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To organize the wide variety of data sets automatically and acquire accurate classi	cation, this paper presents a modi	ed fuzzy�-means algorithm (SP-FCM) based on particle swarm optimization (PSO) and shadowed sets to perform feature clustering. SP-
FCM introduces the global search property of PSO to deal with the problem of premature convergence of conventional fuzzy
clustering, utilizes vagueness balance property of shadowed sets to handle overlapping among clusters, and models uncertainty
in class boundaries. �is new method uses Xie-Beni index as cluster validity and automatically 	nds the optimal cluster number
within a speci	c rangewith cluster partitions that provide compact andwell-separated clusters. Experiments show that the proposed
approach signi	cantly improves the clustering e
ect.

1. Introduction

Clustering is the process of assigning a homogeneous group
of objects into subsets called clusters, so that objects in each
cluster are more similar to each other than objects from
di
erent clusters based on the values of their attributes [1].
Clustering techniques have been studied extensively in data
mining [2], pattern recognition [3], andmachine learning [4].

Clustering algorithms can be generally grouped into two
main classes, namely, supervised clustering and unsupervised
clustering where the parameters of classi	er are optimized.
Many unsupervised clustering algorithms have been devel-
oped. One such algorithm is �-means, which assigns � objects
to � clusters by minimizing the sum of squared Euclidean
distance between the objects in each cluster to the cluster
center. �e main drawback of the �-means algorithm is
that the result is sensitive to the selection of initial cluster
centroids and may converge to local optima [5].

For handling those random distribution data sets, so�
computing has been introduced in clustering [6], which
exploits the tolerance for imprecision and uncertainty in
order to achieve tractability and robustness. Fuzzy sets and
rough sets have been incorporated in the �-means framework

to develop the fuzzy �-means (FCM) [7] and rough �-means
(RCM) [8] algorithms.

Fuzzy algorithms can assign data object partially to
multiple clusters and handle overlapping partitions. �e
degree of membership in the fuzzy clusters depends on
the closeness of the data object to the cluster centers. �e
most popular fuzzy clustering algorithm is FCM which is
introduced byBezdek [9] andnow it is widely used. FCM is an
e
ective algorithm, but the random selection in center points
makes iterative process fall into the saddle points or local
optimal solution easily. Furthermore, if the data sets contain
severe noise points or if the data sets are high dimensional,
such as bioinformatics [10], the alternating optimization
o�en fails to 	nd the global optimum. In these cases, the
probability of 	nding the global optimum can be increased
by stochastic methods such as evolutionary or swarm-based
methods. Bezdek and Hathaway [11] optimized the hard�-means (HCM) model with a genetic algorithm. Runkler
[12] introduced an ant colony optimization algorithm which
explicitly minimizes the HCM and FCM cluster models.
Al-Sultan and Selim [13] proposed the simulated annealing
algorithm (SA) to overcome some of these limits and got
promising results.
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PSO is a population based optimization tool developed
by Eberhart and Kennedy [14], which can be implemented
and applied easily to solve various function optimization
problems. Runkler and Katz [15] introduced two new meth-
ods for minimizing the reformulated objective functions of
the FCM clustering model by PSO: PSO-� and PSO-�. In
order to overcome the shortcomings of FCM, a PSO-based
fuzzy clustering algorithm was discussed [16]; this algorithm
uses the global search capacity of PSO to overcome the
shortcomings of FCM. For 	nding more appropriate cluster
centers, a generalized FCM optimized by PSO algorithm [17]
was proposed.

Shadowed sets are considered as a conceptual and algo-
rithmic bridge between rough sets and fuzzy sets, thereby
incorporate the generic merits, and have been successfully
used for unsupervised learning. Shadowed sets introduce(0, 1) interval to denote the belongingness of those clustering
points, and the uncertainty among patterns lying in the shad-
owed region is e�ciently handled in terms of membership.
�us, in order to disambiguate and capture the essence of a
distribution, recently the concept of shadowed sets has been
introduced [18], which can also raise the e�ciency in the
iteration process of the new prototypes by eliminating some
“bad points” that have bad in�uence on cluster structure
[19, 20]. Compared with FCM, the capability of shadowed �-
means is enhanced when dealing with outlier [21].

