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Abstract: Gravitational search algorithm (GSA) is a newly developed and promising algorithm based on the law of gravity and
interaction between masses. This paper proposes an improved gravitational search algorithm (IGSA) to improve the performance of
the GSA, and first applies it to the field of dynamic neural network identification. The IGSA uses trial-and-error method to update the
optimal agent during the whole search process. And in the late period of the search, it changes the orbit of the poor agent and searches
the optimal agent′s position further using the coordinate descent method. For the experimental verification of the proposed algorithm,
both GSA and IGSA are testified on a suite of four well-known benchmark functions and their complexities are compared. It is shown
that IGSA has much better efficiency, optimization precision, convergence rate and robustness than GSA. Thereafter, the IGSA is
applied to the nonlinear autoregressive exogenous (NARX) recurrent neural network identification for a magnetic levitation system.
Compared with the system identification based on gravitational search algorithm neural network (GSANN) and other conventional
methods like BPNN and GANN, the proposed algorithm shows the best performance.
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1 Introduction

Gravitational search algorithm (GSA) is a novel meta-
heuristic stochastic optimization algorithm inspired by the
law of gravity and mass interactions[1]. Experiments have
proved that GSA demonstrates a strong optimizing abil-
ity compared with real genetic algorithm (RGA), particle
swarm optimization (PSO) and central force optimization
(CFO). So far this algorithm has been swiftly and widely
applied to filter modeling[2], forecasting future oil demand
in Iran[3], pipeline scheduling[4], slope stability analysis[5],
dispatch problems[6, 7] and many other research fields.

Nonlinear system identification based on dynamic neural
network is always the difficulty and hotspot in the control
theory research. The essence of system identification based
on neural network is to choose the proper neural network
parameters so as to approximate the actual system. Most of
the network design efforts have been on algorithm selection
for minimal iterations and better convergence in computa-
tion. Yang and Lee[8] applied the back-propagation (BP)
algorithm to three neural networks for system identification.
Genetic algorithm (GA) has been applied to feedforward[9]

and radial basis function neural networks[10]. Integration
of GA with conjugate gradient, fuzzy logic and Newton-
Raphson method has also been proposed[11, 12]. But obtain-
ing better convergence and avoiding trapping into the local
minimum in the process of identifying non-linear system
based on neural network has always been an open prob-
lem. As an effective global optimization algorithm, GSA
has great potential to be used for training a neural net-
work. Nevertheless, its application research in this aspect
is still rare now.

The course of training neural network weights is also to
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seek the minimum of a high-dimension multimodal func-
tion. In terms of the high-dimension multimodal function,
it is important to carry out the precise local search in the
late period of optimization for enhancing the optimization
precision[13]. However, GSA is not able to efficiently realize
this for lacking an effective local search mechanism. There-
fore, the performance of GSA still needs to be improved fur-
ther and thus an improved gravitational search algorithm
(IGSA) is proposed. In IGSA, trial-and-error method is
adopted to update the optimal agent in the whole search
process in order to facilitate the global exploration. And
at the final stage of iterations, IGSA changes the orbit of
the poor agents and searches the optimal agent′s position
further using the coordinate descent method to improve
the quality of the solution. Numerical simulation results
of optimization of four famous benchmark functions and
a neural network identification problem demonstrate that
the proposed strategies can significantly improve the GSA′s
convergence performance.

The rest of the paper is organized as follows. A brief
review of GSA and the proposed IGSA algorithm are pre-
sented in Section 2. In Section 3, the test of the proposed
IGSA through four benchmark functions is carried out and
simulation results are compared with those obtained via
GSA. The simulation results and analysis on neural net-
work identification are presented in Section 4. Finally, the
conclusion is presented in Section 5.

2 Improved algorithm of GSA

2.1 GSA

GSA is a heuristic optimization algorithm based on the
law of gravity among objects. In GSA, the search agents
are a collection of masses, and their interactions are based
on the Newtonian laws of gravity and motion. The gravity
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force is an acting force drawing objects closely. In the pre-
liminary stage of the universe formation, various objects
were disorderly distributed all around the universe. Due to
the existence of the universal gravitation, the objects with
higher gravitation gathered together and then evolved into
the galaxy.

