
Journal of Advances in Mathematics and Computer Science

32(2): 1-14, 2019; Article no.JAMCS.49034

ISSN: 2456-9968

(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)

An Improved Geo-Textural Based Feature Extraction
Vector for offline Signature Verification

Kennedy Gyimah1, Justice Kwame Appati2
∗
, Kwaku Darkwah1

and Kwabena Ansah2

1Department of Mathematics, Kwame Nkrumah University of Science and Technology,

Kumasi-Ghana.
2Department of Computer Science, University of Ghana, Accra-Ghana.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the
final manuscript.

Article Information

DOI: 10.9734/JAMCS/2019/v32i230141
Editor(s):

(1) Dr. Morteza Seddighin, Professor, Indiana University East Richmond, USA.
Reviewers:

(1) Raheel Muzzammel, University of Lahore, Pakistan.
(2) Anthony Spiteri Staines, University of Malta, Malta.

Complete Peer review History: http://www.sdiarticle3.com/review-history/49034

Received: 01 March 2019

Accepted: 06 May 2019

Original Research Article Published: 10 May 2019

Abstract

In the field of pattern recognition, automatic handwritten signature verification is of the essence.
The uniqueness of each person’s signature makes it a preferred choice of human biometrics.
However, the unavoidable side-effect is that they can be misused to feign data authenticity. In
this paper, we present an improved feature extraction vector for offline signature verification
system by combining features of grey level occurrence matrix (GLCM) and properties of image
regions. In evaluating the performance of the proposed scheme, the resultant feature vector is
tested on a support vector machine (SVM) with varying kernel functions. However, to keep the
parameters of the kernel functions optimized, the sequential minimal optimization (SMO) and
the least square method was used. Results of the study explained that the radial basis function
(RBF) coupled with SMO best support the improved featured vector proposed.
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1 Introduction

In the field of pattern recognition, automatic handwritten signature recognition has received considerable
attention to be used for human biometric [1, 2, 3]. Enormous studies in the domain of computer
science have been carried out in respect of the identification and verification of persons. In this
study area, characteristics of biometric that are quantifiable can be measured both physiological
and behavioral. For instance, the fingerprint, DNA, and iris of the eye are classified as physiological
while signature, handwriting, gait, and voice are categorized as behavioral and all these constitute
biometrics [4]. It is well known that every person’s signature is unique in terms of its behavioral
property and this fact has yielded a great community acceptance of its use as biometric for
identification and authentication[5, 6]. In the light of its popularity, several negative cases of the
ease to forge them are recorded motivating the need for an enhanced system for recognition. This
system can either be dynamic or static depending on the structure of the input data [7]. In this case,
the process of recognition is defined as finding or identifying the owner of the signature whereas the
process of verification is to determine whether a signature as forged or genuine. The forged signature
comes in various form and are tagged as one of the following that is skilled forgeries [8], deliberate
forgeries [9], disguise [10], random or impostor signatures [11], and simulated or highly skilled
forgeries [12]. A forgery is classified as skilled if the signature is signed by an individual who has
done several practices given the genuine one. In simple forgery, the signer has very little knowledge
to the genuine signature whereas, in random forgery, the signer has no knowledge regarding the
signature or the name of the signature owner [13].

In the analysis and verification of static signatures, Zois et al. [14] presented a grid-based template
matching scheme. In their study, the fine geometric structure of the signature is efficiently encoded
with the grid template and partitioned into subsets. Using a five-by-five pixel window binary mask
shape for lattice-shaped probing structures, features are extracted to detect the ordered transitions.
Evaluating the performance of the verification approach on four different datasets of signatures
using the Spearman ranking test reveal a strong correlation between complexities. This study
continues to prove that the chances of a signature being correctly classified improve significantly
when there is an exhibition of a higher quality of genuine samples by signature owners. Following
the work of [4], the point of gravity center and the orientation of the skeleton were combined to
extract accurate feature patterns for static signature recognition which resulted in success. Using
the writer-independent parameters, [15] proposed the use of one-class support vector (OC-SVM).
In their approach, only original signatures are taken into account while the forgery is observed
as counterexamples for designing the HSVS system. This approach is very effective for accurate
classification on a large sample; however, there is inaccuracy in the training of the OC-SVM model
which affects performance on an insufficient dataset. It is recommended that there is the need
for the modification of the decision function used in the OC-SVM which is achieved by carefully
adjusting the optimal threshold through the combination of various distance metrics used in the
OC-SVM kernel. In [16], a new online HSV system was proposed to function on low-end mobile
devices and reported on the outcome of the experimental evaluation of the system on the various
dynamic handwritten signature dataset. Finally, with the work of [17], a review of research works
and methodologies were presented in the domain of handwritten signature verification. It is at this
point clear that the many works proposed in the literature by various authors have a fundamental
issue with optimal feature extraction for offline and online signature verification. In this work, an
improved feature extraction vector is proposed using a blend of GLCM and region properties to
increase verification accuracy.
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2 Preliminary Concepts and Methods