Although lots of clustering algorithms based on FCM,
PSO, or shadowed sets were proposed, most of them need
to input the preestimated cluster number �. To obtain the
desirable cluster partitions in a given data, commonly� is set
manually, and this is a very subjective and somewhat arbitrary
process. A number of approaches have been proposed to
select the appropriate �. Bezdek et al. [22] suggested the

rule of thumb � ≤ 	1/2 where the upper bound must be
determined based on knowledge or applications about the
data. Another approach is to use a cluster validity index
as a measure criterion about the data partition, such as
Davies-Bouldin (DB) [23], Xie-Beni (XB) [24], and Dunn
[25] indices. �ese indices o�en follow the principle that the
distance between objects in the same cluster should be as
small as possible and the distance between objects in di
erent
clusters should be as large as possible. �ey have also been
used to acquire the optimal number of clusters � according
to their maximum or minimum value.

�erefore, we wish to 	nd the best � in some range,
obtain cluster partitions by considering compactness and
intercluster separation, and reduce the sensitivity to initial
values. Here, we propose a modi	ed algorithm named as
SP-FCM which integrates the merits of PSO and interleaves
shadowed sets between stabilization iterations. And it can
automatically estimate the optimal cluster number with a
faster initialization than our previous approach.

�e structure of the paper is as follows. Section 2 outlines
all necessary prerequisites. In Section 3, a new clustering
approach called SP-FCM is presented for automatically 	nd-
ing the optimal cluster number. Section 4 includes the results
of experiments involvingUCI data sets, yeast gene expression
data sets, and real data set. In Section 5, main conclusions are
covered.

2. Related Clustering Algorithms

In this section, we brie�y describe some basic concepts of
FCM, PSO, shadowed sets, and XB validity index and review
the PSO-based clustering method.

2.1. FCM. We de	ne 
 = {�1, . . . , ��} as the universe of a
clustering data set, � = {
1, . . . , 
�} as the prototypes of �
clusters, and � = [���]�×� as a fuzzy partition matrix, where��� ∈ [0, 1] is themembership of �� in a cluster with prototype
�; ��, 
� ∈ ��, where P is the data dimensionality, 1 ≤ � ≤ 	,
and 1 ≤ � ≤ �. �e FCM algorithm is derived by minimizing
the objective function [22]

�FCM (�, �,
) = �∑
�=1

�∑
�=1
���� �2�� (��, 
�) , (1)

where � > 1.0 is the weighting exponent on each fuzzy
membership and ��� is the Euclidian distance from data
vectors �� to cluster center 
�. And

�∑
�=1
��� = 1 ∀� = 1, 2, . . . , 	,

0 < �∑
�=1
��� < 	 ∀� = 1, 2, . . . , �,
��� = ������� − 
������ .

(2)

�is produces the following update equations:

��� = ( �∑
�=1
(� (��, 
�)� (��, 
�))

2/(�−1))
−1

, (3)


� = (∑��=1 (���)
� ��)(∑��=1 (���)�) . (4)

A�er computing the memberships of all the objects, the
new prototypes of the clusters are calculated. �e process
stops when the prototypes stabilize. �at is, the prototypes
from the previous iteration are of close proximity to those
generated in the current iteration, normally less than an error
threshold.

2.2. PSO. PSO was originally introduced in terms of social
and cognitive behavior of bird �ocking and 	sh schooling.
�e potential solutions are called particles which �y through
the problem space by following the current best particles.
Each particle keeps track of its coordinates in the problem
space which are associated with the best solution that has
been achieved so far. �e solution is evaluated by the 	tness
value, which is also stored.�is value is called "best. Another
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best value that is tracked by the PSO is the best value, obtained
so far by any particle in the swarm. �e best value is a global
best and is called #best. �e search for the better positions
follows the rule as

� ($ + 1) = %� ($) + �1&1 ("best ($) − ' ($))
+ �2&2 (#best ($) − ' ($)) ,

' ($ + 1) = ' ($) + � ($ + 1) ,
(5)

where ' and � are position and velocity vector of particle,
respectively, % is inertia weight, �1 and �2 are positive
constants, called acceleration coe�cients which control the
in�uence of "best and #best in search process, and &1 and &2
are random values in the range [0, 1].�e 	tness value of each
particle’s position is determined by a 	tness function, and
PSO is usually executed with repeated application of (5) until
a speci	ed number of iterations have been exceeded or the
velocity updates are close to zero over a number of iterations.

