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Abstract

Background: Medicago truncatula, a close relative of alfalfa, is a preeminent model for studying nitrogen fixation,
symbiosis, and legume genomics. The Medicago sequencing project began in 2003 with the goal to decipher
sequences originated from the euchromatic portion of the genome. The initial sequencing approach was based on
a BAC tiling path, culminating in a BAC-based assembly (Mt3.5) as well as an in-depth analysis of the genome
published in 2011.

Results: Here we describe a further improved and refined version of the M. truncatula genome (Mt4.0) based on de

novo whole genome shotgun assembly of a majority of Illumina and 454 reads using ALLPATHS-LG. The ALLPATHS-LG
scaffolds were anchored onto the pseudomolecules on the basis of alignments to both the optical map and the
genotyping-by-sequencing (GBS) map. The Mt4.0 pseudomolecules encompass ~360 Mb of actual sequences spanning
390 Mb of which ~330 Mb align perfectly with the optical map, presenting a drastic improvement over the BAC-based
Mt3.5 which only contained 70% sequences (~250 Mb) of the current version. Most of the sequences and genes that
previously resided on the unanchored portion of Mt3.5 have now been incorporated into the Mt4.0 pseudomolecules,
with the exception of ~28 Mb of unplaced sequences. With regard to gene annotation, the genome has been
re-annotated through our gene prediction pipeline, which integrates EST, RNA-seq, protein and gene prediction
evidences. A total of 50,894 genes (31,661 high confidence and 19,233 low confidence) are included in Mt4.0
which overlapped with ~82% of the gene loci annotated in Mt3.5. Of the remaining genes, 14% of the Mt3.5 genes
have been deprecated to an “unsupported” status and 4% are absent from the Mt4.0 predictions.

Conclusions: Mt4.0 and its associated resources, such as genome browsers, BLAST-able datasets and gene information
pages, can be found on the JCVI Medicago web site (http://www.jcvi.org/medicago). The assembly and annotation has
been deposited in GenBank (BioProject: PRJNA10791). The heavily curated chromosomal sequences and associated
gene models of Medicago will serve as a better reference for legume biology and comparative genomics.
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Background
Legumes contribute a significant portion of protein and

oil intake in human and animal diets. An agronomically

significant feature of the legume plants is their ability to

fix atmospheric nitrogen as a result of symbiosis with

rhizobial bacteria. Among the legumes, Medicago trun-

catula naturally stands out as a model legume organism,

with several unique characteristics: compact genome size

(estimated ~465 Mb according to Plant C-values data-

base [http://data.kew.org/cvalues/] [1]), rapid life cycle,

accessible genetics tools including transposon tagging

and easy transformation, as well as a rich collection of

mutants and ecotypes. Research on Medicago has fo-

cused on symbiotic nitrogen fixation [2] as well as a ref-

erence for cross-legume comparisons. A high-quality M.

truncatula reference genome and gene models provide a

solid foundation for plant physiologists and legume biol-

ogists, therefore, deserve continuous improvement.
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The M. truncatula sequencing project began in 2003

with the National Science Foundation (NSF) and the

European Union’s Sixth Framework Program providing

initial funding to complete sequencing of the euchro-

matic portion of the genome, which was first estimated

to be ~40% of the genome but later re-adjusted to ~280-

300 Mb, necessitating a second round of NSF funding.

Among the eight chromosomes in Medicago, six were

sequenced in the US by the NSF-funded projects, one

(chromosome 5) was sequenced by Genoscope in France

with funding from the European Union and Institute for

Agricultural Research (INRA), and one (chromosome 3)

was sequenced in the United Kingdom with funding

from the European Union and Biotechnology and Bio-

logical Sciences Research Council (BBSRC). Subsequent

to the completion of the BAC-based assembly phase,

ongoing efforts (in collaboration with the Medicago

HapMap project) are aimed at completing the genome

and its gene inventory using Next Generation sequen-

cing methods.

Mt3.5 was mostly Sanger-based, with chromosomes

built using overlapping BACs that were assembled to a

total of ~250 Mb sequences, representing most of the

euchromatic space. The remaining sequences were mostly

short contigs derived from Illumina sequencing and

amounted to an additional ~100 Mb of sequence. Genome

annotation was carried out by the International Medicago

Genome Annotation Group (IMGAG; http://medicago.

org/genome/IMGAG/), generating a uniform set of anno-

tations of the gene-rich pseudomolecules, the unanchored

BACs, and the Illumina assemblies not captured by the

BAC-based assemblies. A detailed analysis on Mt3.5 was

published in 2011 [3].

Following the release of Mt3.5 and catalyzed by the

plummeting sequencing costs, we embarked upon a new

whole genome shotgun sequencing using Illumina tech-

nology to produce a more complete and accurate assem-

bly of the entire genome. The final product is a hybrid,

whose backbone is a de novo assembly of whole genome

shotgun (WGS) sequences, and enhanced where appro-

priate with high quality BAC sequences from the Mt3.5

assembly. In addition to the paired ends and mate pairs

of DNA fragments, optical and genetic map data have

been used to validate and guide the long-range assembly

of chromosomes [4,5]. The eight pseudomolecules now

span ~384 Mb (of which ~366 Mb is actual sequence).

Another ~28 Mb of sequence is found in scaffolds that

cannot be anchored to either the physical or genetic

maps, representing an overall anchoring rate of ~93%.

Almost all of the sequences that previously resided on

short Illumina contigs in the Mt3.5 release have now been

incorporated into the pseudomolecules.