In GSA, each agent has four variables: position, inertial
mass, active gravitational mass and passive gravitational
mass. Now consider a system with N agents in the search
scope. We define the position of the i-th agent (agent i) by
Xi = (x1

i , · · · , xd
i , · · · , xN

i ), i = 1, 2, · · · , N , where xd
i is the

d-th dimension value of agent i.
At time t, the force applied on agent i by agent j is

F d
ij(t) = G(t)

Mpi(t) × Maj(t)

Rij(t) + ε

(
xd

j (t) − xd
i (t)

)
(1)

where Mpi(t) is the passive gravitational mass related to
agent i, Maj(t) is the active gravitational mass related to
agent j, ε is a small constant, Rij(t) is Euclidean distance
between agent i and agent j, G(t) is gravitational coeffi-
cient and is decreased over time so as to control the search
accuracy.

Rij(t) = ||Xi(t), Xj(t)||2 (2)

G(t) = G0e
−τ t

tmax . (3)

The resultant force acting on agent i in the d -th dimen-
sion is

F d
i (t) =

∑
j∈Kbest

randjF
d
ij(t). (4)

According to Newton second law, the acceleration of
agent i at time t in direction of the d -th dimension is

ad
i (t) =

F d
i (t)

Mii(t)
(5)

where Mii(t) is the inertial mass of agent i. Mii(t) =
Mpi(t) = Mai(t) = Mi, i = 1, 2, · · · , N . The gravitational
and inertia masses are updated by the following equations.

mi(t) =
fiti(t) − worst(t)

best(t) − worst(t)
(6)

Mi(t) =
mi(t)

N∑
j=1

mj(t)

. (7)

After the acceleration is calculated, the speed and posi-
tion of agent can be updated as

vd
i (t + 1) = randi vd

i (t) + ad
i (t) (8)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (9)

where randi is a uniform random variable between 0 and 1.
For the minimum problem, there are

best(t) = min
j∈{1,··· ,N}

fitj(t) (10)

worst(t) = max
j∈{1,··· ,N}

fitj(t). (11)

For the maximum problem, there are

best(t) = max
j∈{1,··· ,N}

fitj(t) (12)

worst(t) = min
j∈{1,··· ,N}

fitj(t). (13)

2.2 Main improved strategies of IGSA

1) Orbital change of poor agents′ positions.
During GSA searching process, all agents gradually con-

verge to a small local zone, which results in a low search-
ing efficiency in the late period, so an effective mechanism
should be established to help poor agents jump out of the
local minimum. Influenced by the gravitational attraction,
artificial satellites and space ships (including space station)
fall at a speed of 100 m/d, which will hamper their normal
operation. So during the flying, orbital change is always re-
quired. Based on the concept mentioned above, the paper
performs an orbital change operation upon the poor agents
(in the paper, the worst 10 agents are chosen according to
the fitness) in the late search period of the algorithm in
order to prevent them from falling into the local minimum
and improve the algorithm performance.

Using (14), orbital change operation is able to enlarge or
contract the positions of poor agents at a certain probability
(named jump rate). The positions change adaptively along
with its original value, and is called orbital change radius.
That is, if agents′ positions converge to a smaller value,
the orbital change radius will be smaller, on the contrary,
if agents′ positions converge to a bigger value, the orbital
change radius will be bigger, too. The orbital change op-
eration is good for jumping out of the local minimum and
improving the convergence speed, and yet not making a big
disturbance upon the global.

xmi = xi + rands xi, i = 1, 2, · · · , N (14)

where rands is a random number between −1 and 1.
2) Further search of optimal agent position.
The GSA algorithm generally converges quickly in the

early 70% iterations, and then the convergence speed be-
comes slow. In order to further intensify the optimal search-
ing ability of the algorithm in the late period, the optimal
agent is further optimized by coordinate descent method[14]

and it transforms the multi-variable optimization problem
into some single-variable sub-problems. It helps optimize
further the position of the optimal agent, establish an effec-
tive local search mechanism and thus improve the algorithm
performance further. The detailed steps for coordinate de-
scent method are as follows.