2.3. PSO-Based FCM. In this algorithm [26], each particle
Part	 represents a cluster center vector, which is constructed
as

Part	 = ('	1, . . . , '	�, . . . , '	�) , (6)

where * represents the *th particle, * = 1, 2, . . . -, - is the
number of particles, and - < 	. '	� is the �th cluster center
of particle Part	. �erefore, a swarm represents a number
of candidates cluster center for the data vector. Each data
vector belongs to a cluster according to its membership
function and thus a fuzzy membership is assigned to each
data vector. Each cluster has a cluster center per iteration and
presents a solution which gives a vector of cluster centers.
�is method determines the position vector Partl for every
particle, updates it, and then changes the position of cluster
center. And the 	tness function for evaluating the generalized
solutions is stated as

/ (') = 1�FCM . (7)

�e smaller is the �FCM, the better is the clustering e
ect
and the higher is the 	tness function /(').
2.4. Shadowed Sets. Conventional uncertainty models like
fuzzy sets tend to capture vagueness through membership
values and associate precise numeric values of membership
with vague concepts. By introducing 3-cut [19], a fuzzy set
can be converted into a classical set. Shadowed sets map
each element of a given fuzzy set into 0, 1, and the unit
interval [0, 1], namely, excluded, included, and uncertain,
respectively.

For constructing a shadowed set, Mitra et al. [21] pro-
posed an optimization based on balance of vagueness. As
elevating membership values of some regions to 1 and at
the same time reducing membership values of some regions
to 0, the uncertainty in these regions can be eliminated.
To keep the balance of the total uncertainty regions, it
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Figure 1: Shadowed sets induced by fuzzy function 4(�).

needs to compensate these changes by the construction of
uncertain regions, namely, shadowed sets that absorb the
previous elimination of partial membership at low and high
ranges. �e shadowed sets are induced by fuzzy membership
function in Figure 1.

Here� denotes the objects;4(�) ∈ [0, 1] is the continuous
membership function of the objects belonging to a cluster.
�e symbolΩ1 shows the reduction of membership, the sym-
bol Ω2 depicts the elevation of membership, and the symbolΩ3 shows the formation of shadows. In order to balance the
total uncertainty, the retention of balance translates into the
following dependency:

Ω1 + Ω2 = Ω3. (8)

And the integral forms are given as

Ω1 = ∫

:�(
)≤


4 (�) ��, Ω2 = ∫

:�(
)≥1−


(1 − 4 (�)) ��,
Ω3 = ∫


:
<�(
)<1−

��.

(9)

�e threshold of reducing and elevating is 3 and 1 − 3
(3 ∈ (0, 0.5)). �e optimal value of 3 should be acquired by
translating it into the minimization of the following objective
function:

8 (3) = 9999Ω1 + Ω2 − Ω39999 . (10)
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For a fuzzy set with discrete membership function, the
balance equation is modi	ed as

8(3�) =
99999999999 ∑���≤
���� + ∑

���≥��max
−
�
(��max

− 3�)
− card {��� | 3� < ��� < ��max

− 3�}
99999999999 .

(11)

In order to 	nd the best 3�, it should satisfy the following
optimal problem:

3� = arg min

�

8(3�) , (12)

where ��� ∈ [0, 1] is the membership of �� in a cluster with
prototype 
�; ��max

and ��min
denote the highest and lowest

membership values to the �th cluster; and 3� is the threshold
of the �th cluster. �e range of feasible values of threshold 3�
is [��min

, (��min
+ ��max

)/2] [19].
�is approach considers all membership values with

respect to a 	xed cluster when updating the prototype of
this cluster. �e main merits of shadowed sets involve the
optimizationmechanism for choosing separate threshold and
the reduction of the burden of plain numeric computations.

2.5. XB Clustering Validity Index. �e clustering algorithms
described above require prespeci	cation of the number of
clusters. �e partition results are dependent on the choice
of �. �ere exist validity indices to evaluate the goodness of
clustering according to a given number of clusters; therefore,
these validity indices can be used to acquire the optimal value
of � [27].

