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ABSTRACT

Doppler tracking data of three orbiting spacecraft have been reanalyzed to develop a new gravitational

field model for the planet Mars, GMM-1 (.Qoddard Mars Model-I). This model employs nearly all available data,

consisting of approximately 1100 days of S-band tracking data collected by NASA's Deep Space Network fi'om

the Mariner 9, and V'ddng 1 and V'tking 2 spaceo'aft, in seven different orbits, between 1971 and 1979. GMM-I

is complete to spherical harmonic degree and ¢xder 50, which correspcmds to a half wavelength spatial resolution

of 200-300 km where the dam permiL GMM-I represents satellite orbits with considerably better acem'acy than

previous Ma_ gravity models and shows greater resolution of identif'mble geological s_. The notable

improvement in GMM-I over previous models is a consequence of several factor: improved computational

capabilities, the use of optimum weighting and least squares collocation solution techniques which stabilized the

behavior of the solution at high degree and order, and the use of longer sateIHte arcs than employed in previous

solutions that were made possible by improved force and measurement models. The inclusion of X-band tracking

data from the 379-km altitude, ncar-poisr orbiting Mars Observer spacea-aft shoed provide a significant

improvement over GMM-1, particularly at high latitudes where current data poorly resolves the gravitational

signature of the planet.
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1. INTRODUCTION

Knowledge of the gravitational field, in combination with surface topography, provides one of the

principal means of inferring the internal su'ucture of a planetary body. By removing the gravitational signal of

the topography, the distribution of internal density anomalies associated with thermal or compositional

differences can be estimated. Gravity can also be used to unde_tand the mechanisms of compensation of surface

topography, providing information on the mechanical properties and state of stress of the lithosphere.

The earliest global gravitational field models of Mars were derived from Doppler tracking data of the

Mariner 9 spacecraft [Lorell et aL, 1972; 1973; Born, 1974; Jordan and LoreU, 1975; Reasen/_rg et aL, 1975;

Sjogren et aL, 1975]. These models provided estimates of low degree spherical harmonic gravity coefficients that

yielded information on the oblateness and rotation vector orientation of Mars. Later models that incorporated data

fix_mMariner 9 and the Viking 1 and 2 orbiters [Gapcynski et al., 1977;/_easenber8, 1977; Christensen and

Balmino, 1979; Christensen and William_ 1979] resolved higher degree gravity coefficients, showing the higher

power in the Martian gravity field compared to Earth's, and the strong correlation of long wavelength gravity

with topography. The subsequent inclusion of additional Doppler data by Balmino et aL [1982] resulted in what

was then the highest resolution Martian gravitational model to date: an 18* degree and order field with half

wavelength resolution of aplm)ximately 600 km. That field, which is characterized by a spatial resolution

comparable to what was then the highest resolution (16x16) topographic model [Bills and Ferrari, 1978], was

utilized in analyses of the state of stress of the Martian lithosphere and the isostatic compensation of surface

topography [Sleep and Phillips, 1979, 1985; Banerdt et aL, 1982, 1992; W///emann and Turcotte, 1982; Falx_to

et al., 1992]. However, the resolution and quality of the current gravity and topographic fields (particulary the

latter) are such that the origin and evolution of even the most provident physiographic features on Mars, namely

the hemispheric dichotomy and Thatsls rise, are not well understood.

The resolution of the Balmlno et aL [1982] gravity field was limited not by data density, but rather by

the computational resom'ces available at the time. Because this restriction is no longer a limitation, we have re-

analyzed the Viking and Mariner data sets and have derived a new gravitational field, designated GMM-I

(_GoddardMars Model-l). The objectives of this study were: (1) to develop the best poss_le a pr/or/

gravitational field model for orbit determination of the Mars Observer spacecr_ in support of the Radio Science

and Mats Observer Laser Altimeter investigations, (2) to validate analysis techniques to be implemented in Mars

Observer gravity modeling studies, and (3) to improve scientific interpretations of geophysical and geological

data collected in previous missions to Mars.

GMM-1 is complete to spherical harmonic degree and order 50. The corresponding half wavelength

resolution, which occurs where the coefficients attain 100% error, is 200-300 km where the data permit. In

contrast to previous models, GMM-i was solved to as high degree and order as necessa W to nearly exhaust the

attenuated gravitational signal contained in the tracking data. This was possible mainly due to the use of



optimumweightingandleastsquarescollocationsolutiontechniques[/_rchet a/., 1979], which stabilized the

behavior of the solution at high degree and order where con'elation and data sensitivities become problematic. As

discussed later, the extension of the model to high degree and order significantly reduced errors resulting from

spectral leakage coming from the omitted portion of the gravitational field beyond the limits of the recovered

model. GMM-1 has a higher spatial resolution titan preliminary versions of this model [Smith _ al., 1990a;

Zuber et at. 1991], and in addition is fully cafibrated to give a realistic error estimate from the solution

o_variance.

In the following sections we discuss the development of GMM-I and make a detailed comparison of the

field with the previous model of Ba/mino et at [1982]. We also include an error analysis and a discussion of the

impfications of GMM-1 for Martian geophysies and for navigation and precision orbit determination in support

of the upcoming Mars Observer Mission.

1.1 General Approach of Gravitational Field Recovery

Figme 1 shows a flow chart of the procedure used in the recovery of the gravitational field model. The

data were processed using the GEODYN/SOLVE orbit determination/estimation programs [Putney, 1977]. These

programs have previously been used in the derivation of a series of Goddard _Earthgravitational Models, GEM,

[e.g. Lerch et al., 1979; Marsh et at, 1988; 1990], and have been adapted for the analysis of planetary tracking

data [Smith et at, 1990b; Nerem eta/., 1993]. GEODYN provides orbit determination and geodetic parameter

estimation capabilities, and numerically integrates the spacecraft Cartesian state and the force model partial

derivatives employing a high-order Cowell predictor-corrector method. The force modeling includes a spherical

harmonic representation of the gravity field, as well as a point mass representation for the Sun, Earth, Moon, and

the other planets. Atmospheric drag, solar radiation pressure, measurement and timing biases, and tracking station

coordinates can also he estimated. The least squares normal equations formed within GEODYN may be output to

a file for inclusion in er_r analyses and parameter estimations. The SOLVE program then selectively combines

the normal equations formed by GEODYN to generate solutions for the gravity field and other model parameters.