Step 1. The variable that needs further optimization is
the optimal agent′s position xbest. Define the initial unit
orthogonal search direction, generally the coordinate axis
direction, as the candidate, i.e., d1, · · · , ddim; the range of
the variable xbest is [low, up]dim, where dim is the dimension
of xbest.

Step 2. Solving sub-problem

For (j = 1, j � dim, j + +) (15)
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min : f(xbest,j + λjdj) (16)

where λj is the coordinate parameter in the direction of the
j -th coordinate and is required to meet the feasible condi-
tion:

low − xbest,j � λj � up − xbest,j . (17)

Step 3. By precise linear search, we can obtain the op-
timal solution and update the position of optimal agent by

xbest = xbest + λjdj . (18)

3) Update optimal agent using trial-and-error method.
In GSA, all current agents change at each step; if the op-

timal agent′s fitness becomes bad, the next search will begin
from a worse position. The optimal position of those his-
torical search steps, Lbest, and its fitness Fbest, only play a
role for comparison, rather than participate into each step
of iterative search. In order to utilize the information of
Lbest, the optimal agent is updated using the trial-and-error
method, i.e., after each iteration, the search will continue
to the next step if the fitness of the optimal agent turns
better. Otherwise, the position of optimal agent′s position
and fitness will be replaced by Lbest and Fbest.

2.3 Steps of IGSA algorithm

The steps of IGSA algorithm are as follows:
Step 1. Initialization of parameters.
Step 2. Fitness evaluation of agents.
Step 3. Update gravitational coefficient G(t), best value

best(t) and worst value worst(t).
Step 4. Update the optimal fitness Fbest(t) in the his-

tory record group and its corresponding position Lbest(t),
and the trial-and-error method is adopted for the updating
of optimal agent.

Step 5. Calculate the inertial mass, resultant force, ac-
celeration and velocity of agents.

Step 6. Update the position of agents.
Step 7. If it has run 70% of the maximum iterative

steps, the orbital change operation should be carried out

for those agents whose fitness values are bad.
Step 8. If it has run 70% of the maximum iterative steps,

the coordinate descent method should be carried out for the
optimal agent.

Step 9. Repeat Steps 2 to 8 until the stop criteria is
reached.

3 Test and analysis for algorithm per-
formance

3.1 Benchmark functions

In order to verify the improvement of IGSA algorithm
for multimodal function optimization, four classic bench-
mark functions[1, 15] are chosen for comparison test shown
in Table 1, where F1 and F2 are the famous Rastrigin and
Griewank functions, respectively, and their dimensions are
both 30 (n=30).

3.2 Optimization results and analysis

The parameter setting for IGSA is as follows: The agent
scale N is 30, maximum number of iterations max it is 500,
and the orbital change probability (jump rate) Jr is 0.5.
In order to decrease the influence of random factors used in
the algorithm, fifty independent experiments are carried out
for each function minimum optimization simulation and the
average evolution curves for the fifty experiments are shown
in Fig. 1.

The evaluation indexes of an algorithm′s performance in-
clude the optimization precision, convergence speed and ro-
bustness. The robustness is evaluated by computing the ra-
tio of the test times that the algorithm reaches the regulated
threshold value to the total test times[16], i.e., the success
rate in Table 2. The thresholds of F1, F2, F3, and F4 are set
respectively as e−5, e−5, 0.999 and 10.1531. From Table 2,
we can clearly find that each index of IGSA is better than
that of GSA, and its optimization precision is improved by
over 60% compared with GSA, and the robustness is also
increased by 100%.