2.1 Image Preprocessing

In signing a signature, persons exhibit varying variations in terms on pressure, posture and even
the kind of object used [18, 19, 20, 21]. There is, therefore, the need for image normalization which
required the concept of image preprocessing in this context as the first phase of the recognition
process. The main aim of the preprocessing is to standardize the signature image and make it
ready for feature extraction as well as improving the quality of the image. The series of operations
performed chronologically on the signature image is as outlined as follows: binarization[22, 23, 24],
background elimination[25, 26], edge detection[27] and skeletonization[28, 29]. Stepping into the
details of these operations, the grayscale signature image in its raw state is converted into black
and white during the binarization process to make feature extraction much easier. The background
of each binarized image is eliminated. The edge detection operation is then used to compute the
boundaries of objects within images by detecting discontinuities in the image brightness. Finally,
the skeletonization process is performed to obtain the skeleton of the 2-D binary image of which
the required feature can be extracted with ease.

2.2 Feature Extraction

One of the most essential part in signature recognition system is the ability for select accurate sets
of features. In this section, two groups of features are estimated namely GLCM properties and
region properties [30, 31, 32, 33, 34, 35, 36].

2.2.1 Gray-Level Co-occurrence Matrix (GLCM)

The statistical method used to examine texture and pixels spatial relationships is the gray-level co-
occurrence matrix (GLCM). In this matrix, statistical features such as contrast, energy, correlation,
and homogeneity are computed. These features are defined as follows given the following notations:
pij = (i, j)th entry in GLCM
Ng = Number of distinct gray levels in the image

1. Contrast
This is the difference between the highest and the lowest values of the adjacent set of pixels.
It is also known as variance or inertia, and it is estimated as:

Contrast (con) =

Ng∑
i=1

Ng∑
j=1

|i− j|2pij (2.1)

2. Correlation
This is the measure of the linear dependency, and it ranges from -1 to 1. This value is zero
(0) for a constant image and its computational formulation is given by:

Correlation (cor) =

Ng∑
i=1

Ng∑
j=1

(i− µi)(j − µj)pij
σiσj

(2.2)

where µi and σi is the mean and standard deviation of pij rows , and
µj and σj are the means and standard deviations of pij columns respectively.

3. Energy
Energy also referred to as Uniformity or Angular second moment measures the uniformity
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of the texture. This is given by:

Energy (ene) =

Ng∑
i=1

Ng∑
j=1

pij
2 (2.3)

4. Homogeneity
This measures the closeness of the distribution of elements in the GLCM to the diagonal
of the GLCM. It is also referred to as the Inverse Difference Moment, and it is measured
mathematically as:

Homogeneity (hom) =

Ng∑
i=1

Ng∑
j=1

pij
1 + |i− j| (2.4)

2.2.2 Region Properties

Apart from the statistical properties of an image, images also exhibit other properties based on
their region. Several such properties exist; however, in this study, only twelve of them are extracted
based on their relevance and significant contribution to the proposed feature vector.

1. Area
The area measures the extent of any two-dimensional figure in a plane. It is given by the
integral function:

f(x) =

∫ b

a

f(x) dx (2.5)

where a and b are the two values on the horizontal axis such that b ≥ a. In image analysis,
this is a scalar value representing the total number of pixels in the region of interest.

2. Bounding Box
This represents the smallest rectangle containing the region. Given an object representation
with the set of points

Q0 = (x0, y0, z0)

Q1 = (x1, y1, z1)

...