The resulting gravitational model may be input back into GEODYN for residual analyses.

1.2 Representation of The Gravitational Potential

The gravitational potential at spacecraft altitude, V_ is represented in spherical harmonic form as

= -'7- ÷ -7- ,., .4 /_.(sin_)) [CL cosm_. + S-_sinm_.] (I.I)
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wherer is the radial distance from the center of mass of Mats to the spacecraft, ¢ and k are the areocenlric

latitude and longitude of the spacecraft, ru is the mean radius of the reference ellipsoid of Mats, GM is the

product of the universal consttut of gravitation and the mass of Mats, P,. are the normalized associated

Legendre functioes of degree I and order m, _._ and _, are the normalized spherical harmonic coefficients

which were estimated from the tracking observations to determine the gravitational model, and N is the

maximum degree representing the size (or resolution) of the field. The gravitational force due to Mats which acts

on the spacecraft conesponds to the gradient of the potential, Vw

2. REFERENCE SYSTEMS FOR DSN TRACKING OF MAltS SPACECRAFT

Spacecraft orbiting Mars are tracked from Earth through the NASA DSN (Deep Space Network)

tracking stations at Goldstone (California), Canberra (Australia) and Madrid (Spain). The adopted planetary

ephemeris for Earth, Mars, and the other planets was the JPL DE-96 system [$tand/sh et al, 1976].

The inertial coordinate systemfor the Earth is def'med by the direction of the Earth's rotation axis and

the location of the vernal equinox. The orientation of the Mars rotation axis is specified by the right ascension

and declination of the Martian pole, as given in Dav/es et aL [1986; 1992]. The z-axis of the Mars inertial

co_xi_te system is the instantaneous Mars rotation axis. The direction of the x-axls (the IAU vector) is defined

to be the intersection of the instantaneous Mars equator with the mean Earth equator of the appropriate

ephemeris epoch. For this analy_s, 1950.0 was chosen as the epoch, and thus the IAU vector was defined with

reference to the Earth Mean Equator and Equinox of 1950.0 (EME50). The prime meridian of Mars is defined in

Davies et aL [1989]. At the beginning of this analysis, tests were performed using a reference date and planetary

ephemeris of 2000.0 but results showed that the 1971 Mariner 9 data and 1976-78 Viking data were better

satisfied with a reference date of 1950.0.

Various reference system constants that were used are given in Table 1.

3. DATA SUMMARY AND ORBITAL SENSITIVITY OF GRAVITY

3.1 Satellite Orbital Characteristics

The Mariner 9 (M9), Viking Orbiter 1 (VO1) and V'fldng Orbiter 2 (VO2) spacecraft were in highly

eccentric orbits with periods of approximately one day for V'ddng I and 2 and one-half day for Mariner 9. The

satellite orbit characteristics are summarized in Table 2. The orbital periods are nearly commensurate with the

rotational period of Mars (24.623 hr) which produce dominant resonant pemLrbafions [Kau/a, 1966] for all orders

m of the Viking spacecraft (24 hour period) and for the even orders of M9 (12 hour period). The resonant

periods range mostly from about I to 50 days for shallow resonant terms and also include deep (very long)



resonant periods. The beat period, or fundamen_ resonant period, idenLkqes the shift (or "wal_) in successive

ground tracks and is useful in mapping the orbital coverage over Mars (a plus sign represents an eastward "walk*

and a negative sign for a westward "walk"). The beat period changes after each maneuver of the V'ddng 1 and 2

spacexrafl [$nyder, 1979]. For example, an orbit maneuver by VO2 on March 2, 1977 produced a very slow

walk to synchronize with the V'tking Lander (VL2). Subseqnenfly on April 18, 1977, another maneuver resulted

in a walk around the planet in 13 revolutions, producing a beat period of 12 days. Strong resonant perturbations

of long period were produced on VOI commencing on Dec. 2, 1978 to provide a slow walk around the planet.

Mission events such as leakages, attitude control jetting, and other phenomena that cause variations in the orbital

periods are described by Snyder [1977; 1979].

The 300-kin perisl_sis altitude orbits of VOI and VO2 provide the suongest conm'budon of data Io the

solution for the higher degree terms, particularly the VO1 low orbit with a range of 180" for the argument of

penapsis (co) as compared to 25 ° for the VO2 low orbit. The observing period for the VOI low orbit shown in

Table 2 covers almost 2 years from 77-03-12 to 79-01-27, and the periapsis point varies in latitude from +39 ° to

-39 ° during this _od. The VO1 low orbit provides about a 9° ground track "walk" per revolution for the I 1/2

year period from 77-07-01 to 78-12-02. _ corresponds to a "near repeat _ of the ground track for a 39-day

period. After the-39 day near repeat period the orbital ground track shifts by 1.8 ° from the previous repeat track

which corresponds to a deep orbital resonance with a period of about 200 days. This produces, over a 200-day

coverage, a global grid ( 39 e latitude) with approximately 1.8 ° ground track separations and provides for a high

resolution recovery of the gravity field.

3.2 S-band Doppler Tracking Data Used in the Solution

3.2.1 Data Summary

The data set consisted of 265 orbital arcs relxesenting over 1100 days of S-band Doppler tracking data

from the Mariner 9 and Viking 1 and 2 spacecraft, collected by the Deep Space Network between 1971-1978.

These data, grouped by satellite perispsis altitude and inclination, are summarized in Table 3. In total over

230000 total observations were included in the GMM-1 solution.

3.2.2 Data Characteristics

The data consist of two-way S-band (2=2 GI-Iz) Doppler measurements comtaessed to 60 seconds (1

minute data points). Data far removed from periapsis (approximately greater than 12,000 km altitude) were

compressed over 10 minute intervals.

All observations were collected by three DSN sites located at Goidstone, Madrid, and Canberra. They

were processed in the differenced-range Doppler formulation taking into account relativistic bending due to the
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Sun [Moyer, 1971]. Observations near satellite pefiapsis are most valuable for determining the gravity field and

peflapeis is generally observable by at least one of the DSN sites except when occulted by Mars. The data

distribution and coverage per satellite orbit is discussed in Section 3.4.