Table 1 Test functions

Test function Scale fopt Xopt

F1(X) =
∑n

i=1 [x2
i − 10 cos(2πxi) + 10] [5.12, 5.12]n 0 [0, · · · , 0]

F2(X) = 1
4000

n∑
i=1

x2
i − Πn

i=1 cos(
xi√

i
) + 1 [−600, 600]n 0 [0, · · · , 0]

F3(X) = ( 1
500 +

25∑
j=1

1

j+
2∑

i=1
(xi−aij)6

)−1 [−65.53, 65.53]2 0.9980 [−32, 32]

where (aij) =

⎡
⎢⎢⎣

−32, −16, 0, 16, 32, 32, · · · , 0, 16, 32

−32,−32,−32, −32,−16, · · · , 32, 32, 32

⎤
⎥⎥⎦

F4(X) = −
5∑

i=1
[(X − ai)(X − ai)

T + ci]
−1

[0, 10]4 −10.1532 [4, 4, 4, 4]

where if i=1, ai=[4,4,4,4], ci=0.1;

if i=2, ai=[1,1,1,1], ci=0.2;

if i=3, ai=[8,8,8,8], ci =0.2;

if i=4, ai =[6,6,6,6], ci =0.4;

if i=5, ai =[3,7,3,7], ci=0.4.
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Fig. 1 Optimization evolution curves of test functions based on GSA and IGSA

From Fig. 1, we can find that the convergence speed of
IGSA is similar to GSA in the preliminary stage of evolu-
tion. In the middle stage of evolution, both GSA and IGSA
show a tendency to premature convergence and the evolu-
tion speed declines, but since IGSA has utilized the infor-
mation of those historical search steps, the evolution space
is exploited further in F3 and F4, and the IGSA begins to
exhibit a certain advantage. In the later stage of evolution,
the difference between these two algorithms′ performance
becomes distinctive: The gravitational constant decreases
with the increase of iteration, and the evolution is very
difficult to be optimized further using GSA. However, based
on the orbital change for the poor agents and the further
search for the optimal agent, the convergence speed of IGSA
is accelerated greatly and thus IGSA presents the “two-

section” evolution characteristic. The IGSA helps solve the
premature convergence problem of GSA and enhances the
exploitation capability.

Khajehzadeh et al.[5] proposed the MGSA (modified
GSA) algorithm, which adopts the self-adaptation maxi-
mum speed restriction strategy to control the global ex-
ploration ability of the GSA algorithm. However, the re-
striction parameter of the MGSA algorithm is not easy to
regulate. The function F4 in the reference paper and the
function F1 in this paper are both Rastrigin functions, and
optimization result in the reference paper is 0.796 on aver-
age, the worst value is 2.985 and the best value is 0. Com-
pared with the experimental result in Table 2, the IGSA
algorithm proposed in the paper shows better optimization
precision and performance.

Table 2 Optimization precision and robustness comparison of GSA and IGSA

Function Method Average Best Worst Success rate (%)

F1
GSA 29.0528 12.9345 47.7580 0

IGSA 2.2768×10−9 5.6843×10−13 9.3698×10−8 100

F2
GSA 8.4050 2.6617 24.0624 0

IGSA 4.4409×10−18 0 2.2204×10−16 100

F3
GSA 3.6446 0.9980 12.9875 4

IGSA 1.1964 0.9980 3.9683 88

F4
GSA −5.9981 −10.1532 −2.6829 38

IGSA −9.6461 −10.1532 2.2204×10−16 90
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3.3 Analysis of complexity

In the practical application of GSA, the calculation
burden is mainly concentrated on the calculation of
fitness function value, whose calculation complexity is
O(N × max it). However, in the IGSA, further search for
the optimal agent also adds computation burden to the ex-
ternal circulation complexity, so the complexity of IGSA
turns into O(N × max it) + O(dim × max it × 0.3). But
with the improvement of the optimization performance, the
scale of agents or iteration steps become lower, so the com-
putation burden of IGSA should still be decreased and less
than GSA.

