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An Improved Grey Wolf Optimizer 
Based on Differential Evolution and 
Elimination Mechanism
Jie-Sheng Wang1,2 & Shu-Xia Li1

The grey wolf optimizer (GWO) is a novel type of swarm intelligence optimization algorithm. An 

improved grey wolf optimizer (IGWO) with evolution and elimination mechanism was proposed so 
as to achieve the proper compromise between exploration and exploitation, further accelerate the 
convergence and increase the optimization accuracy of GWO. The biological evolution and the “survival 
of the fittest” (SOF) principle of biological updating of nature are added to the basic wolf algorithm. The 
differential evolution (DE) is adopted as the evolutionary pattern of wolves. The wolf pack is updated 
according to the SOF principle so as to make the algorithm not fall into the local optimum. That is, 
after each iteration of the algorithm sort the fitness value that corresponds to each wolf by ascending 
order, and then eliminate R wolves with worst fitness value, meanwhile randomly generate wolves 
equal to the number of eliminated wolves. Finally, 12 typical benchmark functions are used to carry 
out simulation experiments with GWO with differential evolution (DGWO), GWO algorithm with SOF 
mechanism (SGWO), IGWO, DE algorithm, particle swarm algorithm (PSO), artificial bee colony (ABC) 
algorithm and cuckoo search (CS) algorithm. Experimental results show that IGWO obtains the better 
convergence velocity and optimization accuracy.

�e swarm intelligence algorithms are proposed to mimic the swarm intelligence behavior of biological in nature, 
which has become a hot of cross-discipline and research �eld in recent years. �e appearance of swarm intelligent 
optimization algorithm provides the fast and reliable methods for �nding solutions on many complex problems1,2. 
Because the swarm intelligence algorithm have characteristics of self-organization, parallel, distributive, �exibility 
and robustness, now they have been very widespread used in many cases, such as electric power system, com-
munication network, system identi�cation and parameter estimation, robot control, transportation and other 
practical engineering problems3–5. �erefore, the research on the swarm intelligence optimization algorithms has 
an important academic value and practical signi�cance.

At present, a variety of swarm intelligence optimization algorithms have been proposed by simulating the 
biotic population and evolution process in nature, such as particle swarm optimization (PSO) algorithm, shuf-
�ed frog leaping algorithm (SFLA), arti�cial bee colony (ABC) algorithm, ant colony optimization (ACO) algo-
rithm, biogeography-based optimization (BBO) algorithm, and cuckoo search (CS) algorithm. Particle Swarm 
Optimization (PSO) algorithm put forward by Kennedy and Eberhart to mimic the the foraging behavior of birds 
and �sh �ock6, but the convergence velocity and searching accuracy of PSO algorithm are unsatisfactory to some 
extend. Shu�ed Frog-leaping Algorithm (SFLA) put forward by Eusu� in 2003 is a novel swarm intelligent coop-
erative searching strategy based on the natural memetics7,8. On the one hand, individuals exchange information 
in the global searching process, and its search precision is high. On the other hand, SFLA has the disadvantage of 
slow convergence velocity and easy to falling into the local optimum. Arti�cial Bee Colony (ABC) Algorithm put 
forward by Karaboga in 2005 to mimics the �nding food source behavior of bees9. In order to mimic the social 
behavior of the ant colony, Dorigo et al. Proposed the an novel Ant Colony Optimization (ACO) Algorithm 
in 200610. But their disadvantages are the slow convergence speed and easy to premature. Biogeography-Based 
Optimization (BBO) algorithm was put forward by Simon in 200811, whose idea is based on the geographical dis-
tribution principle in the biogeography. Cuckoo Search (CS) Algorithm was proposed by Yang and Deb in 2009 
based on the cuckoo’s parasitic reproduction mechanism and Levy �ights searching strategy12,13, whose advantage 
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is that CS algorithm is not easy to fall into the local optimum compared with other intelligent algorithms and has 
less parameters, and whose disadvantage is that the adding of Levy Flight search mechanism leads to strong leap 
in the process of search, thus, its local search is not careful.

�e common shortcoming of these algorithms is that each swarm intelligence algorithm has problem in di�er-
ent degrees that the convergence velocity is slow, the optimization precision is low, and easy to fall into the local 
optimum5. �e key reason cause these shortcoming is that whether an algorithm is able to achieve the proper 
compromise between exploration and exploitation in its each searching phase or not14. Exploration and explora-
tion are contradictory. Exploration re�ects the ability of the algorithm to search for new space, while exploration 
re�ects the re�ning ability of the algorithm. �ese two criteria are generally used to evaluate stochastic optimiza-
tion algorithms. Exploration is refers to that a particle leave the original search path in a certain extent and search 
towards a new direction, which re�ects the ability of exploiting unknown regions. Exploitation is refers to that 
a particle continue to search more carefully on the original trajectory in a certain extent, which can insure the 
wolf make a detailed search to the region that have been explored. Too small exploration can cause a premature 

Figure 1. 2D position vectors and possible next locations.