Qn = (xn, yn, zn) (2.6)

then the bounding box of the object can be established by defining it to be

min(xi) ≤ x ≤ max(xi) 0 ≤ i ≤ n

min(yi) ≤ y ≤ max(yi) 0 ≤ i ≤ n

min(zi) ≤ z ≤ max(zi) 0 ≤ i ≤ n (2.7)

3. Centroid
The centroid or geometric center of a plane figure is the arithmetic mean position of all the
points in the shape. This defines the region’s center of mass of an image. The centroid of a
finite set of k points x1, x2, . . . , xk in Rn is

C =
x1 + x2 + · · ·+ xk

k
(2.8)
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4. Convex Hull
Given any set of points in the Euclidean space say X, we define the convex hull as the
smallest convex set that contains X. Mathematically, we have Equation (2.9).

Conv(A) =


|A|∑
i=1

αixi | ∀i : αi ≥ 0 ∧
|A|∑
i=1

αi = 1

 (2.9)

5. Minor Axis Length, Major Axis Length and Eccentricity
The Minor Axis Length : is the length (in pixels) of the minor axis of the ellipse that has
the same normalized second central moments as the region while the Major Axis Length is
the scalar value specifying the length (in pixels) of the major axis of the ellipse that has the
same normalized second central moments as the region. The eccentricity, on the other hand,
determines the ratio of the distance between the foci of the ellipse and its major axis length.
This property has a range of 0 to 1 where 0 and 1 are degenerate cases; thus an ellipse with
an eccentricity of 0 is a circle, while an ellipse with an eccentricity of 1 is a line segment.
Given Equation (2.10) as an ellipse

(x− h)2

a2
+

(y − k)2

b2
= 1. (2.10)

where (h,k) is the center of the ellipse and (x,y) being any arbitrary point in the x-y plane,
we represent the major axis as:

a = rmin + rmax (2.11)

and the minor axis as

b = 2
√
rminrmax (2.12)

where rmax and rmin are the maximum and minimum distances from the focus to the
endpoints of the ellipse. Given the definition, the eccentricity of the ellipse is formulated
as

e =

√
1− b2

a2
(2.13)

6. EquivDiameter
This parameter specifies the diameter of a circle with the same area as the region and is
computed as: √

4 ∗Area

π
(2.14)

7. Euler Number
This specifies the number of objects in the image minus the number of holes in those objects.
The Euler Number is given by

E = N −H (2.15)

where N is the number of regions of the image (number of connected components of the
object) and H is the number of holes in the image (isolated regions of the background of the
image).

With these region properties including Extent, Extrema, Orientation, Solidity, ConvexArea, and
Perimeter, the mean and variance are computed giving a sum of twenty-eight features of the region
properties. Adding these to the GLCM features gives a total of thirty-two features extracted from
each signature image. These extracted features are then passed to a classifier. In this study, the
support vector machine is used as detailed below.
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2.3 Support Vector Machine (SVM) Classifier

One major tool that is used purposely for both classification and predictive regression is the support
vector machine (SVM)[37, 38, 39, 40, 41]. To maximize the accuracy of any prediction with low
computational complexity, this machine learning based theory is used. Having different objects
with a different class of memberships, the SVM seeks to draw a decision plane between these set
of objects and classify them. For any two given classes, the SVM classifies the data points by
providing the best hyperplane that separates one class from the other. In practice, the hyperplane
with the greatest margin between the two classes is considered the best hyperplane. The nearest
data points to the separating hyperplane which is assumed to be linear represent the support vectors.
Unfortunately, not all data are linearly separable hence the need to modify the decision function
using kernel tricks.

2.3.1 Kernel Functions

For a non-linear separable set of training data, kernel functions are used by implicitly mapping the
non-linear separable input space into a linear separable feature space, where the linear classifiers
can be applied[42, 43, 44, 45, 46]. The kernels transform the input data into the required form by
finding the inner product between two points in a suitable feature space. Some common kernels
used with SVM are:

1. Polynomial kernel:
Training samples that are similar in the feature space are represented by the polynomial
kernel over polynomials of the input space (original variables), and this allows learning of
non-linear datasets. It is formulated as:

K(Xi, Xj) = (Xi ·Xj + c)d (2.16)

where Xi and Xj are vectors of the training samples, d is the degree of the polynomial and
c ≥ 0 is a free parameter trading off the influence of higher-order versus lower-order terms
in the polynomial.

2. Gaussian radial basis function (RBF):
Given any two samples Xi and Xj , the Gaussian radial basis function (RBF), representing
the feature vectors in some input space, is defined as

K(Xi, Xj) = exp(−γ∥Xi −Xj∥2) (2.17)

where ∥Xi −Xj∥2 is the squared Euclidean distance between the two feature vectors Xi and
Xj and γ > 0.