The signal is significantly degraded in precision during solar conjunction due to the solar plasma effects

when its path comes within 5 ° of the Sun fi-om Mats. This occurred for a period of about 1 months beginning

November 7, 1976 for seven Viking 1 and 2 arcs. The data were downweighted in the solution for this period.

3.3 Spectral Sensitivity of Gravity Signal

The spectral sensitivity of the gravity field is analyzed for the Mariner 9, VOI and VO2 orbits.

Sensitivity for the high degree terms (>30) is the main area of interest and these are compared with a threshold

level cotrespunding to the precision of the DSN signal. The signal when compt_.ssed to 1 minute data points has

a precision of 1 mm s"t and approximately 0.3 mm s"1for 10 minute data points. A sensitivity study for the

above Mats orbiters has been made by Rosborou&h and Lemoine [1991] and Lemoine [1992] for terms through

degree 20. Analysis for the high degree terms is ¢fmeteksed in detail in Lerch et al. [1993]. A brief summary is

given here.

The orbit perturbations were studied using linear perturbation theozy, and through numerical intergrafion

by GEODYN. The gravity signal for sensitivity analysis employed a form of Kaula's rule, 13xl0"S//2, for terms

of degree 1, which was obtrained by Balmino et al. [1982] for the power spectrum of Mars. The velocity

pemLrbations were compared with the noise of the DSN Doppler data. Both the analytical and numerical studies

confLrm the importance of the resonance perturbations in determining the satellite sensitivity to the Mats gravity

field.

The resonances on the Viking spacecraft fall into three classes: (1) resonances at the low orders

(characterized by periods of up to 40 days), (2) long period resonances (periods greater than 50 days) at specific

higher ordem, and (3) intermediate resonances at the other orders. The long period resonances result from a near

repeat of the ground trace after an integer number of spacecraft revolutions. Thus, referring to Table 2, the

Viking 1 orbit from July 1, 1977 through December 2, 1978, the near repeat of the ground trace (to within 1.8")

after 38 revolutions produces a perturbation at order 38 with a period of about 200 days.

The analytical velocity spectrum by degree is presented in Table 4 for both M9 and the 300-kin, 800-

]an, and 1500-km VO1 and VO2 orbits. The analytical velocity spectnan is obtained by computing the Kepler

element perturbations using Kau/a's [1966] theory, and then mapping these to velocity space. Since we are

interested in the satellite sensitivity to the gravity field over the periods of the arc lengths of data used in the

GMM-I soluticah perturbations with periods greater than 40 days were excluded. In addition, those perturbations

with periods between eight and 40 days have been prorated to eight days by the factor 8/period. The VOI 300-

km orbit has a sensitivity in excess of 1 mm s"t (the accuracy of the S-band data) out to degree 50. In contrast,
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the VO2 300-kin orbit is sensitive only to terms out to approximately degree 30. As the perispsis alfitnde is

raised, the sensitivity in degree is diminished. The limit is degree 18 for the VO2 800-kin orbit, and degree 11

for the VO1 1500-km orbit. The M9 orbit has stronger pertut_tlons than the VO1 1500-km orbit by virtue of its

closer average distsnce to Mars, with its twice per day revolution, and smaller orbital eccentricity.

The sensitivity was also evaluated through numerical integration using the GEODYN program for the

VOI 300-kin orbit. The spectral rms velocity perturbation by oeder is shown in Figure 2 for different arc lengths.

The results show sensitivity greate_ than 1 mms "_for the high degree and order terms for arc lengths greater

than three days. For arcs of three days, the limit in sensitivity is approximately o_ier 30, whereas for the one day

arcs the limit in sensitivity is approximately order 20. The increase in sensitivity results f3"om the sampling of the

medium period resonance perturbations. Although these results suggest it would he beneficial to process the VOl

300-kin data in batches of 8 to 16 days, this was not poss_le because of insufficient tracking coverage and

errors in the noneonservative force models.

For the highly eccentric Viking orbits, the sensitivity of spherical harmonic coefficients depends not

only on the perispsis altitude, but also on the location of the argummt of periapsis. The GEODYN _ of

rms velocity perturbaticms sampled by degree and order are given for an eight day arc for two VO1 300-kin

orbits in 1978. In the f'k,_tarc, beginning January 15, 1978, periapsis is located near the equator (¢a-175_). In the

second test arc, beginning December 20, 1978, the periapsis is located near 39_S (_a-269°). When ca is near 180_,

the orbit tends to be sensitive to terms of high degree and high order, whereas when ca is near 270", the orbit is

sensitive to terms of high degree and low order (see Figure 3).

Another important characteristic of these eccenlric orbits is that significant sensitivity to the high degree

terms exists over a broad range of altitudes. As a demonstration, for the VOI arc descn'bed in Figures 2 and 3

(epoch 01-15-78), the perturbations for terms of oeder 25 (degrees 31 to 50) are shown over a revolution in

Figure 4. For these terms, significant sensitivity is apparent up to an altitude of 10,000 km, covering half of an

orbit revolution.

In summary, the high degree sensitivity of the Viking Orbiter tracking data to the gravity field of Mats

is detennin_ by the perlapsls altitude, location of the argument of periapsis, and the length of the arcs used to

process the tracking data.

3.4 Distribution of Observational Coverage

The groundtrack for each of the Doppler observations is plotted in Figures 5a and 5b for a complete set

of ground tracks covering all major data sets used in the solution. The separation between ground tracks for the

orbital data sets is indicated in the figm'es by the term "walk _. Also the data span is given along with the "walk"

to depict the extent of the coverage over all data of this type as originally given in Table 2. In these figures we

can see the extent of periapsis coverage of the VO1 low orbit ( 39 e latitude) which is well complemented in the

northern hemisphere by the VO2 low orbit. These figures show reasonably good global data coverage for the
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VO1 low orbit, VO2 low or_t, VO2 g00 km orbit, and also for M9. The global coverage provides for good

separability of the lower degree terms of the gravity field and possibly out through degree 30 considering the

strong sensitivities to these terms. Figure 6 shows the combined coverage of the low orbits of VOI and VO2

from observations with altitudes less than 5000 km and it shows coverage by different levels of altitude over

300-kin. This low altitude data coverage of the observation points along the ground tracks for the VOI low orbit

is seen to be complemented by the VO2 low orbit, particularly in the Northern Hemisphere. However, the lack of

complete data coverage near periapsis indicates that separability will not he complete for the high degree terms

O0 to 50) as noted above in the argument of pefiapsis coverage for VO2.