Figure 2. Position updating of IGWO.
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convergence and falling into a local optimum, however, too small exploitation will make the algorithm converge 
too slowly.

�e grey wolf optimizer (GWO) as a novel swarm intelligent optimization algorithm was put forward by 
Seyedali Mirjalili etc in 2014, which mainly mimics wolf leadership hierarchy and hunting mechanism in nature15. 
Seyedali and Mirjalili etc has proved that the optimization performance of standard GWO is superior to that of 
PSO, GSA, DE and FEP algorithm. Due to the wolves algorithm with the advantages of simple in principle, fast 
seeking speed, high search precision, and easy to realize, it is more easily combined with the practical engineer-
ing problems. �erefore, GWO has high theoretical research value. But GWO is as a new biological intelligence 
algorithm, the research about it is just at the initial phase, so research and development of the theory are still not 
perfect. In order to make the algorithm plays a more superior performance, further exploration and research is 
needed.

Many swarm intelligence algorithms are mimic the hunting and searching behaviors of some animals. 
However, GWO simulates internal leadership hierarchy of wolves, thus, in the searching process the position of 
best solution can be comprehensively assessed by three solutions. But for other swarm intelligence algorithms, 
the best solution is searched only leaded by a single solution. So GWO can greatly decrease the probability of 
premature and falling into the local optimum. So as to achieve the proper compromise between exploration and 
exploitation, an improved GWO with evolution and elimination mechanism is proposed. �e biological evolution 
and the SOF principle of biological updating of nature are added to the basic wolf algorithm. In order to verify the 
performance of the improved GWO, 12 typical benchmark functions are adopted to carry out simulation exper-
iments, meanwhile, experimental results are compared with PSO algorithm, ABC algorithm and CS algorithm. 
�e experimental results show that the improved grey wolf optimizer (IGWO) obtains the better convergence 
velocity and optimization accuracy.

�e paper is organized as follows. In section 2, the grey wolf optimizer is introduced. A grey wolf optimizer 
with evolution and SOF mechanism is presented in section 3. In section 4, the simulation experiments are carried 
out and the simulation results are analyzed in details. Finally, the conclusion illustrates the last part.

Grey Wolf Optimizer
�e grey wolf optimizer is a novel heuristic swarm intelligent optimization algorithm proposed by Seyedali 
Mirjalili et al. in 2014. �e wolf as top predators in the food chain, has a strong ability to capture prey. Wolves 
generally like social life and in the interior of the wolves exists a rigid social hierarchy15.

In order to mimic wolves internal leadership hierarchy, the wolves is divided into four types of wolf: alpha, 
beta, delta and omega, where the best individual, second best individual and third best individual are recorded as 
alpha, beta, and delta, and the rest of the individuals are considered as omega. In the GWO, the hunting (optimi-
zation) is guided by alpha, beta, and delta8. �ey guide other wolves (W) tend to the best area in searching space. 
In iterative searching process, the possible position of prey is assessed by three wolves alpha, beta, and delta. In 
optimization process, the locations of wolves are updated based on Eqs (1) and (2).
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where, t represents the t-th iteration, 
→
A  and 
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C  are coe�cient vector, 

→
XP  is the position vector of prey, 

→
X  repre-

sents the wolf position. �e vector 
→
A  and 

→
C  can be expressed by:

Figure 3. Exploration and exploitation of wolf in GWO.
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→
= ⋅ →C r2 (4)2

where, the coe�cient →a  linearly decreases from 2 to 0 with the increasing of iteration number, →r1  and →r2  are ran-
dom vector located in the scope [0, 1].

Principle of the position updating rules described in Eqs (1) and (2) are shown in Fig. 1. It can be seen from 
Fig. 1 the wolf at the position (X, Y) can relocate itself position around the prey according to above updating for-
mulas. Although Fig. 1 only shows 7 positions that the wolf possible move to, by adjusting the random parameters 
C and A it can make the wolf to relocate itself to any position in the continuous space near prey. In the GWO, 
it always assumes that position of alpha, beta and delta is likely to be the prey (optimum) position. In the itera-
tion searching process, the best individual, second best individual and third best individual obtained so far are 
respectively recorded as alpha, beta, and delta. However, other wolves who are regarded as omega relocate their 
locations according to the locations of alpha, beta, and delta. �e following mathematical formulas are used to 
re-adjust positions of the wolf omega. �e conceptual model that wolf update its position is shown in Fig. 2.

Figure 4. Flow chart of IGWO algorithm.
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where, 
→
αX , 
→
βX  and 

→
δX  are the position vector of alpha, beta, and delta, respectively. 