3. Multilayer Perceptron (MLP) kernel:
The Multilayer Perceptron (MLP) kernel which is also known as the Hyperbolic Tangent
Kernel or the Sigmoid Kernel is formulated as

K(Xi, Xj) = tanh(αXi ·Xj + c) (2.18)

for some α > 0 and c < 0

2.4 Parameter Estimation

From the kernel function defined, there is the need to estimate the various parameters that explain
the kernel function more appropriately given the dataset. In this study, two methods are considered
that is: Sequential Minimal Optimization[47] and the Least Square [48] as explained in detail the
following subsection.

6



Gyimah et al.; JAMCS, 32(2): 1-14, 2019; Article no.JAMCS.49034

2.4.1 Sequential Minimal Optimization (SMO)

In this procedure, the SMO seeks to divide the optimization problem into a series of smaller possible
sub-problems and solved analytically. By illustration, consider a given dataset (x1, y1), (x2, y2), (x3, y3),
. . . , (xn, yn) where the input vector is xi and yi ∈ {−1,+1} a binary label that corresponds to each
x. The SVM is trained to solve this Quadratic Programming (QP) problem expressed below;

maxW (α) =

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

y(i)y(j)K(xi, xj)αiαj , (2.19)

subject to the constraints:
0 ≤ αi ≤ C, for i = 1, 2, 3, . . . ,m, (2.20)

m∑
i=1

y(i)αi = 0 (2.21)

where K(xi, xj) is a kernel function, C, a hyperparameter and α been the Lagrange multipliers.
Since the constraints are linearly equal and involves the Lagrange multipliers α, the least possible
problem has two of such multipliers. The constraints for the two multipliers α1 and α2 is therefore
reduced to:

0 ≤ α1, α2 ≤ C, (2.22)

y(1)α1 + y(2)α2 = k (2.23)

which is solved analytically and k is the negative of the sum over the rest of the terms in the equality
constraint, and this has a fixed value for each iteration.

2.4.2 Least Squares Optimisation (LS)

Consider a given dataset (x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn) where the input vector is xi and
yi ∈ {−1,+1} a binary label that corresponds to each x. The SVM satisfies the following conditions
as:

wTφ(xi) + b ≥ 1, for yi = 1

wTφ(xi) + b ≤ −1, for yi = −1 (2.24)

Rewriting Equation (2.24) into a single equation we have the following:

yi(w
Tφ(xi) + b) ≥ 1, i = 1, 2, . . . n (2.25)

where φ(xi) is the nonlinear function that maps the original input space into a higher dimensional
feature space. In instances where the hyperplane that separates the two data does not exists, a
slack variable ξi is introduced such that the optimization problem becomes:

minQ(w, ξi) =
1

2
wTw + c

n∑
i=1

ξi (2.26)

subject to:

yi(w
Tφ(xi) + b) ≥ 1− ξi, i = 1, 2, . . . n

ξi ≥ 0, i = 1, 2, . . . , n (2.27)

For the Least squares SVM classifiers, the minimization problem is reformulated as:

minQ(w, b, e) =
µ

2
wTw +

γ

2

n∑
i=1

e2i (2.28)
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which is subject to the inequality constraints

yi(w
Tφ(xi) + b) ≥ 1− ei, i = 1, 2, . . . n (2.29)

with ei = (yi − (wTφ(xi)+ b)) where both µ and γ are considered as hyper-parameters which tunes
the amount of regularization versus the sum of squared error.

2.5 Performance Evaluation of Proposed Features

The parameters used in measuring the performance of the system are the False Acceptance Rate
(FAR) and False Rejection Rate (FRR)[49]. The False Acceptance Rate (FAR) measures the
probability that the biometric security system will falsely accept an unauthorized person accessing
the system. This is usually referred to as the Type - II error. The lower its value, the better and
vise-versa. The False Rejection Rate (FRR) on the other hand measures the probability that the
biometric security system will falsely reject an authorized person accessing the system. Again, this
is also referred to as Type - I error similarly, the lower the FRR, the better and vise-versa.