With the new assembly, a new annotation release be-

comes necessary. Even when the underlying sequences

have not been updated, more transcriptional and

translational evidence as well as new ab initio predic-

tion methods can improve the annotation of a gen-

ome [6,7]. In Mt4.0, we have re-annotated the

Medicago gene structures using a hybrid pipeline

intended to both preserve well-supported gene struc-

tures from Mt3.5, and also to improve, extend or in-

stantiate novel structures. In essence, the current set

of gene models is a union of genes predicted by Evi-

dence Modeler (EVM) [8] and MAKER [9], supple-

mented with custom curated gene sets provided by

collaborators. We have also binned the gene predic-

tions into two sets: high confidence and low confi-

dence, and have flagged loci that appear to be

transposable element (TE)-related. Our annotation re-

lease contains a set of genes that have retained their

overall structures and identifiers, as well as a set of

genes that are mostly derived from the new se-

quences added to the chromosomes that previously

resided on unanchored BACs or short Illumina con-

tigs. The Mt4.0 release, including the assembly and

the annotation, has been released to Genbank and the

JCVI Medicago website. The JCVI Medicago website

also features a number of tools to facilitate queries

and navigation of the Mt4.0 genomic datasets.

Methods
Genome assembly overview

The new Medicago Mt4.0 assembly is largely based on

an ALLPATHS-LG [10] assembly using a combination

of sequence types as described below. The ALLPATHS

scaffolds were then ordered and oriented to build the

pseudomolecules based on optical map, genetic map and

BAC/fosmid-end sequences. Scaffolding gaps and se-

quencing gaps were patched and closed by the Mt3.5 as-

sembly when possible. The entire assembly pipeline can

be viewed in Figure 1A, with key steps detailed below in

order.

De novo assembly

ALLPATHS-LG (version R41245) was run with de-

fault settings. The reads used as input to the

ALLPATHS-LG assembler are shown in Table 1. The

set of input reads contain a mixture of sequencing

technologies including Illumina, 454 and Sanger. Illu-

mina sequencing comprise the bulk of the sequencing

depth, with ~90X short fragments (paired-end) and

~50X long jumps (mate-pairs). Sanger-sequenced

BAC/fosmid-ends were trimmed to use base positions

between 100-250 bp prior to assembly. Following the

ALLPATHS-LG assembly, we performed gap closure

using GapCloser [11] at K-mer setting of 31. We per-

formed further scaffolding using Sanger “long-jump”

reads (BAC/fosmid-end sequences), which were likely
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under-used by ALLPATHS-LG. To perform scaffold-

ing with the BAC/fosmid ends, BLAST was used to

map the paired reads to the assembly (≥95% identity,

≥ 100 bp alignment) to provide input to the standa-

lone scaffolder, Bambus [12]. Bambus required a

minimum of 3 links to join contigs or scaffolds.

Construction of high density linkage map

Individuals from a Medicago recombinant inbred line

[RIL; DZA315.16 x Jemalong.J6 [13]] mapping popula-

tion were used to generate a high density genetic map

using the GBS (genotyping-by-sequencing) method [14].

DNA from 141 individuals (among which two individ-

uals were the parental accessions) were digested with

the ApeKI restriction enzyme and ligated to Illumina

single-end adapters and barcodes. Following sequen-

cing, GBS reads were deconvoluted and mapped to

the ALLPATHS scaffolds using BWA [15] using only

uniquely mapped reads. SNPs were called using SAM-

tools mpileup [16]. The genotype at each SNP locus

was labeled either as ‘A’ (same as reference allele) or

‘B’ (alternative allele) for each individual, if the allele

was supported by at least 3 reads. We labeled the

genotype as ‘-’ (missing data) if multiple alleles were

A

B

ALLPATHS assembly

Contig N50=41Kb, scaffold N50=2.75Mb

Gap filling with reads

close 7955 gaps

Contig N50=102Kb, scaffold N50=2.75 Mb

Bambus scaffolding with Sanger reads

Contig N50=102Kb, scaffold N50=4.24Mb

Anchor WGS and Mt3.5 to optical map

131 ALLPATH scaffolds and 287 components 

from Mt3.5 assembly showed good alignments

Genetic map scaffolding

SNP markers and clone ends recruit 

92 + 24 unplaced scaffolds 

(2 rounds)

Split chimeric scaffolds

Using genetic and optical maps

9 shared breakpoints split

Gap filling with Mt3.5

2Kb flanking sequence and BLAST against 

Mt3.5. If region is <200KB, patch in Mt3.5 

sequences. Close 2635 gaps

Validate against phase 3 BACs

Reinstate missing BACs

Mt3.5 genes Gene finders
Expression and protein 

data

Evidence Modeler (EVM)MAKER predictions

Mt4.0 gene set

Community annotation 

and secreted peptides

Figure 1 Overview of (A) assembly and (B) annotation strategies used in the Mt4.0 genome release.
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found (i.e. heterozygous). A SNP marker was consid-

ered as ‘segregating’ if the minor allele had a fre-

quency of at least 0.1 (this low threshold was applied

in order to include markers on chr3L, most of which

showed severe segregation distortion). We further re-

quired each marker to contain no more than 25% of

missing data across 139 individuals to discard non-

informative markers. In summary, the GBS map con-

tains 12,002 SNP markers for 139 mapping individ-

uals. A total of 285 SSR markers had already been

mapped on this set of LR4 RILs [13] and were con-

solidated with the GBS map, providing an integrated

map with a combined marker number of 12,287.