→
C1 , 
→
C2 , 
→
C3  are randomly 

generated vectors, 
→
X  represents the position vector of current individual. �e Eqs (5), (6) and (7) respectively 

calculate the distances between the position of current individual and that of individual alpha, beta, and delta. So 
the �nal position vectors of the current individual are calculated by:
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Figure 5. Convergence curves Function F8 (D = 30).
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Figure 6. Convergence curves Function F9 (D = 30).
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where, 
→
A1 , 
→
A2 , 
→
A3  are randomly generated vectors, and t represents the number of iterations.

In the plane, three points is able to determine a region. �us, the scope of position of the prey can be deter-
mined by the best three wolves. �e GWO that whose target solution is comprehensively assessed by three solu-
tions, can greatly decrease the probability of trapping into the local extreme.

It can be seen from the above formula that Eqs (5–7) respectively de�ne the step size of the omega tend to 
alpha, beta, and delta. �e �nal positions of the omega wolves are de�ned by Eqs (8–11).

�e exploration ability and exploitation ability have important in�uence on the searching performance of 
an algorithm. For the GWO, exploration is refers to a wolf leave the original search path in a certain extent and 
search towards a new direction, which re�ects the wolf ’s ability of exploiting unknown regions. Exploitation is 
refers to that a wolf continue to search more carefully on the original trajectory in a certain extent, which can 
insure the wolf make a detailed search to the region that have been explored. So how to make the algorithm 
achieve a proper compromise between exploration and exploitation is a question that worth research.

It can be observed that the two random and adaptive vectors 
→
A  and 

→
C  can be used to obtain a proper compro-

mise between exploration ability and exploitation ability of the GWO. As is shown in Fig. 3, when 
→
A  is greater 

than 1 and is less than −1, that is 
→
>A 1, the wolf shows exploration ability. When the value of vector 

→
C  is 

greater than 1, it can also enhance the exploration ability of the wolf. In contrast, when 
→
<A 1 and C < 1 the 
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Figure 7. Convergence curves Function F10 (D = 30).
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Figure 8. Convergence curves Function F12. (D = 30).
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wolf ’s exploitation capacity is enhanced. For increasing the exploitation ability of the wolf gradually, the vector 
→
A  

decreases linearly with the iterations number increasing. However, in the course of optimization the value of 
→
C  is 

generated randomly, which can make exploration and exploitation of the wolf reach a equilibrium at any stage. 
Especially in the �nal stages of the iteration, it is able to avoid the algorithm from trapping into a local extreme. 
�e pseudo codes of the GWO are described as follows.

Initialize the population Xi(i = 1, 2, … n) of GWO
Initialize GWO parameters (a, A, C)
Calculate the individual �tness value in the population
Record the best individual, second best individual and third best individual as 

→
αX , 
→
βX  and 

→
δX

While (t< maximum iteration number)
For each individual
Update the position of current individual by Eqs (5–11)
End for
Update a, A, C
Calculate the �tness value of all individual in the population
Update 

→
αX , 
→
βX , 
→
δX

t = t + 1
End While
Return 

→
αX
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Figure 9. Convergence curves Function F4. (D = 100).
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Figure 10. Convergence curves Function F8 (D = 100).
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�e GWO has strong exploration ability, which can avoid the algorithm falling into the local optimum. For the 
GWO, the proper compromise between exploration ability and exploitation ability is very simple to be achieved, 
so it can e�ectively solve many complicated problems.

Improved Grey Wolf Optimizer (IGWO)
For increasing the search performance of the GWO, an improved grey wolf optimizer (IGWO) is proposed. In 
the IGWO, the biological evolution and the SOF principle of biological updating of nature are added to the stand-
ard GWO. Due to the di�erential evolution algorithm having the advantages of simple principle, less algorithm 
parameters and easy implementation, di�erential evolution (DE) strategy is chose as the evolutionary pattern of 
wolves in this paper. �e wolf pack is updated according to the SOF principle so as to make the algorithm not fall 
into the local optimum. �at is, a�er each iteration of the algorithm sort the �tness value that corresponds to each 
wolf by ascending order, and then eliminate R wolves with larger �tness value, meanwhile randomly generate 
wolves that equal to the number of eliminated wolves.

Grey Wolf Optimizer with evolution operation. In nature, organisms evolve from the low level to 
advanced level continually under the action of heredity, selection and mutation16,17. Similarly, there are also a 
series of changes like heredity, selection and mutation in the searching process of the wolves. �e evolution law of 
SOF make wolves gradually strong. In the same way, for increasing the searching performance of the algorithm, 
the evolution operation is added to basic GWO. Based on the biological evolution of nature, many evolution 
methods have been developed, such as di�erential evolution(DE), quantum evolution and cooperative evolution, 
etc.18. For all the evolution methods, the di�erential evolution strategy has simple principle, less parameters and 
easy implementation and it has been extensively researched and applied19,20. �erefore, the DE strategy is chose 
as the evolution method of GWO. �e basic principle of DE operator is to adopt the di�erence among individuals 
to recombine the population and obtain intermediate individuals, and then get the next generation population 
through a competition between parent individual and o�spring individual21,22. �e basic operations of DE include 

Function name Function Rang Fmin

Sphere = ∑ =f x x( ) i
d
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Table 1. Test functions.