�e XB index presents a fuzzy-validity criterion based
on a validity function which identi	es overall compact and
separate fuzzy �-partitions. �is function depends upon the
data set, geometric distance measure, and distance between
cluster centroids and fuzzy partition, irrespective of any
fuzzy algorithm used. For evaluating the goodness of the
data partition, both cluster compactness and intercluster
separation should be taken into account. For the FCM
algorithm with � = 2.0, the Xie-Beni index can be shown
to be

@XB = �FCM	�2
min

, (13)

where �min = min�,�
�����
� − 
������ is the minimum distance

between cluster centroids.�emore separate the clusters, the
larger the �min and the smaller the @XB.
3. Shadowed Sets-Based PSO-Fuzzy

Clustering: SP-FCM

FCM strives to 	nd � compact clusters in 
 where � is one
of the speci	ed parameters. But the process of selecting and
adjusting �manually to obtain desirable cluster partitions in
a given data set is very subjective and somewhat arbitrary.

To seek the optimal cluster structure, � is always allowed to
be overestimated [28], such that the distances between some
clusters are not big enough or themembership values of some
objects with di
erent clusters are adjacent and ambiguous
in a given data set. And, in this case, the modi	cation of
prototypes through long time iteration is meaningless.

�e main subject of cluster validation is the evaluation of
clustering results to 	nd the partitioning that best 	ts the data
set. Based on the foregoing algorithms, we wish to 	nd cluster
partitions that contain compact and well-separated clusters.
In our algorithm � is also overestimated and the clusters
compete for data membership. We can set [�min, �max] as the
reasonable range of cluster number based on the knowledge
of the data. �is provides a more transparent and tractable
process of cluster number reduction. Considering the fuzzy
partition matrix � = [���]�×�, each column is comprised
of the membership values of all feature vectors �� with a
single cluster center. �us, an optimal threshold 3� (� =1, 2, . . . �) for each column should be found to create a harder
partition by (12). �e amount of data which are assigned
membership value equal to 1 is identi	ed as the cardinality
of corresponding cluster. According to 3�, the cardinality of
the �th column is

A� = card {��� | ��� ≥ ��max
− 3�} . (14)

Here, the threshold is not subjectively user-de	ned but
it is established on the balance of uncertainty and can
be adjusted automatically in the clustering process. �is
property of shadowed sets can be used to reduce the cluster
number. In order to control the convergence speed, the
decision to delete clusters can be based on some thresholds.
Di
erent threshold values should be set for di
erent data sets
depending on the cluster structure and size of data sets. Here,
a threshold C and attrition rate D (0 < D < 1) are set. �e
decision to delete clusters in SP-FCM is based solely on cluster
cardinality and the threshold C. If C is too small, � is reduced
more slowly and it may stop prematurely before the optimal
cluster number is found. On the other hand, if C is too large,� may be reduced too drastically. In our method, clusters
whose cardinalities A� < C are considered as “candidates”

for removal. And we can remove up to ⌊D × �⌋ clusters
having the lowest cardinality from the pool of candidates
speci	ed by C. Limiting the number of clusters that can be
removed at one time prevents � from being reduced too
drastically when C is set too high for a given data set. �is
would automatically estimate the best cluster number while
also utilizing a faster, consistent, and repeatable initialization
technique. For evaluating the goodness of the data partition,
both cluster compactness and intercluster separation should
be taken into account. Hence the XB index is adopted.

For each � in the range of [�min, �max] a set of cluster
validity indexes were calculated, where �max is the initial
cluster number which is set to be much larger than the
expected cluster number.�e partitionmatrix with� clusters
with the best aggregate validity index is selected as the 	nal
cluster partition.�e SP-FCM algorithm is summarized as in
Algorithm 1.
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(1) Initialize �
max

and �
min

, let � = �
max

, the real number�, iteration counter � = 0, iteration counter $ = 0, maximum
iteration number G of PSO.

(2) Initialize the population size -, the initial velocity of particles, the initial position of particles, �1, �2, %, the threshold C
and attrition rate D.

(3)DO {
Repeat {

(a) Update partition matrix �(�)for all particles by (3).
(b) Calculate the cluster center for each particle by (4).
(c) Calculate the 	tness value for each particle by (7).
(d) Calculate "HIJ$ for each particle.
(e) Calculate #HIJ$ for the swarm.
(f) Update the velocity and position of each particle by (5).
(g) $ = $ + 1}