Anchor WGS scaffolds

Prior to constructing the pseudomolecules, chimeric

WGS scaffolds were split using the GBS map and op-

tical map alignments. First, the segregation patterns

between adjacent GBS markers were compared and a

flag was raised when adjacent segregation patterns

differed more than 10% (14) of the mapping individ-

uals. Using the GBS map, we identified a total of 26

breakpoints. The optical map alignments using estab-

lished methods [17-19] suggested 11 breakpoints

within chimeric scaffolds (defined as scaffolds aligning

to two different chromosomes in the optical map),

among which 9 were shared with the genetic map

breakpoints. The WGS scaffolds were split at the

boundaries of these 9 identified chimeric positions

that were supported by both the GBS and the optical

map (Figure 2).

Alignments of the WGS scaffolds to the optical map or-

dered and oriented them for tiling the ALLPATHS scaf-

folds. A total of 131 ALLPATHS scaffolds could be

anchored to the chromosomal optical maps to form prelim-

inary pseudomolecules. However, some regions in the op-

tical map were not yet covered by the new sequence

assemblies, but had good sequence matches from the

Mt3.5 assemblies, suggesting that these sequences can be

recruited into Mt4.0 in a mix-and-match fashion. A total of

287 sequence segments from the Mt3.5 assembly that

showed good alignments to optical map and fell in the gaps

of the new assembly were inserted into the new assembly.

Additional round of gap filling and sequence anchoring

The optical map alignment identified all the large com-

ponents that were not yet placed on the pseudomole-

cules. There were additional sequence gaps, mostly

within scaffolds, in the new assembly that could be

patched using the sequences from the Mt3.5 assembly.

Sequences flanking each gap in the provisional Mt4.0 as-

sembly (2Kb on each side) were extracted and searched

against the Mt3.5 assembly (BLAST; ≥ 99% identity,

word size = 100). A gap was considered as closeable if

sequences from both sides of the Mt4.0 gap mapped

within 200Kb and with the same orientation on the

Mt3.5 assembly and if the new patch sequence contained

fewer N’s than the original gap. A total of 2,653 gaps

(out of 8,292 examined) were closed using this process.

Some unplaced scaffolds that did not have obvious

optical map alignments still contained SNP markers or

clone ends that were linked to the reconstructed

pseudomolecules. We anchored these scaffolds if their

Table 1 Summary of sequencing libraries as input to the ALLPATHS-LG assembler

Type Library name Library size # of reads Sequence coverage (X-fold) # of pairs Pair coverage (X)

Frag Illumina PE-200 207 ± 40 212,635,636 49.5 84,508,836 57.9

Frag Illumina PE-376 244 ± 75 269,583,440 48.3 87,087,424 73.1

Frag total 482,219,076 97.8 171,596,260 131.1

Jump Illumina 3Kb 2014 ± 785 117,669,776 13.2 19,112,272 34

Jump Illumina 4.5Kb 4866 ± 549 78,918,228 7.3 6,426,863 104.2

Jump Illumina 5Kb 5062 ± 776 200,273,082 32.5 9,097,003 154.9

Jump Illumina 7Kb 7455 ± 998 50,076,448 0.8 424,740 10.8

Jump 454 FLX 3Kb 2260 ± 816 1,499,510 0.4 440,037 3.7

Jump total 448,437,044 54.2 35,500,915 307.7

Long_jump Fosmid lib 35000 ± 7000 68,372 0 7,626 0.8

Long_jump BAC lib mtrs 65000 ± 13000 40,080 0 9,269 1.9

Long_jump BAC libs mte1 and mth2 100000 ± 20000 151,538 0 38,306 14.5

Long_jump BAC lib mth4 200000 ± 40000 17,042 0 4,303 2.7

Long_jump Total 277,032 0.1 59,504 19.9

Type refers to the ALLPATHS terminology of sequencing libraries - “frag” refers to short insert paired-end libraries that are typically two ends of <1Kb fragments,

“jump” refers to long insert mate pair libraries that are typically between 1Kb to 10Kb, “long_jump” refers to the ends of fosmids and BACs.
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placements were supported by both genetic map (at least

1 linked SNP marker) and clone ends mappings (at least

1 clone end link). We performed two rounds of such

scaffolding. The first round recruited 92 unplaced scaf-

folds and the second round recruited 24 unplaced scaf-

folds. Together, these steps recruited additional sequences

spanning ~26.5 Mb on the pseudomolecules.

We further evaluated WGS scaffolds against high qual-

ity sequence components from Mt3.5 assembly. These

high quality BAC sequences include 1,872 Phase-3 BAC

regions (178.2 Mb) and 292 Phase-2 BAC regions con-

taining at most one gap (20.8 Mb). Comparisons be-

tween WGS scaffolds and these BAC sequences showed

that 89.7% of the selected BAC sequences were covered

in ungapped alignments, with average sequence identity

of 99.93%. The remaining 0.07% are due to single

nucleotide differences. When gapped alignments are

allowed, the total coverage of the BACs increased to

94.8%. This implied that we could use the additional

5.1% of the high quality BAC sequences (~10 Mb) to

patch the gaps in the WGS scaffolds. Consequently, we

incorporated all the high quality BAC sequences using

the following approach: 5Kb sequences on the left and

right end of each BAC or multi-BAC contig were ex-

tracted and searched against the Mt4.0 assembly. The

sequence ranges in between the left and right flankers

(in Mt4.0) were replaced by the corresponding sequence

from the Mt3.5 BACs, thus effectively eliminating most

A

B

Figure 2 Example of breakpoint identification using (A) GBS map and (B) optical map alignment. Red arrows indicate the same
breakpoint on Scaffold0004 indicated by GBS map and optical map alignment.
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of the sequence variants as well as the gaps between the

two versions in the euchromatic regions.