Algorithm Main parameters Settings

PSO Particle number n = 30; Learning factor c1 = 2, c2 = 2; Inertia weight w = 0.9

ABC Bees number n = 30; Follow-bees number n/2 = 10; Lead-bees number n/2 = 10

CS Bird nest number n = 30; Detection probabilityPa = 0.25; Step length control α = 0.01

DE population size n = 30; CR = 0.7; F = 1

GWO Wolves number N = 30

DGWO Wolves number N = 30; fmin = 0.25, fmax = 1.5; CR = 0.7

SGWO Wolves number N = 30; ε = 5

IGWO Wolves number N = 30; fmin = 0.25, fmax = 1.5; CR = 0.7; ε = 5

Table 2. Parameters Settings of each algorithms.
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three operations: mutation, crossover and selection. A�er the operation of evolution is added to GWO, the wolf ’s 
position updating is shown as Fig. 2.

Mutation operation. �e most prominent feature of di�erential evolution is mutation operation. When an indi-
vidual is selected, two di�erences with weight are added to the individual to accomplish its variation23. �e basic 
variation ingredient of DE is the di�erence vector of the parents, and each vector contains two di�erent individ-
uals X X( , )r

t
r
t

1 2  of parent (the t-th generation). �e di�erence vector is de�ned as follows.

= −d X XD (12)r r
t

r
t

12 1 2

where, r1 and r2 express index number of two di�erent individuals of the population. �us the mutation operation 
can be described as:

= + ∗ −+V X F X X( ) (13)i
t

r
t

r
t

r
t1

3 1 2

where, r1, r2 and r3 are di�erent integers in the scope (1, 2, … n) from the current target vector index i. F is the 
scaling factor to control the scaling of di�erential vector.

In order to produce an ideal variation factor, to ensure that wolves can evolve toward the direction that good 
for development of the wolves. So in this paper, chooses outstanding individuals of wolves as parents. A�er a large 
number of simulation experiments, beta and delta are chose as two parents, and then combined with the alpha 
wolf to form a variation factor. �erefore, the variation factor is designed as Eq. (14).
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Figure 11. Convergence curves Function F9 (D = 100).
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= + ∗ −α β δ
+V X F X X( ) (14)i

t t t t1

In order to make the algorithm has a high exploration ability in the early stage to avoid falling into local opti-
mum, and has a high exploitation ability in the latter stage to increase the convergence speed, a dynamic scaling 
factor is employed. So scaling factor F change from large to small according to the iteration number in Eq. (15).