CPU operation time is an important index to reflect the
algorithm complexity. In [1], the group scale N for all test
functions is 50, the maximum number of iterations max it
for F1 and F2 is 1000, and max it for F3 and F4 is 500;
while in IGSA, N and max it are set to be 30 and 500 for
all functions, respectively. Other parameters are the same.
Through the simulation for these four functions by using the
GSA parameters in [1] and the IGSA parameters described
above, the CPU operation time for the two algorithms can
be obtained (see Table 3). According to the comparison, we
can easily find that IGSA algorithm uses fewer group scales
and iterations, its CPU operation time is less and the result
is better than those in [1].

Table 3 Comparison of CPU operation time

F1(s) F2(s) F3(s) F4(s)

GSA 9.3 9.5 5.0 2.7

IGSA 6.3 5.8 4.1 1.9

4 Neural network identification based
on IGSA

4.1 Neural network design

The common neural network types for nonlinear dynamic
system identification mainly include nonlinear autoregres-
sive models with exogenous inputs (NARX) regressive neu-
ral network[17], proportional-integral-derivative (PID) neu-
ral network, complete feedback neural network and local
feedback neural network. The NARX regressive neural net-
work is also called the time delay neural network or the non-
linear auto-regressive filter, which comprises the time delay
units plus multi-layer feedforward network. It is generally
used for identifying dynamic system that can be described
by the nonlinear auto-regressive moving average (ARMA)
model. It has clear and simple structure and is easy to be
analyzed.

The neural network structure for dynamic system iden-
tification is presented in Fig. 2. The expression of NARX
model is shown in (19). The current output y(k) only has
relation to the current input and the previous input and
output.

y(k) =f(y(k − 1), · · · ,

y(k − n), u(k), u(k − 1), · · · , u(k − m)). (19)

Fig. 2 NARX regressive neural network structure for dynamic

system identification

Neural network training is an optimization problem of
high-dimension multimodal function, which is to optimize
the weights and biases by the learning algorithm and min-
imize an objective function of errors between the real and
estimated values[18]. In the paper, the root mean square
error function (RMES) is chosen as the objective function
described in (20). It is also the fitness function of the IGSA
algorithm.

min : J =

√√√√ N∑
i=1

(y(i)−yn(i))2

N
(20)

where y(i) is the i-th real value of the sample, and yn(i) is
the i-th network output value of the sample.

NARX regressive neural network structure is n-m-h,
where n, m, h denotes the unit numbers of input layer, hid-
den layer and output layer, respectively. In order to make
the variable connection between IGSA and neural network
convenient, the bias information is included in the weight
value, i.e., increase one dimension upon the input dimen-
sion number, and the constant input of this dimension is
−1, and then the bias will be included in the connection
weight w1 between the input layer and hidden layer, so w1
turns into (n+1)×m dimensions. For the same reason, in-
crease one more hidden unit, and the unit value is constant
1, independent of the input layer. Then incorporate the hid-
den unit into the connection weight w2 between the hidden
layer and output layer, so w2 will turn into h × (m + 1)
dimensions.

By the encoder and decoder, information is transmitted
between IGSA and the neural network, and the process of
encoding and decoding is similar to those of chromosome in
GA. As there are too many parameters in the neural net-
work, the data will become too long if binary encoding is
adopted, and it will also result in the decrease of calcula-
tion speed and precision. So the decimal encoding scheme
is adopted.

4.2 Neural network design

In order to verify the effectiveness of the proposed algo-
rithm for identification of a real process device, a magnetic
levitation system is chosen as the identification object. The
structure of the system is shown in Fig. 3. The equation of
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motion for this system is

d2y(t)

dt2
= −g +

α

M

i2(t)

y(t)
− β

M

dy(t)

dt
(21)

where y(t) is the distance of the magnet above the electro-
magnet, i(t) is the current flowing in the electromagnet, M
is the mass of the magnet, and g is the acceleration of grav-
ity. The parameter β is a viscous friction coefficient that
is determined by the material in which the magnet moves,
and α is a field strength constant that is determined by
the number of turns of wire on the electromagnet and the
strength of the magnet. The system is a typical non-linear
dynamic system, which is appropriate for modeling based
on the NARX regressive neural network.