3 Proposed Framework

This section presents the proposed framework for the verification of an offline signature. As shown
in Fig. 1., the GPDS image dataset is partitioned into two sets (training and test) with each set
pre-processed while geometric and textual are being extracted to for the train and test feature
vector respectively. The train feature vector is then trained to generate models which are evaluated
using the test feature vector with the best performing model that well explain the dataset selected.

Fig. 1. Proposed Framework
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4 Results

4.1 Dataset Selection

This study used the Grupo de Procesado Digital de Senales (GPDS) dataset to evaluate the proposed
framework [46]. This is to help make a valid conclusion since most published research in this field
make use of this dataset and hence serving as a standard for analysis. The dataset consists of
signatures from 4000 individuals, each having 24 genuine signatures and 30 forged signatures. Fig.
2. shows three genuine and three forged signatures from three distinct individuals.

(a) c-010-01.jpg (b) c-031-03.jpg (c) c-002-01.jpg

(d) cf-010-01.jpg (e) cf-031-18.jpg (f) cf-002-01.jpg

Fig. 2. Three sample images each of genuine and forged signatures

4.2 System Requirement

The proposed method was implemented on a system with the following features as a proof of
concept:

1. machine brand: Lenovo thinkpad x270

2. memory: 16GB

3. processor: intel i7, 2.4GHz

4. operating system: Ubuntu 16.04LTS

5. application: MATLAB 2016a

4.3 Experimental Result

In this article, the support vector machine (SVM) was used to train the extracted feature vectors.
Since SVM is parametric by definition, it is important that these parameters are fine tune optimally
to explain the given dataset. The key parameters here are the choice of the Kernel function and
the optimization scheme for the parameter fitting. In the case of the Kernel function, options such
as linear, quadratic, polynomial, radial basis function and multilayer perceptron were considered.
Each of these options also comes with some set of parameters which require fine tuning. After
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varying these local parameters and observing their influence on the overall performance Table 1
and Table 2 was obtain. Table 1 was obtained with the use of Sequential Minimal Optimisation
method while Table 2 was obtained using the Least Square methods. For a better appreciation

Table 1: FAR and FRR Values using SMO Method

Kernel Function FAR FRR

Linear 18.33 43.96

Quadratic 17.78 0.07

Polynomial 14.78 0

RBF 2.50 0.14

MLP 2.67 97.71

Table 2: FAR and FRR Values using Least Square Method

Kernel Function FAR FRR

Linear 5.82 89.92

Quadratic 11.44 45.44

Polynomial 7.49 0.69

RBF 2.29 0.75

MLP 0.71 97.78

of the feature engineering method proposed, we compare our method to other four current existing
methods using the same dataset and performance measure. Results from the comparison are shown
in Table 3.

Table 3: Experimental results obtained for GPDS dataset. A comparative analysis

Proposed by Feature FAR FRR

[50] GLCM 6.17 22.49

[15] Curvelet Transform 19.4 12.5

[51] Pattern Spectra 8.94 8.59

[52] Feature Learning 3.53 3.94

proposed approach GLCM + Region Properties 2.50 0.14

4.4 Discussion

Theoretically, it is expected that the performance metric (FAR and FRR) will be zero indicating
error intolerance of signature verification. However, in practice, this is usually not feasible due to
several factors. From the experimental results shown, one may think the polynomial function of
the SMO method will make a good model since it has a zero value for FRR. Unfortunately, this is
not the case as it has a higher value of FAR. This implies the need for a trade-off between FRR
and FAR. Using this concept, one may now settle on the RBF model for both methods (SMO and
LS) but the question of which method to hold-on to becomes necessary. Here, the error margin
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between the two methods is evaluated. This gives a value of 0.21 (2.50 - 2.29) for FAR comparison
and 0.61 (0.75 - 0.14) for FRR comparison. Clearly, 0.61 is relatively higher than 0.21. Hence the
best model that will explain the given dataset using our proposed method is the RFB with SMO
optimizer.

5 Conclusion

In conclusion, an improved geo-textural based feature extraction vector is proposed and trained with
Support Vector Machine. Methods such as Sequential Minimal Optimisation and Least Square was
used with five learning models (Linear, Quadratic, Polynomial, Radial Basis Function and Multilayer
Perceptron). The results show that SVM with the RBF model and SMO method performs well on
the data sample with a FAR value of 2.50 and FRR value of 0.14. Besides the proposed method
also outperform the existing methods quite significantly make it a choice to be considered in real
time implementation.
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