Function IGWO SGWO DGWO GWO DE

F1

Best 3.9273e − 069 4.2813e−064 1.3776e−066 2.0291e−029 2.8252e−004

Ave 1.1783e − 064 8.6129e − 061 4.3208e − 062 1.0402e − 027 5.4593e − 004

Worst 1.2505e − 062 1.0843e − 059 3.2370e − 061 6.8810e − 027 0.0010

Std 5.5606e − 063 8.4600e − 060 1.4297e − 061 1.4561e − 027 3.7365e − 004

F2

Best 7.6878e − 068 1.3615e − 048 3.9913e − 056 2.0613e − 030 0.0015

Ave 3.2484e − 064 4.5866e − 043 5.7834e − 055 6.5600e − 029 0.0022

Worst 8.4385e − 063 7.2218e − 038 6.8134e − 041 4.8634e − 028 0.0031

Std 4.1566e − 066 2.4788e − 061 5.4083e − 059 1.5256e − 028 0.0017

F3

Best 1.7846e − 015 6.9725e − 012 1.9482e − 013 2.6272e − 008 2.3690e + 004

Ave 3.6220e − 0010 4.8496e − 008 3.1035e − 08 1.4089e − 005 2.3690e + 004

Worst 5.5878e − 008 1.3048e − 006 8.3608e − 07 1.7721e − 004 4.0729e + 004

Std 4.3091e − 008 1.0902e − 007 1.0736e − 006 5.1567e − 005 3.8734e + 003

F4

Best 4.0775e − 014 1.6260e − 013 1.5917e − 013 8.7151e − 008 8.9197

Ave 4.2932e − 013 2.7047e − 011 7.9211e − 012 1.0129e − 006 12.5708

Worst 7.1302e − 011 1.7101e − 010 1.0844e − 011 7.7390e − 006 16.8491

Std 3.7329e − 012 3.7329e − 012 7.9664e − 011 3.5107e − 007 2.5643

F5

Best 23.1787 26.0680 25.3311 25.7961 46.7705

Ave 25.3873 27.0246 27.7795 28.0325 147.9340

Worst 28.5692 28.7589 28.7480 28.7800 229.5079

Std 0.6997 0.8119 0.8723 0.9258 156.3534

F6

Best 7.5296e − 005 0.3979 0.2487 0.0063 0.5679

Ave 0.6583 0.9671 0.7544 0.8993 0.7668

Worst 2.1169 1.7347 1.5054 1.5192 1.1668

Std 0.2917 0.3500 0.3096 0.4055 0.3643

F7

Best 1.2695e − 004 3.7651e − 004 8.5420e − 004 4.5944e − 004 0.0343

Ave 7.8361e − 004 0.0012 9.1816e − 004 0.0022 0.0544

Worst 0.0017 0.0050 0.0011 0.0064 0.0761

Std 3.7904e − 004 4.0563e − 004 4.0635e − 004 8.4619e − 004 0.0356

F8

Best −3.9429e + 004 −8.1054e + 003 −7.3195e + 003 −6.1310e + 003 −1.1275e + 004

Ave −9.0105e + 003 −4.7468e + 003 −5.8337e + 003 −3.6813e + 003 −7.0046e + 003

Worst −3.3482e + 003 −3.5050e + 003 −3.1866e + 003 −2.9262e + 003 −3.8532e + 003

Std −1.7912e + 003 −1.2625e + 003 −1.4600e + 003 −958.0854 −5.4353e + 003

F9

Best 0 0 0 1.1369e − 013 59.0260

Ave 1.0783 1.2274 1.1754 3.2143 85.4876

Worst 12.1696 9.2887 12.5246 15.8356 98.3991

Std 1.5038 2.3349 2.6704 4.8809 56.1783

F10

Best 1.5099e − 017 1.1546e − 014 1.5099e − 014 7.5495e − 013 0.0035

Ave 1.2204e − 016 2.0073e − 014 1.7468e − 014 1.0048e − 012 0.0055

Worst 2.2204e − 014 2.5757e − 014 2.2204e − 014 1.4655e − 013 0.0082

Std 4.3110e − 015 4.7283e − 014 5.4372e − 014 1.4373e − 014 0.0025

F11

Best 0 0 0 0 5.3482e − 004

Ave 0.0016 0.0105 0.0060 0.0048 0.0057

Worst 0.0147 0.0184 0.0441 0.0286 0.0271

Std 0.0074 0.0085 0.0101 0.0114 0.0432

F12

Best 0.0065 0.0192 0.0189 0.0188 0.0942

Ave 0.0481 0.0650 0.0535 0.0594 0.1663

Worst 0.1091 0.0769 0.1426 0.0819 0.2087

Std 0.0151 0.0161 0.0318 0.0419 0.0426

Table 3. Numerical statistics results of D = 30.
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where, fmin and fmax are the minimum and maximum of the scaling factor, Max_iter is maximum iteration number. 
iter is the iter-th iteration number.