Until PSO termination condition is met (∗)
(i) Calculate the optimal threshold 3�(� = 1, 2, . . . , �) for each column of partition matrix �(�) by (12),

and relocate ���(1 ≤ � ≤ 	) of �th cluster according to 3�
(ii) Calculate cardinalityA� for each cluster on the basis of the number of data whose membership value equal to 1 by (14),1 ≤ � ≤ �
(iii) Remove all clusters whoseA� < C andA� is among ⌊D × �⌋ lowest cardinality
(iv) Update cluster number C
(v) Calculate cluster validity index @XB(�) by (13)
(vi) Update iteration counter � = � + 1}

While termination condition is not met (∗∗)
(∗) �e termination condition of PSO in this method is $ ≥ G (reach the maximum number of iterations) or the velocity

updates are close to zero over a number of iterations.
(∗∗) �e algorithm can terminate under either of the following two conditions:
(1) �e prototype parameters in � stabilize within some threshold L.
(2) �e number of clusters has reached the minimum limit �

min
.

Algorithm 1: SP-FCM.

Here, if ⌊D × �⌋ is equal to 0, we can let it to be
1. �is means that the cluster with the lowest cardinality
may be removed. �e initial �max cluster prototypes can
be initialized using exemplars from data points selected by
� = �⌊(�/�max)�⌋. A�er termination, the � and � from� ∈ [�min, �max] with the best cluster validity index @XB are
selected as the 	nal cluster prototype and partition.

4. Experimental Results

In this section, the performance of FCM, RCM, shadowed �-
means (SCM) [21], shadowed rough �-means (SRCM) [19],
and SP-FCM algorithms is presented on four UCI datasets,
four yeast gene expression datasets, and real data. For
evaluating the convergence e
ect, the fundamental criterion
can be described as follows: the distance between di
erent
objects in the same cluster should be as close as possible; the
distance between di
erent objects in di
erent cluster should
be as far as possible. Here we use DB index and Dunn index
to evaluate the clustering e
ect. For a given data set and �
value, the higher the similarity values within the clusters and
the intercluster separation, the lower the DB index value. A
good clustering procedure shouldmake the value ofDB index
as low as possible. Reversely, higher values of the Dunn index
indicate better clustering in the sense that the clusters are well

separated and relatively compact. �e details of experiments
are mentioned below.

4.1. UCI Data Set. In our experiments, totally four UCI data
sets are used, including 4-dimensional Iris, 13-dimensional
Wine, 10-dimensional Glass, and 34-dimensional Iono-
sphere. �ere are 3 clusters in data set of Iris, each of which
has 50 data patterns; 3 clusters in data set of Wine, which
have 50, 60, and 68 data patterns; 6 clusters in data set of
Glass, which have 30, 35, 40, 42, 36, and 31 separately; and
2 clusters in data set of Ionosphere, which have 226 and
125 data patterns. �e validity indices of each method are
compared in Table 1. SP-FCM can identify compact groups
compared to other algorithmswhen given the cluster number�. It can also be seen that SRCM and SP-FCM have more
obvious advantages than FCM, RCM, and SCM. SP-FCM
performs slightly better than SRCM in most cases due to
the global search ability which enables it to converge to an
optimum or near optimum solutions. Moreover, shadowed
set- and rough set-based clustering methods, namely, SP-
FCM, SRCM, RCM, and SCM, perform better than FCM. It
implies that the partition of approximation regions can reveal
the nature of data structure and only the lower bound and
boundary region of each cluster have positive contribution in
the process of updating the prototypes.
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Table 1: Performance of FCM, RCM, SCM, SRCM, and SP-FCM on four UCI data sets.

Di
erent indices Algorithm
Data sets

Iris Wine Glass Ionosphere

DB index

FCM 0.7642 0.8803 2.2971 2.0587
RCM 0.6875 0.5692 1.9635 1.5434
SCM 0.6862 0.5327 1.8495 1.4763
SRCM 0.6613 0.4436 1.5804 1.3971
SP-FCM 0.6574 0.4328 1.5237 1.4066

Dunn index

FCM 2.3106 2.5834 0.1142 0.8381

RCM 2.7119 2.8157 0.2637 1.0233

SCM 2.4801 2.7992 0.3150 1.0319

SRCM 3.0874 3.1342 0.5108 1.1924

SP-FCM 3.3254 3.1764 0.4921 1.2605
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Figure 2: XB validity index of four UCI data sets with cluster number C.