Fig. 3 NARX regressive neural network structure for dynamic

system identification

In Fig. 4, samples collected for training the NARX regres-
sive neural network are normalized into [−1, 1], where the
dotted line indicates the normalized voltage applied upon
the electro magnet and the real line indicates the normal-
ized position that the permanent magnet suspends above
the electro magnet. The sampling period for the system is
0.3 s, and 130 groups of data are sampled. The former 100
groups are used for training the network, and the latter 30
groups are used for checking the generalization ability of
the network.

Fig. 4 NARX regressive neural network structure for dynamic

system identification

The experimental parameters are set as follows.
1) NARX regressive neural network parameters: Network

structure is 5-10-1, network input variable and output vari-
able are voltage and position shown in Fig. 4, respectively;
the time delay parameters are both 2.

2) IGSA algorithm parameters: The maximum number
of iterations max it is 200; group scale N is 50; dimension
number dim is 71; search scope is [−4, 6]dim; Jr is 0.5. This
parameter setting is also used for the GSA algorithm.

3) BP algorithm parameters: Learning factor is 0.1; ini-
tial values of weights and biases are random numbers be-
tween 0 and 1; the maximum number of iterations is 1500.

4) GA algorithm parameters: The group number and
maximum number of iterations are the same as IGSA; and
the selection, crossover and mutation functions are subject
to the roulette, scattered and uniform types, respectively;
and probabilities of crossover and mutation are 0.8 and 0.1,
respectively.

GSA, IGSA, BP and GA algorithms are used for train-
ing the NARX neural network, respectively, to fit with the
real magnetic levitation system; and different convergence
curves of each algorithm are shown in Fig. 5. The train-
ing errors and generalization errors for the four algorithms
above are summarized in Table 4. From Fig. 5 and Table
4, we can find that the training effect for GA model is the
worst. In the preliminary stage, BP model shows the fastest
convergence speed, but it is liable to fall into the local opti-
mization. Although its average training error is better than
the GSA model, its generalization ability is a little weaker.
Benefiting from the trial-and-error method for the optimal
agent in the preliminary stage, the convergence curves of
IGSA model are located under GSA. Benefiting from the
further search optimization for the optimal agent and the
orbital change operation of poor agents in the later stage,
the optimization precision of IGSA model is raised quickly.
As a whole, the performance of IGSA model is obviously
better than GSA model, and it has the best performance
among these four algorithms. The IGSA algorithm is very
effective on the neural network identification for non-linear
dynamic system.

Fig. 5 Convergence curves of NARX regressive neural network

based on GSA, IGSA, BP and GA
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Table 4 Performance comparison for four algorithms

Name of neural
Type

Training Generalization

network error error

GSANN
Best 0.0578 0.0527

Average 0.1083 0.0835

IGSANN
Best 0.0350 0.0418

Average 0.0432 0.0735

BPNN
Best 0.0718 0.0838

Average 0.0937 0.1084

GANN
Best 0.1061 0.1261

Average 0.1806 0.1890

5 Conclusions

In this paper, an improved gravitational search algorithm
(IGSA) is proposed and applied to the identification of dy-
namic neural network system. IGSA improves the original
algorithm in three main aspects. First, inspired by the orbit
change of satellites, we introduce an orbit change for poor
agents to help them jump out of local minimum. Second,
the coordinate descent method is introduced and applied
to the optimal position search to establish an effective local
search mechanism. Third, a trial-and-error method is used
to update the optimal agent. The IGSA is easy to imple-
ment and can effectively reduce the iterative time. Com-
pared with GSA on optimizing four well-known benchmark
functions, our improved algorithm has been testified to pos-
sess excellent performance in terms of accuracy, convergence
rate, stability and robustness. The IGSA together with BP,
GA and GSA are applied to the neural network identifica-
tion of a magnetic levitation dynamic system. Simulation
results show that the IGSA algorithm has the lowest train-
ing error and generation error, which proves that it opens
a new effective source for solving the non-linear dynamic
system identification problems based on neural network.
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