Nevertheless, the result from Figure 6 indicates that there is great sensitivity to the higher degree terms

for altitudes less than 2000 km for the low altitude Viking orbits. Hence we may expect that the ground track

coverage for the combined VO1 and VO2 low orbits, particularly for the observed coverage with altitude less

than 500 ion over a wide area, will provide for good resolution of localized geophysical features in the vicinity

of these ground tracks.

4. MODELING

4.1 Physical Model

Because the Viking and Mariner data do not provide uniform spatial coverage of Mats, the application

of a priori constraints was critical to the development of a high degree and order solution. The Viking and

Mariner data were initially processed using the gravity model of Balmino et al. [1982]. However, in the final

iteration to produce GMM-I, an intermediate solution, MGM-635, was used as the a pr/ori model.

The gravitational effects of the Martian solid body fide were included in the satellite force model, and a

value of k2 -0.05 was adopted [Christensen and Balmino, 1979]. The effects of atmospheric drag were

incorporated into the satellite force model using a spherical model for the satellite body and the atmospheric

density model developed by Culp and $tem_n [1984]. The coefficient of drag, CD, was adjusted once per data

arc, except for the VO1 and V02 low pefiapsis orbital arcs, where CD was adjusted once per day. Solar radiation

forces were calculated using a spherical model for the spacecraft body, and adjusting a reflectivity coefficient,

Cm,once per data arc.

The solar flux at Mars at a given time was scaled from the Earth value for that date to the actual

distance of the spacecraft from the Sun. One range rote bias was estimated for each tracking station per arc. The

measurements were conected for ux)pospheric effects using the Hopfield model [Hopfie_ 1971]. The tracking

data records did not contain meteorological data or tropospheric corrections, thus the corrections were computed

assuming standard tempemtare, humidity, and pressure, scaled to reflect the station height above sea level.
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Thirdbodygravitationalpe_ onthespacecraftwere¢xanputedfromthepointmass

gravitationalforcescluetotheSun,theEarth-Moonsystem,theother planets, and Phobos, one of Mars" natural

satellites. In addition, Gcodyn was modified to read an ephemeris for Phobos and to add the point mass

gravitational acceleration due to Phobos to the total spacecraft acceleration. The ephemeris of Phobos was

prepared at GSFC by processing optical measmements obtained from the Mariner 9 and V'fldng Orbiter images

of Phobos [Duxbury and Ca//ahan, 1988; 1989].

4.2 Method of Solution

4.2.1 Lea_ _/uares w/:h A Priori Consrra/nts

The method of solution is a modified least squares process [Lerch eta/., 1979; Schwartz, 1976; 1978]

which minimizes the sum (Q) of signal and noise as follows

2

Q_EC_+_ rtt (4.1)

where the signal is given by _ _ which are the normalized spherical harmonics comprising the solution

coefficients. The pm'ametex ot= 13x10"sfla is the rms of the coefficients of degree 1 (a priori power rule) and is

introduced to permit solutions to degree and order 50. This expression, which is based upon Kaula's rule [gau/a,

1966], has been obtained by Ba/m/no et aL [1982] and represents the power in that gravity model. The noise

given by ra is the observation residual (oft, erred-computed) for the _ observation of satellite tracking data set

type k, ok is the rms of observation residuals of data type k (generally significantly greater than the a priori data

precision), and fk is a downweighting factor to compensate for unmodeled error effects for each data type k

(ideally fk" 1 for pure noise).

The optimum weighting method estimates the combined weights direct, namely

A
wt = __ (4.2)

2
fit

When minimizing Q above using the least squares method, the normal matrix equation and error ¢ovarianee is

obtained as follows:

N ._ = R (4.3)

where £ is the solution, N is the normal matrix, R is the vector of residuals, and



v = N-', N- w N, (4.4)

is the approximate form for the variance-eovariance error matrix which must be calibrated by adjusting the

weights. Nk is the contribution for each satellite data set k to the normais, where k - 0 corresponds to the normal

equations for the satellite a pr/or/coeffident constraints for which No is the matrix of Kaula constraints and the

weight Wois fixed at unity for the constraints. _

The process of minimiTJng both signal (by application of the Kaula power rule ccostraints) plus noise in

(4.1) is also known as collocation [Moritz, 1978]. The constraints bias the coefficients towards zero where they

are poorly observed. With the conventional least _ approach (noise-only mlnimiT_tiOn) there is a problem

of separabifity due to the strong correlation between many of the high degree coefficients. The absence of

collocation (Wo- 0 in (4.4) for GMM-I) results in excessively large power in the adjustment of the potential

coefficients as in Figure 7. Hence, we see the benefit of the constraints which permit resolution of the high

degree terms wherever the data permits and provide_c0ntml of a_g in the solution.

4.2.2 Data Weighting and Error Calibration

The weighting technique and error cafibradon [Lerch et al., 1988; Lerch, 1991] of the solution

(equatious 4.1-4.4) is based upon subset solutions. The subset solution (CO is formed by deleting a major data

set k from the complete solution (C). The weight w= is adjusted as in equation (4.7) below by requiring that

(4.5)

II,',c,II = K, o

where/_ is an error cah'bration factor which ideally should equal to unity,

I

m,,c,n={Eco- c,),}, c4.6)

o ={Eco'-

and where o=2 and o_ are respectively the variance of the subset and the complete solutions. The sum in (4.6) is

over all the coefficients, and the scale factor _, is needed for the errors since the error covariance in (4.4) is

only an approximation [Lerch, 1991].

The new weights, wk", should be adjusted so that each Kk converges to I for all k, and the new weights

are computed from

9



/ wk (4.7)
W k =

The process is iterated by forming a new complete solution and subset solutions from the new weights, and this

may continue until the weights converge.