Function IGWO SGWO DGWO GWO DE

F1

Best 1.5561e − 035 3.0615e − 034 1.8785e − 034 3.4355e − 013 1.5008e + 003

Ave 9.5901e − 034 5.6751e − 032 1.1231e − 032 1.4097e − 012 1.8397e + 003

Worst 1.8708e − 032 8.7514e − 031 6.8749e − 032 3.6831e − 012 2.3330e + 003

Std 7.1710e − 034 8.0479e − 034 9.9774e − 034 2.8268e − 012 5.5463e + 003

F2

Best 2.4553e − 036 6.3490e − 034 8.1124e − 035 1.6794e − 013 98.3138

Ave 7.1368e − 034 2.1103e − 031 9.6300e − 032 1.0558e − 012 4.3298e + 003

Worst 5.9594e − 033 2.9801e − 030 1.2238e − 032 4.7932e − 012 1.2236e + 004

Std 1.6942e − 034 3.2532e − 034 3.9658e − 034 3.1877e − 012 1.4523e + 004

F3

Best 23.6476 43.0528 25.3814 65.1383 3.5233e + 005

Ave 679.3675 1.6097e + 003 690.0015 818.9336 4.1657e + 005

Worst 2.5006e + 003 1.1074e + 004 719.8134 5.5568e + 003 4.7246e + 005

Std 1.0607e − 009 1.4133e − 008 1.2798e − 007 3.0654e − 005 3.4534e − 004

F4

Best 0.0018 0.0044 0.0035 0.0607 86.3861

Ave 0.0382 0.4416 0.1585 0.9562 90.0565

Worst 0.6247 2.5503 1.6033 3.1841 92.5876

Std 0.4072 0.4114 0.6602 0.6513 0.5346

F5

Best 95.8954 96.0948 97.0946 96.8501 1.4284e + 006

Ave 96.8157 97.8475 97.5528 98.0217 2.1571e + 006

Worst 98.5244 98.5851 98.4426 98.5207 3.7347e + 006

Std 0.6162 0.6385 0.6579 0.6708 1.4353e + 005

F6

Best 7.4830 10.3930 8.7155 9.7480 1.2876e + 003

Ave 9.3215 12.0996 11.2379 12.1379 1.7987e + 003

Worst 12.6824 13.8231 11.7620 12.7860 2.3616e + 003

Std 0.7722 0.7882 0.9711 0.9744 1.2354e + 003

F7

Best 3.5264e − 004 0.0013 6.4848e − 004 0.0026 2.2367

Ave 0.0024 0.0089 0.0077 0.0106 3.4390

Worst 0.0043 0.0581 0.0240 0.0430 7.1933

Std 7.0880e − 004 9.1433e − 004 0.0010 0.0021 2.3451

F8

Best −8.2275e + 004 −8.6793e + 003 −1.9539e + 004 −1.9447e + 004 −1.8209e + 004

Ave −6.0161e + 004 −7.1528e + 003 −1.6209e + 004 −1.5641e + 004 −1.6567e + 004

Worst −5.0981e + 003 −6.3427e + 003 −6.4163e + 003 −5.5875e + 003 −1.5388e + 004

Std 672.4919 2.3324e + 003 3.3000e + 003 4.6259e + 003 2.3453e + 003

F9

Best 0 0 0 4.8431e − 011 754.1063

Ave 1.6643 5.7767 4.6137 9.4635 805.4216

Worst 12.7963 14.7901 9.4707 30.0252 860.7482

Std 2.6605 3.2557 6.3543 6.4071 764.3451

F10

Best 6.4837e − 014 6.8390e − 014 6.7837e − 014 5.9873e − 008 6.7720

Ave 7.7153e − 014 8.9943e − 014 8.5771e − 014 1.1140e − 007 7.4253

Worst 9.3259e − 014 1.1102e − 013 8.9153e − 014 2.2161e − 007 9.0925

Std 6.0990e − 015 1.0364e − 014 9.9761e − 015 6.2626e − 008 8.3465

F11

Best 0 0 0 1.4655e − 013 6.2536e − 004

Ave 0.0028 0.0057 0.0042 0.0065 0.0091

Worst 0.0254 0.0702 0.0748 0.0270 0.0420

Std 0.0076 0.0082 0.0090 0.0110 0.0432

F12

Best 0.1056 0.1706 0.2034 0.2154 6.4979e + 005

Ave 0.1551 0.3535 0.3103 0.3968 1.5242e + 006

Worst 0.3331 0.4631 0.4281 0.4306 3.1513e + 006

Std 0.0406 0.0427 0.0421 0.0612 2.4325e + 006

Table 4. Numerical statistics results of D = 100.
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Crossover operation. For the target vector individual Xi
t of the wolves, make it have a crossover operation with 

the variation vector +Vi
t 1, and produce a test individual +Ui

t 1. In order to guarantee the individual Xi
t taking place 

a evolution, a random choice method is adopt to insure at least one bit of +Ui
t 1 is contributed by +Ui

t 1. For other 
bits of +Ui

t 1, the crossover probability factor CR is used to decide which bit of +Ui
t 1 is contributed by +Vi

t 1, and 
which bit is contributed by Xi

t. Crossover operation is express as follows.

=







≤ =

≥ ≠
=+

+

U
V rand j CR or j randn i

X rand j CR and j randn i
j D

( ) ( )

( ) ( )
1, 2, ,

(16)
ij
t ij

t

ij

1
1

where, rand(j) ∈ [0, 1] obeys the random-uniform distribution, j is the j-th variable (gene), CR is crossover prob-
ability, and rand(i) ∈ [1, 2, … D].

It can be known from the Eq. (16), if the CR is larger, +Vi
t 1 is able to make more contribution to +Ui

t 1. When 
CR = 1, =+ +U Vi

t
i
t1 1. If the CR is smaller, Xi

t is able to make more contribution to +Ui
t 1.

Selection operation. �e “greedy choice” strategy is applied to the selection operation. A�er mutation operation 
and crossover operation generate the experiment individual +Ui

t 1 and the compete it with Xi
t. It can be expressed 

as Eq. (17).
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where, f is the �tness function, +Xi
t 1 is the individual of t-th generation. from +Ui

t 1 and Xi
t choose the individual 

with best �tness as an individual of (t + 1)- generation, and replace the individual of the t-th generation.
In the early stages of the algorithm, di�erence of the population is large, so mutation operation makes the 

algorithm has strong exploration ability. In the later stages of the algorithm iteration, namely when the algorithm 
tends to converge, di�erence between individuals of the population is small, which makes the algorithm has a 
strong exploitation ability.

SOF wolves updating mechanism. SOF is a role of nature that formed in the process of the biologi-
cal evolution23–25. In nature, some vulnerable wolves will be eliminated because of uneven distribution of the 
prey, hunger, disease and other reasons. Meanwhile, new wolves will join to this wolf organization to enhance 
�ghting capacity of the organization, which can insure the wolf organization survival well in the complicated 
world. �e wolf pack is updated according to the SOF principle so as to make the algorithm not fall into the local 
optimum26–29.