Medicago re-annotation overview

Our Medicago re-annotation strategy is a hybrid ap-

proach that attempts to combine a set of transcriptional

and translational evidence. Mt3.5 legacy gene models,

predictions from Augustus and FGENESH, and EST,

454 and RNA-seq expression data were combined using

both EVidence Modeler (EVM) and MAKER with minor

differences (Table 2). Precedence was given to the EVM

predictions that were then supplemented with MAKER

models that did not have a counterpart in the EVM

dataset. Approximately 1,500 models for small secreted

peptides predicted from custom HMMs [20] and com-

munity annotated genes were also added to generate the

final Mt4.0 gene set. A schematic outline of the Medicago

re-annotation pipeline is available in Figure 1B.

Training sets

For evaluation and optimization of our gene predictions,

we developed manually curated training sets either using

models with full-length transcript support (EST or RNA-seq)

on chromosome 1 or genes directly transferred from Mt3.5

to Mt4.0 chromosome 5, which is the best-assembled

chromosome in both Mt3.5 and Mt4.0 (Table 3 and

Figure 3). We classified transcripts as ‘full-length’

using TargetIdentifier [21]. We used full-length tran-

scripts (fl-ESTs and fl-Rnnotators) on chr1. We used

‘F’ class genes on chr5 which were considered the high-

est confidence class in Mt3.5 [3]. Both sets were manually

verified by manual inspection using a genome browser,

JBrowse [22].

Gene structure consolidations

Annotation data were consolidated using EVidence

Modeler (EVM) [8] and MAKER [9]. We ran evidence

modeler (EVM) using several sources of sequence and

ab initio evidence. MAKER was run using a similar set

of evidence (Table 2). We used an in-house tool GSAC

(Genome Structure Annotation Comparison) to evaluate

the performance of EVM and MAKER as well as the dir-

ectly transferred predictions from Mt3.5 against our

training sets. After several iterations of optimization via

weighting parameter adjustment, EVM was found to be

more accurate than either MAKER or Mt3.5 predictions

and was therefore used as the main annotation pipeline.

Mt3.5 models were used as one line of evidence for

EVM, thus favoring the retention of these models when

they agreed with EST/RNA-seq and protein alignment

data.

The consolidated gene set consisted of the output of

the EVM pipeline and gene predictions from the

MAKER pipeline that did not intersect with these data

sets, which were supplemented with the community

contributed annotations. The community contributed

annotations consisted primarily of small cysteine-rich

peptides predicted by the SPADA pipeline [20], a small

number of annotation updates contributed by commu-

nity members and a small number of updates supported

by proteomics data [7]. We manually removed overlap-

ping models using our in-house editor, AnnotationStation.

For tRNAs, we ran tRNAscan [23] and consolidated the

output with existing Mt3.5 tRNAs. Final clean ups in-

cluded removal of duplicate scaffolds, sequence contami-

nants (organelles and microbes, probably endophytic), and

predictions less than 50aa in length, except for SPADA

models that are known to be relatively short.

Gene identifier assignments

Most of the gene identifiers (Medtr) have been preserved

between Mt3.5 and Mt4.0. New identifiers have been in-

stantiated to replace the gene identifiers previously found

on the unanchored contigs. We have assigned gene identi-

fiers based on the following three rules:

� Rule 1: All Medtr genes that can be moved over

either in whole or in part will retain the same

identifier;

� Rule 2: All contig genes (with identifiers like

contig999_1) received new Medtr identifiers;

� Rule 3: New gene predictions in regions of the

genome not present in Mt3.5 were assigned Medtr

identifiers consistent with their chromosomal

location.

When multiple old identifiers mapped to the same locus

on Mt4.0 (e.g. when a new gene was a fused model), we

Table 2 Evidence tracks used in Medicago reannotation

pipeline

Type Evidence EVM MAKER

Prediction AUGUSTUS Yes Yes

Prediction FGENESH Yes Yes

Prediction GENEMARK No Yes

Transcript Medicago ESTs Yes Yes

Transcript RNA-seq assembled with Rnnotator Yes Yes

Transcript RNA-seq assembled with CLC Yes No

Transcript RNA-seq assembled with CUFFLINKS Yes No

Transcript Legacy Mt3.5 loci transferred using GMAP
and liftOver

Yes Yes

Protein Plant uniref90 proteins Yes Yes

Protein Six plant proteomes (A. thaliana, G. max,
P. trichocarpa, S. lycopersicum and O. sativa)

Yes Yes

Protein GENEWISE with A. thaliana, G. max and P.
trichocarpa proteins

Yes No
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used the EMBOSS ‘needle’ program [24] to select the leg-

acy identifier with highest identity and coverage to carry

over.

Newly instantiated genes inserted into gaps were

assigned identifiers that maintained the monotonic se-

quence of identifiers, making use of sets of identifiers

that had been reserved for each of the gaps based upon

approximated size in the Mt3.5 pseudomolecules. De-

pending on the number of reserved identifiers for a par-

ticular gap, strides of 2, 3, 5 or 10 were selected to

account for future genes. For example, to insert 2 genes

between and Medtr1g009000 and Medtr1g009050, we

added Medtr1g009010 and Medtr1g009020, using a stride

of 10 in this case. However, when insufficient identifiers

were available, we made use of the first digit of the identi-

fier and inserted a “4” as in MedtrXg4XXXXX. For ex-

ample, to insert 20 genes between Medtr1g009000 and

Medtr1g009010, we would have used Medtr1g409010,

Medtr1g409020 and so on. Consequently, the new identi-

fier scheme still provides useful information about a gene’s

chromosomal location and its neighbors.