In a case where two solutions are based upon independent data, then (in the above notation) for a single

coefficient parameter the two estimates give

(4.8)
i

E(C - C) = = T_ + o_

whereas in Table 4.1 the data for the subset solution is wholly embedded in the complete solution in which case

E(C - _)2 = _.= _ or= (4.9)

as indicated by (4.6). This means that in our case the covariance between the square of the difference of the two

estimates of the coefficients is equal to the difference of the variances of the subset and complete solutions.

Thus, (4.8) and (4.9) represent extremes in estinmtion, complete independence and complete dependence.

5. RESULTS OF THE GMM-I SOLUTION

5.1 Description of Solution

GMM-1 is a 50 x 50 spherical harmonic gravity model. There are a total of 5250 estimated parameters:

2597 gravity coefficients plus GM, and the arc parametem. The GMM-1 gravity coefficients through degree and

order 50 are shown in Appendix A. Calibrated accuracy estimates of the coefficients have aLso been obtained for

the model.

5.2 Gravity Model Tests Using Orbital Observation Residuals

Orbital arcs have been selected from the 7 major data sets summarized in Table 3 and used to test the

orbital accuracy of the model by fitting the DSN Doppler data. Observation residuals have been computed fzom

our 50x50 model and compared with the prior best available 18x18 gravity model of Balmino et al. [1982].

Table 5 is a compilation of orbit tests for 14 arcs. Each are is fit _g the Ba/m/no et aL field and GMM-I. For

all 14 test arcs, the RMS residual fits are significantly smaller, sometimes 5 to 10 times smaller, when computed

using GMM-1 than when using the Balmino et al. field. Table 6 stmmmriz_ the results of orbit prediction tests

for a subset of the arcs in Table 5. The orbits obtained in the orbit accuracy tests are projected forward in time 2

or 3 days. Then RMS residual fits are compared for the data in the predicted lime periods. Again, the fits are
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significandy smaller when computed using GMM-1 than when using the Ba/m/no eta/. field. The improvements

in the fits is not entirely due to the inoeased resolution of GMM-I. An 18x18 version of GMM-I outperformed

the 18x18 model of Balmino et al. in all cases except the 300-km VO1 and VO2 orbits, for which the

performance was comparable.

5.3 Analysis of the Gravity Coefficients

Hgure 8 is a plot of the degree vadance of the coefficients (power) and error variance of GMM-I per

degree. Also plotted are the power of the 18x18 gravity field [Balmino et al., 1982] and a power rule (13xl0"S//2)

taken fxom Balmino et ol. [1982], which is the basis of the constraint matrix used in GMM-I. The plot shows

that fcf degrees less than 15, the power specumn of GMM-I and the Balmino et al. field are about the same.

However, above degree 15, GMM-1 drops below while the Balmino et al. field rises above the power spectrum

of Balmino's rule. The upwani turn of the Ba/mino eta/. field is tmdoubtediy due to aliasing. Aliasing adversely

affects the performance of a gravity field with respect to orbit fits f_n independent data, orbit predictions, and

other geophysical information which are derived from the gravity coefficients. The truncation level of GMM-1 at

degree 50 is high enough so that the high degree gravity signal is not significantly alissed into the lower degree

terms.

The power spectrum of GMM-1 drops below the values of the power rule for high degrees. Above

degree 22, the ezrors of the coefficients are larger than the coefficients themselves. Tuis drop off in the power

spectrum occurs because the drag parameters (once per day values) are absorbing part of the gravity signaL Also,

the high degree terms are highly correlated and hence the effect of the power rule co_waint in the solution is

quite strong which further explains the small power for these terms. However, became the a priori mnstr_int

does not have a major effect ca the solution, the terms do contain information on the short wavelength gravity

field in the vicinity of the spacecraft periapses. While the power in the field falls below that predicted by the

power rule at high degrees, the field is a better representation of the true gravitational signature of the planet at

those wavelengths than would be the case if the field were solved to lower degree and order and all of the high

degree and order coefficients were constrained to zero.

Figure 9 shows the coefficient differences between GMM-1 and the 18x18 gravity field. While the rms

differences per degree are about the size of Balmino's rule for terms above degree 10, the differences between

particular ( C_ _ palm even for lower degree terms are seen to be quite large. In fact, the rms differences for

lower degree terms are over an c/tier of magnitude greater than the error estimates of GMM-I as given in Figure

8. The coefficient discrepancy between these models reflects the large differences seen in the orbital residuals for

the two models as shown in Table 5.

5A Calibration of Gravity Model Errors
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The calibration of the gravity model error estimates is based upon the method described in Section 422

and is developed in greater detail by Lerch et aL [1991]. In the application of this method, weights of basic

observation sets from different orbits are adjusted based on subset solutions. The data is separated into 7 grou_

(see Table 6) yielding 7 subset solutions for the weight adjustment. In Table 6 each group is assigned an a priori

data weight which is based on our experience in computing previous gravity solutions. For example, the V'fldng 1

1500-kin data group is assigned an erm¢ of 1 cm s"mwhile V'_ing 1 300-kin data group is assigned an error of

.71 cm s"t[wt.-11(.71)2-2]. The larger etrom (indicating down-weighting) for the data sets of V'tHng 1 at 1500-

ian and Viking 2 at l$O0-1an (55° inclination) are due to the synchronous (repetitive) nature of the orbits (over

the V'ddng Landers) as shown in Table 2 and in Figure 5a and 5b for the data distribution. "Haecah'bration

factors (k) given in Table 7 indicate that the model is reasonably well cah'brated where a factor of k-1 indicates

perfect calibration.

5.5 Error Analysis

The error covariance matrix, which is calibrated in Section 5.4, was used to project the orbital e_om in

satellite position and velocity. Table 8 shows the projected errors for M9, V01-300 kin, VO@-300 km, and MO

for a 6-day arc length. The results fro"the Ma_ Observer orbit are of special interest since these errom will affect

the orbit determination. Figures I0 and 11 give respectively the error speccmn by degree and order for the radial

and along-track position components of Mars Observer (cross-track en'ors are similar to the radial exrom). Note

the largest en'or is shown for resonant order 25 indicating that a field complete to at least degree 30 is required

to reasombly model these coefficients based upon the error spectrum by degree.