In the new algorithm, assume the number of wolves in the pack is �xed, and the strength of wolves is meas-
ured by �tness value. �e higher the �tness, the better the solution. �erefore, a�er each iteration of the algorithm 
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sort the �tness value that corresponds to each wolf in ascending order, and then eliminate R wolves with larger 
�tness value, meanwhile randomly generate new wolves that equal to the number of eliminated wolves. When R 
is large, the number of wolves that new generating is big, which will help to increase the diversity of wolves. But 
if the value of R is too large, the algorithm tends to be searching randomly, which will results in the convergence 
speed becoming slow. If the value of R is too small, it is not conducive to maintain the diversity of population, 
which results in the ability of exploring new solution space weakened. �erefore, in this paper, R is a random 
integer between n/(2 × ε) and n/ε.

Function IGWO GWO PSO ABC CS

F1

Best 3.9273e − 069 2.0291e − 029 5.1422 1.9075e − 005 5.3943

Ave 1.1783e − 064 1.0402e − 027 157.3150 7.3230e − 004 17.2298

Worst 1.2505e − 062 6.8810e − 027 1.3957e + 003 0.0061 39.5997

Std 5.5606e-063 1.4561e − 027 618.8854 5.5855e − 004 10.6054

F2

Best 7.6878e − 068 2.0613e − 030 2.8795 6.2539e − 006 0.0791

Ave 3.2484e − 064 6.5600e − 029 108.5533 2.1544e − 004 0.2208

Worst 8.4385e − 063 4.8634e − 028 1.0320e + 003 0.0019 0.9046

Std 4.1566e − 066 1.5256e − 028 113.0001 1.0957e − 004 0.1073

F3

Best 1.7846e − 015 2.6272e − 008 2.6128e + 003 19.2563 82.0828

Ave 3.6220e − 0010 1.4089e − 005 5.8899e + 003 214.0276 388.8103

Worst 5.5878e − 008 1.7721e − 004 1.5150e + 004 512.2673 892.5678

Std 4.3091e − 008 5.1567e − 005 2.7730e + 003 353.0218 753.0257

F4

Best 4.0775e − 014 8.7151e − 008 10.5604 34.6791 8.2559

Ave 4.2932e − 013 1.0129e − 006 19.4012 65.4533 11.5000

Worst 7.1302e − 011 7.7390e − 006 30.8453 82.1336 16.9572

Std 3.7329e − 012 3.5107e − 007 4.9307 7.6916 1.2514

F5

Best 23.1787 25.7961 582.0313 40.4974 111.9810

Ave 25.3873 28.0325 1.7004e + 004 88.0783 600.0555

Worst 28.5692 28.7800 8.3090e + 004 502.2101 2.2452e + 003

Std 0.6997 0.9258 4.9416e + 004 29.4371 274.0168

F6

Best 7.5296e − 005 0.0063 7.6943 3.4009 8.6597

Ave 0.6583 0.8993 300.3189 8.3567 24.2355

Worst 2.1169 1.5192 1.1916e + 003 23.0030 75.3820

Std 0.2917 0.4055 374.9472 3.2274e − 004 12.7746

F7

Best 1.2695e − 004 4.5944e − 004 0.1186 0.0319 0.0177

Ave 7.8361e − 004 0.0022 0.6129 0.0528 0.0621

Worst 0.0017 0.0064 2.2257 0.8170 0.1222

Std 3.7904e − 004 8.4619e − 004 0.3202 0.0026 0.0159

F8

Best −3.9429e + 004 −6.1310e + 003 −4.1322e + 003 −1.1681e + 003 −6.6092e + 003

Ave −9.0105e + 003 −3.6813e + 003 −3.4422e + 003 −1.1294e + 003 −5.9192e + 003

Worst −3.3482e + 003 −2.9262e + 003 −2.9516e + 003 −1.0866e + 003 −5.2163e + 003

Std −1.7912e + 003 −958.0854 3.2960e + 003 205.0614 351.8938

F9

Best 0 1.1369e − 013 46.3981 5.1504 53.0900

Ave 1.0783 3.2143 92.6839 9.0702 73.5890

Worst 12.1696 15.8356 152.7472 13.8016 103.0006

Std 1.5038 4.8809 22.7852 2.5126 14.3049

F10

Best 1.5099e − 017 7.5495e − 013 2.0863 1.6725 4.1810

Ave 1.2204e − 016 1.0048e − 012 5.7135 5.0268 7.0560

Worst 2.2204e − 014 1.4655e − 013 10.5829 11.2607 14.1411

Std 4.3110e − 015 1.4373e − 014 2.4526 1.7819 2.6353

F11

Best 0 0 1.1890 3.3792e − 005 1.0869

Ave 0.0016 0.0048 7.4790 0.0649 1.2128

Worst 0.0147 0.0286 26.8061 0.1863 1.5050

Std 0.0074 0.0114 3.9852 0.0431 0.1070

F12

Best 0.0065 0.0188 1.4887 1.8107 1.0945

Ave 0.0481 0.0594 73.9029 4.5941 3.6666

Worst 0.1091 0.0819 2.0290e + 003 6.8171 6.5449

Std 0.0151 0.0419 4.4614 0.3128 0.4337

Table 5. Numerical statistics results of D = 30.
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ε ε= . ×R n n[ / , /0 75 ] (18)

where, n is the total number of wolves, ε is scale factor of wolves updating.
�e �ow chart of the improved grey wolf optimizer (IGWO) is illustrated in Fig. 4. �e main procedure steps 

are described as follows.