Functional annotation

Functional assignments were based on a weighted key-

word (WK) approach (Hoover et al. in preparation).

Briefly, each predicted protein was searched against a col-

lection of databases (Priam, Uniref100, PFAM/TIGRFAM,

CAZY, CDD) and motif finders (TMHMM, InterPro).

Meaningful keywords were extracted from the definition

lines of sets of best matches from each database. A set of

heuristic rules were then used to score each candidate def-

inition line and the highest scoring line was assigned to

the query protein. A second iteration of the WK scoring

algorithm was used to standardize functional assignments

across members of paralogous gene families wherever

possible. As a result of the protein naming pipeline,

37,561 genes (74%) contain informative protein names,

while the remaining 13,367 genes are labeled as “hypo-

thetical protein”.

Repeat analysis and transposon classification

A multi-evidence approach was used to distinguish be-

tween canonical genes and transposon derived gene

models. Gene predictions were classified as transposons-

related based upon one or more of the following criteria:

1) intersection with computationally predicted repeats;

2) membership in a paralogous gene family composed

predominantly of gene predictions that received a func-

tional annotation of transposon from our naming pipeline;

3) matches to an in-house transposon protein database; 4)

Table 3 Statistics of the final assembly, including the total numbers of base pairs on each chromosome and unplaced

scaffolds

Seqid Real N’s Total % of real bases % aligned to optical map

chr1 50,275,726 2,715,429 52,991,155 94.9 % 86.9 %

chr2 43,694,219 2,035,453 45,729,672 95.5 % 84.3 %

chr3 52,386,245 3,128,907 55,515,152 94.4 % 83.8 %

chr4 54,533,855 2,048,528 56,582,383 96.4 % 89.6 %

chr5 43,376,507 254,224 43,630,731 99.4 % 92.6 %

chr6 31,992,419 3,283,294 35,275,713 90.7 % 79.3 %

chr7 46,512,325 2,660,098 49,172,423 94.6 % 85.4 %

chr8 43,183,948 2,386,037 45,569,985 94.8 % 81.9 %

chr total 365,955,244 18,511,970 384,467,214 95.2 % 85.7 %

Unplaced 24,050,008 4,319,556 28,369,564 84.8 % n. a.

Figure 3 Increased amount of chromosome-anchored sequences

in Medicago Mt4.0 compared to Mt3.5. Red-colored portion of
the chromosomes represent BAC sequences used in Mt3.5, while
the white regions on the chromosomes represent newly anchored
sequences in Mt4.0.
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possession of an appropriate InterPro domain. This inte-

grated repeat analysis pipeline improved classification of

loci as either genes or transposable elements.

UTRs and isoforms

Splice isoforms and UTRs were instantiated by running

PASA [25] on Sanger/454 EST and RNA-seq data. Pub-

licly available RNA-seq data (Additional file 1: Table S1)

were assembled using a combination of de novo and

genome-guided Trinity [26]. Transcript diversity was

captured by assembling reads on a per tissue type and

per time point basis pooling the biological replicates

within each sample/treatment.

PASA was run twice to assemble the transcriptome

data; first on EST data followed by UTR and isoform up-

dates and then on the RNA-seq transcript assemblies.

Within each gene locus, assemblies were filtered to re-

move any transcripts with low read depth, using RSEM

[27]. Within the set of isoforms that were instantiated,

we observed two different types of variation: within the

UTR regions which did not affect the encoded protein

sequence and within the coding regions which encoded

variant proteins. Since RNA-seq reads from a wide var-

iety of different tissue types (root, nodule, seedpod, blade

and flower) were used in this high-throughput step of

instantiating isoforms, without large-scale manual cur-

ation it is hard to verify the authenticity of all the com-

puted variants. For example, within certain gene loci, the

only variation observed was in the UTR regions, many

of which showed only minute differences in the UTR

start/stop positions.

To filter the excessive number of isoforms possibly due

to read-mapping artifacts, we filtered through these iso-

forms using the following method: for every locus, identify

sets of isoforms sharing the same coding region using the

Gene Structure Annotation Comparison (GSAC) tool and

retain only the longest transcript within each such set.

A total of 6,377 gene loci (13% of all loci) contain more

than one isoform. The most extreme case is gene locus

Medtr8g070990 that encodes a putative RNA-binding

protein and has 31 isoforms.

Inferring synteny blocks derived from the papilionoid

genome duplication event

To call synteny blocks, we performed all-against-all

LAST [28] comparison of the predicted gene models of

Medicago. We define syntenic blocks by chaining LAST

hits with a distance cutoff of 20 genes, also requiring at

least 5 gene pairs per synteny block. The collection of

synteny blocks were further filtered through “1:1” syn-

tenic depth constraint using QUOTA-ALIGN [29].

QUOTA-ALIGN identifies the best scoring set of blocks

while subject to the constraints that no block should

overlap another block either vertically or horizontally on

the dot plot. This block-level filtering step removed low-

scoring blocks due to computational artifacts and older

duplication events [29].