5.6 Recovery of GM

In the GMM- 1 solution, the GM of Mars was adjusted along with the other coefficients of the Mats

gravity field. The value of GM determined in the solution was 42828.36 0.05 ion 3s'2. Lemoine [1992] analyzed a

smaller set of Viking and Mariner 9 Doppler data as well as Viking Orbiter range data and determined a value of

GM of 42828.40 0.03 Ion 3s2. The estimates of the Mats GM from Mariners 4, 6 and 9 [Null, 1969; Anderson et

a/., 1970; O'Neill et al., 1973] are in close agreement with the GMM-1 value. The Mariner 4, 6 and 9 values are

especially interesting since they are derived from tracking of spacecraft from a flyby of the planet Mars. In these

cases, the estimate of the Mars GM is largely uncoupled from the remaining coefficients of the Mats gravity

field.

6. GEOPHYSICAL IMPLICATIONS

Figure 12 shows flee air gravity anomalies computed from GMM-1 complete to degree and order 50,

and Figure 13 displays accompanying gravity anomaly erroIs computed from the error covariance matrix. As
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illustrated in Figures 5 and 6, the satellites used in this study are _ by a complicated distribution of

low altitude data. The shortest wavelengths resolved (200-300-1an half wavelength) occtw within the latitudinal

band of 40 °conesponding to the data coverage from the VO1 low orbit. This region also includes'the perbpsis

coverage (0_ to 30° latitude) of the VO2 low orbit as seen in Figure 6. That figure also shows that above 400 N

latitude there is still su'ong coverage of periapsis extending m 63°N latitude particularly for the VO2 800-km

altitude orbit. This coverage is reflected in the gravity anomaly error map which shows more longitudinal

mucture and better resolution than in the conesponding soethera hemisphere beyond the region of 4&S latitude.

In Figure 12, the flee air anomalies axe overlain by contours of topography. The topographic field is a

spherical harmonic expansion, also complete to degree and order 50, of the Mars Digital Elevation Model [DEM;

Wu et aL, 1986]. The spherical harmonic topographic model was defined to have zero mean elevation, and so

while the spherical harmonic and DEM have similar hypsometric dlstn"outions,elevation values f_om the former

are offset by approximately two km from the latter.

As in previous studies, the gravity anomafies correlate well with principal features of Martian

topography, including volcanic shields, impact basins and the Valles Mariueris. Most major features exhibit

anomalies with considerably higher magnitudes than in previous models. GMM-I also exhibits gravity anomalies

in association with some observed structures that were not previously detected. For example, GMM-I resolves all

three Tharsis Monies, while the model of Ba/tm'no et al. [1982] fails to resolve the ccmtralvolcano in the line,

Pavonis Mous. GMM-I also shows considerably more detail associated with the Valles Mariueris, and for several

of the major impact basins including Isidis and Argyre. However, it is important to intetiwet short wavelength

features resolved in the model with caution, as the the coefficients associated with the highest degree and order

terms are 100% in error.

One of the most prominent physiographic features on Mars is the hemispheric dichotomy, which is

characterized by a 2-kin elevation difference between the northern and southern hemispheres of Mars. However,

the dichotomy does not have a distinct gravitational signature associated with iL This indicates that the

dichotomy boundary is isostatically compensated at the resolvable wavelengths of GMM-I, perhaps due to a

change in crustal thickness across the boundary, as suggested in previous studies [PhiUips and Saunders, 1975;

Lambeck; 1979; Phillips and Lambeck, 1980; Phillips, 1988].

It is significant to note that several prominent anomalies in GMM-I fail to correlate with observed

surface features. These include a 300-mgal negative anomaly on the western edge of Tharsis 0on-20&E,

lat-+20q_) and a 200-mgal positive anomaly in Utopia 0on- 105_F_,lat-50q_]). Both of these areas are in the

nothem hemisphere and may have been resurfaced. These features were also present in the field of Ba/mino et

aL [1982], but the anomafies were smaller in magnitude.
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As for the gravity anomaly rewesentation of the field, the gooid from GMM-I as shown in Figure 14

exhibits a higher dynamic range of power (2300 m vs. 1950 m) than the model of Balmino et al. [1982]. The

distribution of geoid errors shows a similar pattern to the gravity anomaly errors.

A detailed geophysical interpretation of GMM-I, which includes a spectral analysis of the gravity and

topography fields and a global inversion of the fields for simultaneous estimations of density anomalies in the

Martian crust and mantle, is presented in a companion paper by B/l/s et aL [manuscript in preparation, 1993].

7. SUMMARY

Re-analysis of Doppler tracking data from the Mariner 9 and Viking 1 and 2 spacecraft has led to the

derivation of a 50 a degree and order gravitational model for Mats. The model has a maximum (half wavelength)

spatial resolution of 300-kin where the data permit, which represents a factor of two improvement over that

attained by the pgevious field of Balmino et aL [1982] which utilized essentially the same data. Pmb_le reasons

for the significant imwovement achieved include: increased computational capabilities, the application of

collocation and optimum data weighting techniques in the least squares inversion for the field, and the use of

longer arcs (days vs. horns) than used weviously for VHdng low altitude data made possible by improved force

and measurement models.

Error analyses based on the observation data, derived power spectrum, and comparison with topography

demonstrate that this field represents the orbits with considerably better accuracy and shows greater resolution of

identifiable geological SWacULresthan previous models. The model also shows a greater dynamic range of power

in both the gravity anomaly field and the geoid. The inclusion of X-band tracking data from the 379-km

alti_le, near-circular, polar orbit of Mars Observer will allow significant improvement of the

gravitatiomd field [Smith et wL, 1990b; Espos/ro er aL,1990; Ty/er et _, 1992], with the greatest refinement

occurring at high latitudes far removed from the Mariner 9 and Viking I and 2 periapsis latitudes. That

gravitational field, in combination with topography data from the Mars Observer Laser Altimeter (MOLA)

[Zuber er a/., 1992] will allow detailed analyses of Mars" internal stngtm'e, state of lithcspheric stress, and

mechanisms of isostatic compensation of surface topography.
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Table 1. Planetary and Astronomical Constants