Asusual, the number of clusters is implied by the nature of
the problem. Here, with the shadowed sets involved, one can
anticipate that the optimal number of clusters could be found.
�e fuzzi	cation coe�cient � can be optimized; however, it
is common to assume a 	xed value of 2.0, which associates
with the form of the membership functions of the generated

clusters. For testing the SP-FCMalgorithm, the rule� ≤ 	1/2
is adopted, and the range of the expected cluster number can
be set as (1) Iris, [�min = 2, �max = 12]; (2) Wine, [�min = 2,�max = 13]; (3) Glass, [�min = 2, �max = 14]; (4) Ionosphere,

[�min = 2, �max = 16]. �e swarm size is set as - = 20,
the maximum iteration number of PSO G = 50, and, for
cluster reduction, the cluster cardinality threshold C = 10
and the attrition rate D = 0.1. In each cycle, we get the
distribution of every cluster, remove part of them according
to their cardinality, and calculate the XB index, and the
cluster number � varies from �max to �min. A�er ending the
circulation, the partition with the lowest value is selected as
the 	nal result. Figure 2 presents the validity indices in the
process of generating the optimal cluster number. Smaller
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Table 2: Performance of FCM, RCM, SCM, SRCM, and SP-FCM on four yeast expression data sets.

Di
erent indices Algorithm
Data sets

GDS608 GDS2003 GDS2267 GDS2712

DB index

FCM 2.0861 2.4671 1.5916 1.9526

RCM 1.6109 2.2104 1.0274 1.2058

SCM 1.5938 2.1346 0.8946 1.0965

SRCM 1.3274 1.9523 0.7438 0.7326

SP-FCM 1.2958 1.8946 0.7962 0.6843

Dunn index

FCM 0.2647 0.2976 0.4208 0.3519

RCM 0.3789 0.3981 0.7164 0.6074

SCM 0.3865 0.3775 0.8439 0.6207

SRCM 0.5126 0.4953 0.9759 0.8113

SP-FCM 0.5407 0.5026 0.9182 0.8049

values indicate more compact and well-separated clusters.
�e validity indices reach their minimum value at � = 3,
3, 6, and 2 separately, which correspond to the 	nal cluster
prototype and the best partition. �rough the shadowed
sets and PSO approaches, the in�uence of each boundary
region to the formation of the prototypes and the clusters
can be properly resolved. Although more computing time
is required to run SP-FCM, the reasonable result can be
acquired for processing the overlapping and vagueness data
patterns.

4.2. Yeast Gene Expression Data Set. �ere are four yeast
gene expression data sets used in the experiments, including
GDS608, GDS2003, GDS2267, and GDS2712 downloaded
from Gene Expression Omnibus. �e number of classes
and samples of GDS608 is 26 and 6303; for GDS2003, the
number of classes and samples is 23 and 5617, for GDS2267
is 14 and 9275, and for GDS2712 is 15 and 9275. Table 2
presents the validity indices of di
erent methods a�er the
cluster number � was given. �e SP-FCM and SRCM obtain
the same e
ect and perform better than other clustering
algorithms. �e improvement can be attributed to the fact
that the global search capacity of PSO is conducive to 	nding
more appropriate cluster centers while escaping from local
optima.

For getting the optimum � automatically, we let� = 2.0,�1 = 1.49, �2 = 1.49, and % = 0.72, and the rule � ≤ 	1/2
is adopted. �e swarm size is set as - = 20, the maximum
iteration number of PSO is G = 80, and, for cluster
reduction, the range of the expected cluster number, the
cluster cardinality threshold C, and the attrition rate D can be
set as (1) GDS608, [�min = 20, �max = 80], C = 20, D = 0.05;
(2) GDS2003, [�min = 20, �max = 75], C = 20, D = 0.05;
(3) GDS2267, [�min = 10, �max = 96], C = 20, D = 0.08;
(4) GDS2712, [�min = 10, �max = 96], C = 20, D = 0.08.
In each cycle, we get the distribution of every cluster, remove
part of them according to their cardinality, and calculate the
XB index, and the cluster number � varies from �max to�min. �e partition with the lowest value is selected as the

