)]:
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Table 1: Characteristic of Spellman dataset.

Dataset Start End Sampling Complete genes

alpha 0m 119m Every 7m 4489

cdc15 10m 290m
Every 20m for 1 hr,
10m for 3 hr, and
20m for �nal hr

4381

cdc28 0m 160m Every 10m 1383

elu 0m 390m Every 30m 5766

Yeast Saccharomyces cerevisiae dataset of Spellman et al. [26].
Source: http://genome-www.stanford.edu/cellcycle/data/rawdata/combined.txt.
Organism: yeast.

�� (�)�

= {{
{

�� (�) + Δ (�, ub − �� (�)) , if outcome is 0
�� (�) − Δ (�, �� (�) − lb) , if outcome is 1,

(6)

where � is the generation number and the function Δ(�, �)
returns a value in the range [0 ⋅ ⋅ ⋅ �] such that the probability
of Δ(�, �) being close to 0 increases as � increases. �is
property causes this operator to search the space uniformly
initially (when � is small) and very locally at later stages.

Δ(�, �) is calculated as

Δ (�, �) = � (1 − �(1−�/�)�) , (7)

where � is a random number in the range [0 ⋅ ⋅ ⋅ 1],  is the
maximumnumber of generations preselected by the user, and
! is a systemparameter determining the degree of uniformity.
We have used ! = 2 for our experiment.

�e entire genetic transformation has been performed
on one population with respect to the other. We made the
diseased gene set to undergo genetic transformation while
�tness evaluation has been made with respect to the normal
gene set. �e opposite transformation will produce similar
results.

Once the genetic transformations are done, we obtain a
�nal population set (here, genetically transformed diseased
gene set) which have been ranked in order of their �tness.
We compare the two ranks, one by theWilcoxonmethod and
the other by our GA method. A threshold of ±2 has been
considered while comparing the two ranks. Results show
that there is a good percentage of matches in the two ranks.
Moreover, we �nd out the top ranked genes produced by
both methods and the signi�cant genes produced by the two
methods are also similar. �is also validates the result of the
missing value estimation method carried out in phase 1.

3.3. Gene Classication Using SVM. In order to prove the
signi�cance of ranking by our GA method, we perform
classi�cation. �e top ranked � genes, n’ {5, 10, 15, 20, 25},
ranked by our GA method are used for the purpose. We
use �-fold LOO cross-validations, where � is varied from

one dataset to another depending on the number of samples.
For cross-validation, we have divided our dataset into two
sets, a training set and a testing set, in 80 : 20 ratio. �e
reason behind taking this ratio is that 80 : 20 is a commonly
occurring ratio, which is oen referred to as Pareto Principle.
So, if there are � samples in the training set and � − �
samples in the test set, where� is the total number of samples,
the training set is divided into � equal sized subsets. Of
the � subsets, one subset is retained for validation and the
remaining �−1 subsets are used as training data.�us, � SVM
classi�ers with linear kernel are trained using the � training
subsets.�e classi�cation accuracy rates are recorded and the
classi�er with the best accuracy rate is used to test the � − �
samples.

4. Experimental Results

4.1. Datasets Used. �e missing value estimation part of
the proposed modi�ed LRFDVImpute technique has been
evaluated on the publicly available yeast cell cycle time series
dataset from Spellman et al. [26] described in Table 1.

Aer the experiments on Spellman dataset are done,
the combined gene ranking and classi�cation portion of the
proposed method are evaluated on four publicly available
datasets: Colorectal Cancer tumours dataset (GDS4382),
Breast Cancer dataset (GSE349-350), Prostate Cancer dataset,
and Leukaemia Cancer dataset (DLBCL-FL).

4.2. Platform Used. All algorithms have been implemented
using MATLAB R2013a in Windows 8.1.

4.3. Results

4.3.1. Results of Missing Value Estimation Part. We perform
the initial estimation using modi�ed version of LRFDVIm-
pute with a membership grade � = 0.55. Aer the initial
estimation is over, we forcibly treat cells at speci�ed locations
as missing and estimate them using di�erent membership
values of � and both earlier and modi�ed versions. �is has
been carried out only once, aer estimating rows with single
missing values and the corresponding RMSE values have
been recorded. We have performed our experiments only on
alpha, cdc15, and elu data of Spellman dataset. �e number
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Table 2: Results for missing value estimation algorithm (Spellman, alpha).