Parameter Value

Gravitational Constant (GM)
Equatorial Radius of Mars

Spin Rate of Mars

Solid Tide Amplitude (k2)
Flattening of Mars

Speed of Light
Astronomical Unit

42828.28

3394.2

350.891983

0.05

1/191.1372

2.99792458x10 a

1.49597870660x1011

Unit

kin3 $-2

km

deg day"1

m $-1

m
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TLbIe 4. HAP* Ve]oclty Perturbations By Degree

USZ)_G A PO_'E;L X_LE OF ]]Z-0S/L*'2

HAR;_R f, VIXING I & 2 SAJ_LZD ORBZTS "

VZLOC_2_ PZR_BATIONS 2_ CN/SEC

PERIAPSlS VXG1 V_G2 VXG2 VXG1 _9

ALTITUDE(X)()w 300 300 |00 1500 ]500

DZGP, J[:Z EPOCH EPOCK EPOCH EPOCH EPOCK

78-01-15 77o12-17 77-040]9 77-02-05 72-04-10

2 544.175 453.411 144.452 44.324 |28.]2|

) )55.495 2]1.1)5 )9.741 34.427 100.049

4 207.181 ]01.42| 1(.$19 1].911 55.|52

5 ]07,358 59.i10 7.771 5.£59 24.812

G E6.205 34.4|5 4.248 2.270 12.463

7 40.783 21.119 2.49| 1.051 _.003

8 28,010 13,923 ].417 0.57P 2.669

9 18.054 J.347 1.397 0,304 1,135

10 23,170 G.077 1.115 0.25| 0.490

11 P.04J 4.730 1,525 0.0P3 0.240

12 i.lOI 3.555 2,11| 0.05i 0._17

13 4.721 2.649 ].195 0.031 0,105

14 3.558 2.053 2.350 0.019 0.061

18 ].3P0 0.7|0 0.211 0.010 0.002

22 0,581 0.3B1 0.04| 0.002 0.000

_i 0.217 0.249 0.012 0.O00 0.000

30 0.240 0.110 0.004 0,000 0.000

]4 0.3?0 0.047 0.000 0.000 0.000

3_ 0.507 0.034 0.000 0.000 0.000

38 0.46| O.O:B 0.000 0.000 0.000

40 0.373 0.029 0,000 0.000 0.000

42 0.241 0.03; 0.000 0.000 0.000

44 0.2i5 0.038 0.000 0.000 0.000

50 0.322 0.027 0.000 0.000 0,000

* ]U_t Y.AP,qO_2C A_A_YSIS OF P_TIO_s FRO)( )J;A_,YT_C 2"_ORY.

* PERIODS GT. J DAYS HAVE TKZ2R A_PLITUDES HULTIPLIED BY (8/PER2OD).

PERIODS GT 40 DAYS HAVE BEEN EXCLUDED.
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Table 5. Orbit Accuracy Tests : RMS of Orbital Fits in cm/sec

A_e

I

2

3

4

5

Satell Ite

Marl net-9
inc. = 64 °

VOl 1500 kin.
Inc. = 39 Q

VO2 1500 km.

inc. = 55 °

VO2 1500 km.
inc. ffi 75 °

VO2 800 km.
inc. = 80 u

Arc Arc

epoch No. of length
yymmdd obs. days

720113 1896 4

760822 1326 6

760917 1511 6

761026 1350 6

770102 682 4

Average

Balmlno GMM-I
18 x 18 50x 50

.456 .090

.687 .097

.387 .196

.649 .340

,434 .143

.522 .173

6

7

8

9

10

VOI 300 km
inc. = 39 =

Average

771122 568 9

780210 754 9

780604 538 2

780811 387 2

780904 1025 8

5.07 1.04

6.44 1.22

2.42 .74

1.43 .09

8.58 1.24

4.79 .87

11

12

13

14

V02 300 km
Inc. = 80 °

771117 1114 6

771217 688 2

780516 791 8

780526 705 4

Average

1.52 1.02

.73 .II

7.67 1.78

.60 .15

2.63 ,77

For arcs I-5 arc parameters adjusted are posltion,velocity , C r and station biases

For arcs 6- 14 arc parameters adjusted are position,velocity , C r and C d per arc

Arc 13 comes in as 2 separate arcs in GMM-I
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Tablo 6. Orbit Prediction Tests : RMS of Prediction Fits in cm/sec

AFC

#

1

2

3

4

5

Satell I te

Marl net-9
inc. = 64 °

VOI 1500 kin.
inc. = 39 °

VO2 1500 kin.
Inc. = 55 °

VO2 1500 kin.
inc. = 75 °

VO2 800 kin.
inc. " 80 °

Average

Are

epoch
yymmdd

720113

760822

760917

761026

770102

|

VOI 300 kin. l 780904
inc. = 39 ° I

VO2 300 kin. i 771117
inc. = 80 ° I

Predict
No. of ed

obs. per/od
days

1308 3

840 3

720 3

6@7 3

367 3

Balmlno
18x 18

5.61

4.20

1.62

8.04

21.40

8.17

105.6

GMM- 1
50x50

.36

2.56

.68

2.38

.73

1.34

13.2

3 102.9 30.1
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Table 7. Calibration and Data Weights of GMM-I

Subset
Solution
Dataset

Removed

VO2 1500 km 55 ° Inc.

V02 1500 km 75 ° Inc.

VO2 800kin 80 ° Inc.

V02 300 km 80 ° Inc.

VOI 1500 kin, 39 °
Inc.