The Mt4.0 release

The sequence data are released as a set of Mt4.0 pseudo-

molecules comprising FASTA files and their alignments

to the genetic and optical maps. Annotations of genes,

TEs, tRNAs are available as GFF files and as CDS and

protein sequences in FASTA format. We also generated

a “chain” file (coordinate mapping between Mt3.5 and

Mt4.0) that can be used in conjunction with the UCSC

liftOver tool, in order to quickly map any genomic fea-

tures or annotations from the Mt3.5 assembly to the

Mt4.0 assembly. The release files are available at the

JCVI Medicago website (http://www.jcvi.org/medicago).

The same set of Mt4.0 assembly and associated gene

models are also available in GenBank under accession

APNO00000000. The optical maps for all 8 chromo-

somes are available in the Genbank nucleotide database

under accessions MAP_000013 to MAP_000020.

Results and discussion
Assembly completeness

We report a much-improved Medicago v4 assembly re-

lease (Mt4.0). Mt4.0 pseudomolecules are based upon a

new whole genome assembly that also incorporates se-

quences from the BAC-based Mt3.5 assembly wherever

possible. Mt4.0 release included substantially more Illu-

mina whole genome shotgun sequences to increase depth.

The new assembly has now placed most of the previously

unanchored sequences onto the chromosomes. Mt4.0

spans 384.5 Mb containing 360.0 Mb of real bases of

which ~86% are aligned to the optical map. There are also

unanchored scaffolds that span 28.4 Mb. This is a dra-

matic improvement over Mt3.5 which was composed of

pseudomolecules spanning 297.1 Mb with 245.3 Mb of

real bases, 31.8 Mb of unanchored BAC contigs contain-

ing 17.6 Mb of real bases plus 104.2 Mb of relatively short

contigs derived from Illumina WGS sequencing [3]. The

improvement of completeness over previous version is

large and apparent on all 8 chromosomes (Figure 3).

Chromosome 5 contains the least amount of newly an-

chored sequences, consistent with the fact that it was

already the best assembled chromosome in Mt3.5 [3].

We also determined the completeness of the Mt4.0

assembly using CEGMA [30], which identifies the pres-

ence of 248 conserved eukaryotic genes. A total of 234

(94%) ultra-conserved CEGs are present in the genome

as complete gene models, and 243 (98%) CEGs are

present including partial gene models. This is an im-

provement over the Mt3.5 assembly, which contained

only 88% and 97% of the CEGs as complete and partial,
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respectively. Using a Medicago unigene set (combining

the DFCI Medicago Gene Index and the PlantGDB puta-

tive transcript assemblies, a total of 87,639 sequences) as

an independent metric of completeness, a total of 92.3%

of the unigenes can be mapped to Mt4.0 with ≥ 90% iden-

tity and ≥ 50% coverage, which is comparable to the level

in Mt3.5 [3].

Assembly validation through optical and genetic maps

Approximately 329 Mb of Mt4.0 sequences were aligned

to the optical map, which is a significant improvement

in comparison to Mt3.5, that only has ~203 Mb of se-

quences aligned to the optical map. The length statistics

and evaluation of completeness against optical map align-

ment per chromosome is available in Table 3.

A M. truncatula RIL population LR4 (DZA315.16 ×

Jemalong.J6) mapping population was genotyped to con-

struct a high density genetic map with 12,287 markers

(12,002 SNP markers and 285 SSR markers) on 139 RIL

individuals. Jemalong J6 is a cultivar that is very close to

the reference strain A17, therefore most of the poly-

morphic sites are from the other parent DZA315.16.

The heat map of pairwise LD revealed that most of the

assembled chromosomal sequence pseudomolecules are

consistent with the genetic map in that the extent of

most linkage appears close to diagonals (Figure 4).

Comparison between the genetic and optical maps re-

vealed a major structural incongruity between the LR4

genetic map and the reference cultivar A17. The LR4 map-

ping population apparently shows a genetic linkage be-

tween the lower arms of chromosomes 4 and 8 (Figure 4).

This discrepancy appears to be due to a reciprocal trans-

location between chr4 and chr8 in the lineage of A17 [31],

but is absent from the parents of the LR4 population (J6 x

DZA315.16) [13,32]. This reciprocal translocation is fur-

ther supported by optical mapping and the A17 genetic

map (data not shown).

Together, the optical map and high-density genetic map

are responsible for anchoring ~93% of the sequences onto

the 8 Mt4.0 chromosomal sequence pseudomolecules. In

addition, the two maps were capable of identifying and

correcting 9 mis-joins from ALLPATHS-LG due to repeti-

tive sequences (Figure 2). The combination of the two

maps allows sequences to be anchored with much higher

confidence than using either map alone.

Figure 4 Heatmap of linkage disequilibrium between pairwise SNP markers in the Mt4.0 assemblies. Pairwise linkage disequilibrium (LD)
between markers was calculated as r2 value based on segregations of individuals within LR4 mapping population.
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Confidence of gene calls

Gene predictions were classified into levels of confidence

based on the extent and quality of their alignments to

transcripts, proteins, and genome alignments as described

in Additional file 1: Table S2. The alignment criteria were

selected based on frequency distributions of sequence

identity and coverage, as well as visual proofing via

JBrowse. The characteristics of high-confidence and low-

confidence genes are distinctly different. The mean size of

high-confidence genes is 3,280 bp, more than doubled

compared with 1,526 bp for low-confidence genes. The

high-confidence genes have an average of 5.5 exons, again

double when compared with 2.7 exons per low-confidence

gene (Table 4). The shorter gene length, combined with

the observation that very few alternative splicing tran-

scripts were identified in the low-confidence gene set

(Table 4), suggested that some low-confidence genes may

be potential gene fragments that often resulted from

transposable element activity [33,34].