	nal result a�er the loop is ended. As seen in Figure 3, for
GDS608, at the beginning the cluster number decreases at a
faster rate, it takes 26 iterations to reduce the cluster number
from � = 80 to � = 30 and 4 iterations from � = 30
to � = 26, and the XB index begins to increase when the
cluster number � < 26. For GDS2003, it takes 24 iterations
to reduce the cluster number from � = 75 to � = 30 and 7
iterations from � = 30 to � = 23, and the XB index begins
to increase when the cluster number � < 23. For GDS2267, it
takes 23 iterations to reduce the cluster number from � = 96
to � = 20 and 6 iterations from � = 20 to � = 14, and
the XB index begins to increase when the cluster number� < 14. For GDS2712, it takes 23 iterations to reduce the
cluster number from � = 96 to � = 20 and 5 iterations
from � = 20 to � = 15, and the XB index begins to increase
when the cluster number � < 15. Here, the advantages
of fuzzy sets, PSO, and shadowed sets are integrated in the
SP-FCM and make this algorithm applicable to deal with
overlapping partitions, the uncertainty, and vagueness arising
from the boundary regions, and the optimization process
in the shadowed sets makes this method robust to outliers,
so that the approximation regions of each cluster can be
determined accurately and the obtained prototypes approach
the desired locations.

4.3. Real Data. In this experiment totally 10 di
erent pack-
ages are tested. Each package is represented by 100 frames
captured from di
erent angles by camera, and each frame is
extracted SIFT feature points which are used for training a
recognition system. Figure 4 shows some images with their
SIFT keypoints. And this data set is comprised of 248150
descriptors. We let � = 2.0, �1 = 1.49, �2 = 1.49, % = 0.72,- = 20, C = 30, and D = 0.01 for the SP-FCM and choose the
reasonable range [�min = 200, �max = 360] according to the
category amount of packages and distribution of keypoints in
each image. Eighty iterations of PSO are run on each given� to produce the cluster prototype � and partition matrix� as the starting point for the shadowed sets. Longer PSO
stabilization is needed to obtainmore stable cluster partitions.
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0

1

2

3

4

5

6

20 19 18 17 16 15 14 13 12 11 10

Number of clusters

X
ie

-B
en

i 
va

li
d

it
y

(d) GDS2712

Figure 3: XB validity index of four yeast gene expression data sets with cluster number �.
Table 3: Performance of FCM, RCM, SCM, SRCM, and SP-FCM on package datasets.

Di
erent indices
Algorithms

FCM RCM SCM SRCM SP-FCM

DB index 184.569 159.671 143.194 124.038 107.826

Dunn index 92.647 116.298 125.376 169.422 167.313

Within each cluster, the optimal 3� decides the cardinality
and realizes cluster reduction, and XB index is calculated.
Each �-partition is ranked using this index and selected as
the 	nal output by the smallest index value that indicates the
best compact and well-separated clusters. At the beginning,
the cluster number decreases at a faster speed; it takes 26
iterations to reduce the cluster number from � = 360 to � =289 and 20 iterations from� = 289 to� = 267. �e XB index
increases at a relatively faster rate when the cluster number� < 267. Figure 5 shows the XB index for � ∈ [267, 289].
�e index reaches its minimum value at � = 276 that means
the best partition for this data set is 276 clusters. Table 3
exhibits the comparative analysis of convergence e
ect. As
expected, SP-FCMcan provide sound results for the real data;
the performance is assessed by those validity indices.

5. Conclusions

�is paper presents a modi	ed fuzzy �-means algorithm
based on the particle swarm optimization and shadowed sets
to perform unsupervised feature clustering. �is algorithm
called SP-FCMutilizes the global search property of PSO and
vagueness balance property of shadowed sets, such that it can
estimate the optimal cluster number as it runs through its
alternating optimization process. SP-FCM as a randomized
based approach has the capability to alleviate the problems
faced by FCM, which has some demerits of initialization
and falling in local minima. Moreover, this algorithm avoids
the subjective and somewhat arbitrary trials to estimate the
appropriate value of cluster number, and it enhances this
capability to 	nd the optimal cluster number within a speci	c
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(a) 644 features (b) 460 features (c) 742 features

(d) 442 features (e) 313 features (f) 602 features

(g) 373 features (h) 724 features (i) 539 features (j) 124 features

Figure 4: Ten package images with SIFT features.
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Figure 5: XB validity index of bag data set with cluster number �.

range using cluster validity measures as indicators.�e use of
XB validity index allows the algorithm to 	nd the optimum
cluster number with cluster partitions that provide compact
and well-separated clusters. From the experiments, we have
shown that the SP-FCMalgorithmproduces good resultswith

reference to DB and Dunn indices, especially to the high
dimension and large data cases.
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