VOI 300 km 39 ° Inc

Marl her-9

Aprlorl GMM-I
Sigma Sigma

Weights Weights

_° °°%°
1.0 4.1

1.0 1.5

.71 .72

.71 1.0

1.0 3.5

,71

1.0

.8

2.0

GMM- I
_alibratlo

/I

Factors
k eo

1.2

.81

.81

1.16

.96

1.05

.99

_1

1

*0"0= _

** k =]

Ww__ W

2
k

* ao = 1

for complete convergence
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Table 8. Projected Grav/ty Orbit Error from GMM-I Covariances

( Long period terms excluded }

Orbit Position Error I n meters
Arc

Mars Observer 6 67 757 90 765
Marl ner-9 6 2 4 2 5

Vlking- 1,300 km 6 26 60 31 80
Vlk Ing-2,300 km 6 26 83 12 87

Orbit Velocity Error In cm/sec
Arc

_ Rad/al Alone-Track,ross:Track Total

Mars Observer 6 66.3 8.0 8.0 67. I
Marl ner-9 6 .07 .03 .02 .08

Vlklng-l.300 km 6 1.9 .8 .2 2. l
Viklng-2,300 km 6 2.0 .9 .I 2.3
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1000 '

100

10

0.01

PerLurbations by Order for V_zErjn_
Power Rule 13xlO_/l"

psis Orbit (epoch 75-01-10)

" GEODYN: Numerically integrated perturbations

HAP: Harmonic analysis of perturbations from analytical theory

Figure 2. Spectral Sensitivity of Gravity Signal (by Order)
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(_= i75 °) (_=269 °)

Velocity Perturbat£ons In .001 on/see Velocity Perturbat£ona In .001 c_/aec

RSS' DEG YXGls 7|-01-15 RSS' DEG

3J233_ 2 *°" _rg. o_ periapei8 - 175 deg Sl2_SO" 2 "'"

124283 S *''''* 8 day Lrc leng'ch 72711 i t..eee

_8804 ]0 (SJ*****" 22705 10 _*'4|433G

8027 14 54"**'*'15G t7GG 14 ******627 $

2909 11 i S2''*143 21 4t$9 18 te**''274 i( 1

12J7 22 3 101385J2=37 8 2771 22 7|2"''5S4 37 i

|75 2S 1 2 72112ij 7; ] 1£31 2( 148420411 £2 11

400 30 1 1 2 =0]37143 2P 2 }84 30 120 47192 91 2

268 34 " 0 0 1 2 33104 77 13 1 ;04 34 171108 38 (5 13

22S 35 0 0 0 I 13 tJ el 2J 2 1 403 3; 133275148 45 5

;03 38 0 0 0 0 4 _! 79 _$ 9 2 1 )78 38 1571)1 _0 2( _S

_87 40 0 0 0 0 I ;0 43 ;2 22 7 1 0 311 40 33 ;] 81 4; ;

179 42 0 0 0 0 0 J 42 i? 41 I| 5 1 0 244 42 212101 ;0 ; 10

251 4i 0 0 0 0 0 1 24 (P 73 SJ 2S J 1 0 I(2 4; ;7 _! 52 18 2

2SJ S0 0 0 0 0 0 0 ] 22 |_ 84 (7 34 11 0 0 110 S0 ]2 37 35 19 3

ORDs 2 ( 10 14:8 22 2| 30 34 3( 38 (0 42 4( 50 OADt 2 i 10

* RSS t&kanover &11 orders, noC _ust snzaplod orders. * RSS taken over 112

VXGls 78-12-20

_rg. of per_epsia - 2(| deg

8 dsy trc lensrCh

0
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2O0

1100

20000

10000

20000

20000

20000

10000

0

00

000

0000

00000

14 18 22 2; 30 34 3G 38 40 42 4; S0

orders, no_ _usC slnpled orders.

Figure 3. Signal Sensitivity by Degree and Order for VO 1 Low Orbit
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1000

GMM-I without Balmino Constraint

Truncated to 35x35

10"

o........ '_'o'....... t'o........ _'o'....... _'o........ _b

Harmonic Degree

Figure 7. Gravity Model Uncertainties
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IPigare 8. RMS of Mars Gravlty Model Coefficients and Standard Deviations per Degree

Coefficient and Errors X 10 8

1OOOOO

1OOOO

1000

100

10

.I

Rule

Balmlno's 18 x18

Sigma's GMM- 1

0

GMM-I

• " " ' I ' " " " I " " ' " I " ' ' " I ' ' ' 'I'" "'I "'' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I _

5 10 15 20 25 30 35 40 45 50
degree

Figure 8. RMS of Mars Gravity Model Coefficients and Standard Deviations per Degree
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Difference X 10 8
Balmlno

Rule rmsdeJree

3280 51 2 76 31

1444 32 3 2 59 27 35
S12 61 4 115 54 61 48 37

520 71 5 96 I16 44 60 64 2

361 93 6 96 165 65 132 44 27 8

265 80 7 116 142 62 I01 43 55 20 45

203 90 S 58 48 90 22B 49 48 21 15 41

leo 76 9 SS 68 27 |13 I00 26 57 22 ?I 114

130 77 I0 118 28 27 135 94 55 120 62 38 14 66

I07 78 II 17 106 25 123 22 102 78 52 I01 9g I0 49

90 93 12 4 24 71 87 12 7S 84 169 130 171 9 31 80

77 58 13 34 42 59 64 40 83 50 77 54 59 29 67 88 3

66 62 14 7 69 73 65 74 28 58 66 62 42 90 14 58 76 67

58 48 15 61 50 49 64 38 81 45 38 69 14 45 19 23 24 61 34

51 57 16 8 49 65 84 44 75 22 61 25 85 59 84 25 84 25 57 71

45 49 17 0 e7 30 42 47 26 !01 59 28 84 46 ]7 40 gO 12 19 77 44

40 44 18 56 6 43 21 60 13 42 20 51 45 88 32 57 21 68 II 19 36 69

0 I 2 3 4 5 6 7 8 9 I0 II 12 13 14 15 16 17 18

order

rms 70 80 54 99 56 58 63 69 6S 84 57 41 58 49 52 35 62 40 6g

Figure 9. Coefficient Differences for Balmino minus GMM-1
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Total RMS = 757m

RMS per Degree RMS per Order

30' 40_

O. l

_ , ,.._...-,...:...._...,, .... ,--.
i,, , ,l t ww _t, e w_l .e_ vl . ,w, l, ,.. t,,, ,i,.., D, , w, i.,,.i _ "J |..,o|,..o| .... | .... I ....

0 5 10 15 20 "z_ 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Harmonic degree Harmonic order

Figure i0. Projected Radial Position Error on Mars Observer from GMM-I

Gravity Covariances
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Figure II. Projected Along-Track Position Error on Mars Observer

from GMM-I Gravity Covariances

Total RMS = 757m

RMS per Degree RMS per Order

0 5 10 15 2{) 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Harmonic degree Harmonic order

Figure 11. Projected Along-Track Position Error on Mars Observer from GMM-1

Gravity Covariances
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