Comparison of Mt4.0 annotation with prior version

As published, Mt3.5 (with the last annotation release

Mt3.5v5) contained 62,379 annotated gene loci with

14,309 additional predictions classified as transposable

element-related. Mt3.5 genes were curated by the IMGAG

consortium using the EuGene pipeline [35]. For Mt4.0, all

annotation work was carried out at JCVI. Thus we used

both a different annotation pipeline and a different confi-

dence classification system. This resulted in the prediction

of 31,661 high confidence genes, 19,233 low confidence

genes (total 50,894) together with 16,504 predictions clas-

sified as TE-related. This set of high and low confidence

genes represents the official release of Mt4.0 annotation

set. A further set of 19,229 unsupported predictions that

are only in silico predictions with minimal support from

databases or other species are also available for download

on the JCVI Medicago website, providing the most ex-

haustive set of gene loci that we have predicted.

In tracking the continuity of genome releases, 82% of

the ~62,000 genes annotated in Mt3.5 are captured in

the current set of high and low confidence predictions

with another 14% now classified as unsupported. The

remaining 4% of Mt3.5 genes have no counterpart in the

Mt4.0 release. Most Mt3.5 genes (74%) are unchanged

or found with only minor changes in structure in Mt4.0;

20% are involved in a merging of two loci (70% of

merged loci originated from unanchored contigs, which

were likely partial gene models in Mt3.5); splits and

more complex associations account for the remaining

6% of Mt3.5 gene loci.

We have tracked identifiers (e.g. Medtr1g010100) be-

tween Mt3.5 and Mt4.0 and retained them, wherever pos-

sible. We have assigned new identifiers to the newly

instantiated genes (including those previously found on

the unanchored BACs and Illumina contigs) using identi-

fiers reserved for the gaps in the previous Mt3.5 pseudo-

molecules. Because of some inversions or rearrangements

in Mt4.0 vs Mt3.5, the order of loci down the pseudomo-

lecules is not strictly monotonic. Additionally, since there

were a few regions where insufficient identifiers had been

set aside to accommodate all the new genes in a gap, we

made use of the leading digit in the six-digit identifier

string to provide unique loci that still preserved informa-

tion about their location on the pseudomolecule. We note

that all gene identifiers are unique in the Mt3.5/Mt4.0

identifier space. Identifiers that are retired are never re-

used. Overall, approximately 60% of the Medtr identifiers

in Mt4.0 are directly inherited from Mt3.5. Most of the

remaining Mt4.0 identifiers are assigned to genes previously

present on BACs or Illumina WGS contigs. A small num-

ber are new assignments due to gene splits (724) or merges

(2,331) following the Arabidopsis nomenclature guidelines

or to movement of a sequence region (and its associated

genes) onto another part of the genome during Mt4.0

construction. A full look-up table between Mt3.5 loci and

Mt4.0 loci is provided on the JCVI Medicago website.

Mt4.0 as an improved reference for legume comparative

genomics

A whole genome duplication (WGD) event occurred in

the common lineage of papilionoid legumes [3,36,37].

With the incomplete genome assembly of Mt3.5, the re-

sidual signature of papilionoid duplication event was

evident but much weaker than that detected in the soy-

bean genome. The average number of homologous gene

Table 4 Characteristics of high confidence and low

confidence gene sets

High confidence
(HC)

Low confidence
(LC)

Number of genes 31,661 19,233

Number of single-exon genes 6,103 (19%) 5,351 (28%)

Number of multi-exon genes 25,558 (81%) 13,882 (72%)

Number of genes with
alternative transcript variants

6,041 (19%) 347 (2%)

Number of predicted
transcripts

42,481 19,838

Number of distinct exons 174,533 52,850

Mean gene locus size
(first to last exon)

3,280 1,526

Mean transcript size (UTR, CDS) 1,618 841

Mean number of transcripts
per gene

1.3 1.0

Mean number of distinct exons
per gene

5.5 2.7

Mean exon size 308 296
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pairs per block was a striking ~2.5x fold lower than that

in soybean [3].

With the new Mt4.0 assembly, the number of retained

gene duplicates that can be detected has increased signifi-

cantly. In Mt3.5, a total of 109 blocks containing 1,628

gene pairs were found to be involved in papilionoid WGD

event, with an average size of 15 gene pairs. By compari-

son, a similar analysis within Mt4.0 identified a total of

186 blocks containing 4,522 gene pairs that originated

from the WGD event, with an average block size of 24

gene pairs. The largest WGD block in Mt4.0 contains a

total of 232 gene pairs, which has increased substantially

from the 62 gene pairs in Mt3.5. The nearly ~3x fold in-

crease in retained WGD duplicates and the increased syn-

teny block sizes that can be detected are due to the

substantial improvement of contiguity in Mt4.0 assembly,

and effectively explains the previously claimed discrepancy

between Medicago and soybean on the papilionoid WGD

event. In addition, the apparent lack of major duplication

blocks in Mt3.5 (Figure 5A) had led to the speculation

that there was likely a period of extensive rearrangements

after the duplication event [38]. We argue that the rate of

genome rearrangements may be over-estimated. Indeed,

we found that the new Mt4.0 release significantly improved

detectability of legume-wide whole genome duplication

event (Figure 5B). Nine major duplication blocks become

evident from the self-comparisons in Mt4.0, involving

chromosome pairs of chr1-chr3, chr1-chr7, chr2-chr4,

chr3-chr5, chr3-chr8, chr4-chr5, chr5-chr8, ch6-chr7,

chr6-chr8, which involves every single chromosome of

Medicago (Figure 5B).