RMSE\� 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Original LRFDVImpute 0.012405344 0.012488181 0.012562782 0.012562782 0.012690904 0.012197374 0.012638865

Modi�ed LRFDVImpute 0.012439936 0.012439366 0.012389872 0.012389872 0.012645466 0.011988263 0.013268721

Table 3: Results for missing value estimation algorithm (Spellman, cdc15).

RMSE\� 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Original LRFDVImpute 0.016832094 0.016760968 0.016706119 0.016682418 0.016768837 0.016733642 0.049482242

Modi�ed LRFDVImpute 0.016781257 0.016710318 0.016736613 0.016723349 0.016637753 0.017023671 0.057225615

Table 4: Results for missing value estimation algorithm (Spellman, elu).

RMSE\� 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Original LRFDVImpute 0 0 0 0 0 0 0

Modi�ed LRFDVImpute 0 0 0 0 0 0 0

Table 5: Performance comparison with other existing methods.

Dataset SVDImpute LLSImpute FDVLLSImpute FDVSPLINEImpute
FDVLRImpute with � = 0.55

Original LRFDVImpute Modi�ed LRFDVImpute

alpha 0.03395 0.07853 0.096 0.063 0.012562782 0.012389872

cdc15 0.05055 0.1208 0.258 0.127 0.016682418 0.016723349

elu 0.01585 0.0033 0.044 .019 0 0

of missing values is too large for cdc28; that is why we ignore
that segment.�e results for the alpha, cdc15, and elu datasets
using both methods are shown in Tables 2–4. Figures 3–5
show the corresponding plots of RMSE versus membership
grade � for each of the four datasets.

Table 5 compares the performance of both versions
of LRFDVImpute method to that of some other exist-
ing methods, like SVDImpute, LLSImpute, FDVLLSImpute,
FDVSPLINEImpute, and so forth, and the results show that
modi�ed version of LRFDVImpute outperforms the other
existing methods as far as RMSE value is concerned.

4.3.2. Combined Results. We test the signi�cance of our
proposed missing value estimation technique using the gene
ranking method. We have not found any state-of-the-art
work on gene ranking so far where Spellman dataset is
used. �at is why we use four more publicly available real-
life gene expression datasets, like Colorectal Cancer dataset
(GDS4382), Breast Cancer dataset (GSE349-350), Prostate
Cancer dataset, and Leukaemia Cancer dataset (DLBCL-
FL) [4, 27–32], to perform steps such as missing values
estimation and gene ranking and analyze the results. We start
with the microarray dataset containing missing values and
apply our proposed missing value estimation technique to
estimate the genes with missing values (if any). We rank

them using proposed gene ranking method and �nd the top
ranked genes. We then forcibly insert missing values in the
top ranked genes and again estimate them using the same
missing value estimation technique. Finally, we rank them
once more to �nd the top ranked genes. Results show that
most of the top ranked genes remain the same, which implies
that the proposed missing value estimation technique has
been accurate in estimating the unknown values. We have
normalized most of the datasets using "-score normalization
method in order to bring the data values to a common
scale.

Tables 6, 8, 10, and 13 show the estimated values for the
four datasets, Tables 7, 9, 11, and 14 show the common gene
indices before and aer the estimation, and Tables 12 and 15
compare the performance of the proposed approach with two
state-of-the-art methods [22, 23] for Prostate and Leukaemia
dataset on the basis of accuracy, sensitivity, speci�city, �1-
score, and #-mean metrics. We have found that Prostate
and Leukaemia are the common dataset on which both the
existing methods have done their experiments. �e results
show that the proposed gene ranking approach performs far
better compared to those existing approaches, where one is a
PSO based graph theoretic approach [22] and the other is a
web based tool DWFS, which uses KNN and NBC classi�ers
[23] as far as those metrics are concerned.
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Table 7: Top 25 gene indices before and aer estimation for GDS4382.

Ranking

Rank
Gene indices prior to
missing value insertion

Gene indices aer missing
value insertion

1 714 714

2 1245 1245

3 1578 1578

4 1763 1763

5 2792 2792

6 4025 4025

7 4134 4134

8 5082 5082

9 8426 8426

10 9979 9979

11 10083 10083

12 10145 10145

13 10208 10208

14 10280 10280

15 10323 10323

16 10725 10725

17 10789 10789

18 10855 10855

19 11050 11050

20 11055 11055

21 11100 11100

22 11465 11465

23 11485 11485

24 11650 11650

25 11677 11677

Number of common genes in top 25 positions = 25

% of common genes = 100

0.0118

0.012

0.0122

0.0124

0.0126

0.0128

0.013

0.0132

0.0134

0 0.2 0.4 0.6 0.8

Method 1

Method 2

Figure 3: Plot of RMSE versus membership grade � for alpha dataset.
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Table 9: Top 25 gene indices before and aer estimation for Breast Cancer dataset.