Comparisons between Medicago and other sequenced

legume genomes reveal better separation of the speciation

and WGD events (Figure 6). The papilionoid WGD event

has a Ks mode of 0.64, more ancient than the divergence

to pigeonpea and soybean with Ks modal values of 0.46

and 0.42, respectively. Among the selected legumes,

A B

Figure 5 Syntenic dot plot of Medicago genome versus itself, showing blocks derived from papilionoid whole genome duplication

event. Contrasting (A) Mt3.5 and (B) Mt4.0 with the same synteny block chaining settings (see Methods).

Figure 6 Ks analyses of comparisons between legume species

with whole genome sequences. Percentage of gene pairs is taken
as the counts of syntenic homologs within a Ks range (with bin sizes
of 0.05) divided by all the syntenic homologs identified.
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chickpea is the closest to Medicago at Ks of 0.28. This is

consistent with the legume phylogeny since chickpea and

Medicago both belong to the galegoid clade, while pigeon-

pea and soybean belong to the millettioid clade [38,39].

The improved set of Medicago gene models in Mt4.0 will

continue to serve as a great resource for comparative gen-

omics across legumes.

JCVI Medicago website

The JCVI Medicago website (http://www.jcvi.org/medi-

cago) has been updated with the Mt4.0 data and con-

tains a number of bioinformatics utilities to search

against the Medicago database. Five major services and

resources are offered on the website: 1) BLAST service

that allow searches against the genome and the prote-

ome; 2) Genome browsers that allow interactive naviga-

tion of the genome, through both JBrowse and the

previously deployed GBrowse; 3) Keyword and locus

search for your favorite genes; 4) Gene information page

that provide detailed information including functional

searches and domain structures about every predicted

gene locus; 5) Textpresso that provides access to related

Medicago literature. The web interface for a selected set

of tools is shown in Figure 7.

In addition to the query functionalities, we have also in-

stantiated a Community Annotation Portal that extends

Figure 7 JCVI website for Medicago genome resources, showing a number of services and tools to interact with the Mt4.0 datasets

(A) JBrowse shows the alignment of annotation evidence to the genome; (B) Keyword search supports extraction of gene lists;

(C) TAIR-style gene information page of Mt4.0 gene models; (D) Textpresso for mining Medicago-related literature.
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the functionality of the original rice EuCAP [40] and also

supports mutant and allele information previously devel-

oped by Frugoli et al. [41]. This allows researchers to edit

gene structure, gene function and add mutant information

in a user friendly interface. Researchers can become a

“community annotator” and be able to edit gene function,

gene symbol, associated publications and GenBank identi-

fiers, assign mutant information, alleles and phenotype for

any given genes. Through this interface, community mem-

bers can provide their expertise to annotate or endorse

their favorite genes and gene families as a complementary

and long-term solution to our continuing Medicago gen-

ome curation efforts.

Future plans

The ultimate goal of genome curation is to produce a

gap-free genome [42]. Although the Mt4.0 release repre-

sents our best efforts so far, there are still gaps in the as-

sembly as well as unanchored scaffolds that have not yet

been incorporated into the pseudomolecules. We will

obtain higher resolution GBS map from more individ-

uals. We are planning more mate pairs to anchor cur-

rently unplaced scaffolds, as well as PacBio sequences to

close gaps. We expect to uncover or be informed of er-

rors and omissions in these sequences, and implement

the corrections in the Mt5.0 release.

Conclusion
We describe a new Medicago truncatula genome release

Mt4.0, representing substantial improvements over the

previous Mt3.5 which was published in Nature in 2011.

The Mt4.0 assembly now has ~93% of the sequences an-

chored onto the chromosomes (compared to 71 % in the

previous release) and has been carefully validated against

the optical map as well as a high-density genetic map.

The heavily curated chromosomal sequences and associ-

ated gene models will serve as a much better reference

for legume biologists and plant physiologists. We have

documented several informatics challenges during the

curation of Medicago genome and presented our solu-

tions to those challenges. For example, in order to max-

imally preserve compatibility with legacy Mt3.5 gene

naming, we implemented rules to insert new identifiers

and have provided detailed tracking of each gene in

Mt3.5. The techniques we used are of special interest to

researchers who are also ‘upgrading’ their reference as-

semblies and annotations. Such genome upgrading is

getting more popular in recent years due to the drop in

sequencing cost. We further report the associated web-

accessible resources that we have built around the Medi-

cago genome releases. We host databases, genome

browsers, searching utilities and community annotation

services on our JCVI Medicago web server.

Availability of supporting data

The Mt4.0 assembly and associated gene models are

available in GenBank under accession APNO00000000.

The optical maps are available in the Genbank nucleo-

tide database under accessions MAP_000013 to

MAP_000020. Supplementary tables are included as an

additional file:Additional file 1: Table S1. Available RNA-

seq data used in Mt4.0 for UTR and isoform instanti-

ation. Additional file 1: Table S2. Classification of genes

into high and low confidence classes.
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Additional file 1: Table S1. Available RNA-seq data used in Mt4.0 for
UTR and isoform instantiation. Table S2. Classification of genes into high
and low confidence classes.
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