Ranking

Rank
Gene indices prior to missing

value insertion
Gene indices aer missing

value insertion

1 3004 1143

2 7941 3004

3 10319 7941

4 869 10319

5 5328 11737

6 9723 491

7 491 9753

8 9574 869

9 9905 5328

10 11737 9723

11 2825 12053

12 4911 2825

13 8452 9574

14 272 9905

15 329 4911

16 6184 8452

17 9076 9076

18 9267 329

19 9753 6184

20 10614 9267

21 11377 11976

22 11976 2218

23 12053 2459

24 1143 2995

25 1937 4200

Number of common genes in top 25 positions = 21

% of common genes = 84

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.2 0.4 0.6 0.8

Method 1

Method 2

Figure 4: Plot of RMSE versus membership grade � for cdc15 dataset.
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Table 11: Top 25 gene indices before and aer estimation for Prostate Cancer dataset.

Ranking

Rank
Gene indices prior to
missing value insertion

Gene indices aer missing
value insertion

1 6185 6185

2 10494 10494

3 9850 4365

4 4365 9850

5 10138 9034

6 9172 10138

7 9034 5944

8 5944 9172

9 3649 3649

10 8554 2839

11 2839 7557

12 7557 10956

13 205 9050

14 3794 7520

15 10956 3794

16 8850 205

17 7520 8850

18 9050 10537

19 10537 5757

20 5757 8554

21 8123 8768

22 6462 8123

23 8768 6462

24 7247 7247

25 7768 9093

Number of common genes in top 25 positions = 24

% of common genes = 96

0
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0.4

0.5
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Figure 5: Plot of RMSE versus membership grade � for elu dataset.
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Table 14: Top 25 gene indices before and aer estimation for DLBCL-FL.

Ranking

Rank
Gene indices prior to
missing value insertion

Gene indices aer missing
value insertion

1 447 447

2 913 4135

3 4135 913

4 546 640

5 2929 2929

6 640 1142

7 4510 546

8 3969 3969

9 5327 4510

10 6756 4233

11 4233 5327

12 4313 4313

13 6120 6756

14 1142 6120

15 1129 1553

16 1731 1129

17 4124 6417

18 3965 4124

19 1293 1731

20 6434 1293

21 28 6434

22 4143 28

23 2062 2062

24 1553 4094

25 6417 1984

Number of common genes in top 25 positions = 23

% of common genes = 92

5. Conclusion and Future Scope

�e proposed modi�ed version of LRFDVImpute technique
has been tested on the dataset from Spellman et al. [26]
and has shown impressive results. It outperforms some state-
of-the-art methods. �e plots of RMSE versus membership
grade � show that modi�ed version is equivalent to or
better than earlier version for the alpha and cdc15 datasets.
However, for the cdc28 dataset, earlier version has shown
better results. For the elu datasets, both have reached 0 error
margin. For both versions, a membership grade between 0.55
and 0.65 produces minimum error and any value in this
range can be considered as a threshold to be used for fresh
experiments.

�e validation of the missing value estimation shows that
most of the top ranked genes remain the same, before and
aer imputation, which implies that the proposed modi�ed
LRFDVImpute technique has been accurate in estimating the
unknown values.

As a future scope, we would like to analyze the e�ects of
using quadratic regression for estimation of missing values
and the use of data cleaning techniques before imputation
which may remove outliers if any and may further reduce
the error margin. For gene ranking, we wish to analyze the
e�ects of di�erent parameter settings for GA and observe
the ranking and classi�cation results using SVM with other
kernels and also compare results with the ones mentioned
in literature. We would also wish to modify our algorithms
so as to make this ranking more e�cient and �nd out
the most signi�cant genes that would correctly identify the
subtypes of a particular type of cancer. For the Leukemia
dataset [16], this could be identifying the B-cell and T-
cell lineages for the acute lymphoblastic leukemia (ALL)
samples.
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