 (1) Initialize the grey wolf population. Randomly generated position of wolves Xi(i = 1, 2, … n) Initialize 
parameters a, A and C.

Function IGWO GWO PSO ABC CS

F1

Best 1.5561e − 035 3.4355e − 013 3.7127e + 004 122.6512 3.4168e + 003

Ave 9.5901e − 034 1.4097e − 012 4.9247e + 004 4.0245e + 003 5.7296e + 003

Worst 1.8708e − 032 3.6831e − 012 6.5987e + 004 1.0067e + 004 8.6850e + 003

Std 7.1710e − 034 2.8268e − 012 8.9305e + 003 1.8523e + 003 912.3910

F2

Best 2.4553e − 036 1.6794e − 013 2.6127e + 004 91.5939 1.3798e + 003

Ave 7.1368e − 034 1.0558e − 012 3.7423e + 004 3.9368e + 003 2.0391e + 003

Worst 5.9594e − 033 4.7932e − 012 5.6874e + 004 1.1487e + 004 3.0315e + 003

Std 1.6942e − 034 3.1877e − 012 7.9858e + 003 2.1492e + 003 514.5256

F3

Best 23.6476 65.1383 1.1274e + 005 2.9201e + 004 3.0971e + 005

Ave 679.3675 818.9336 1.8885e + 005 1.2577e + 005 5.4593e + 005

Worst 2.5006e + 003 5.5568e + 003 3.9436e + 005 8.1136 + e005 7.4755e + 005

Std 1.0607e − 009 3.0654e − 005 2.6625e + 03 1.6236e + 004 1.7767e + 004

F4

Best 0.0018 0.0607 43.1594 90.3059 22.7549

Ave 0.0382 0.9562 54.6512 95.0132 29.3341

Worst 0.6247 3.1841 66.4211 98.3757 39.2722

Std 0.4072 0.6513 4.8263 1.6038 2.8819

F5

Best 95.8954 96.8501 2.6394e + 007 8.4200e + 003 4.2931e + 005

Ave 96.8157 98.0217 5.7355e + 007 7.8186e + 005 1.0015e + 006

Worst 98.5244 98.5207 1.3108e + 008 9.9299e + 006 2.4179e + 006

Std 0.6162 0.6708 1.3951e + 007 1.9970e + 005 3.2088e + 005

F6

Best 7.4830 9.7480 2.1793e + 004 210.6135 4.2828e + 003

Ave 9.3215 12.1379 3.4705e + 004 4.4723e + 003 5.7352e + 003

Worst 12.6824 12.7860 4.6567e + 004 1.1812e + 004 8.5045e + 003

Std 0.7722 0.9744 4.9192e + 003 2.5176e + 003 1.0449e + 003

F7

Best 3.5264e − 004 0.0026 28.9078 7.9176 0.4508

Ave 0.0024 0.0066 92.8878 10.3561 0.7003

Worst 0.0043 0.0130 236.6874 11.2352 1.0116

Std 7.0880e − 004 0.0021 47.0314 4.3578 0.1182

F8

Best −8.2275e + 004 −1.9447e + 004 −1.6506e + 004 −1.1603e + 004 −1.2130e + 004

Ave −6.0161e + 004 −1.5641e + 004 −5.5154e + 003 −1.0941e + 004 −1.0789e + 004

Worst −5.0981e + 003 −5.5875e + 003 −1.7081e + 003 −2.7028e + 004 −9.3055e + 003

Std 672.4919 4.6259e + 003 4.4865e + 003 582.5893 643.1070

F9

Best 0 4.8431e − 011 722.3155 243.0193 350.2439

Ave 1.6643 9.4635 877.8493 293.0193 428.6253

Worst 12.7963 30.0252 1.0625e + 003 342.8732 493.4137

Std 2.6605 6.4071 86.9610 21.9504 38.0722

F10

Best 6.4837e − 014 5.9873e − 008 15.8294 8.2314 10.9187

Ave 7.7153e − 014 1.1140e − 007 17.0826 11.2388 13.3370

Worst 9.3259e − 014 2.2161e − 007 20.7326 15.7326 17.6444

Std 6.0990e − 015 6.2626e − 008 0.6998 1.6529 1.9379

F11

Best 0 1.4655e − 013 301.0689 2.2155 38.0069

Ave 0.0028 0.0065 430.3317 29.6147 54.1621

Worst 0.0254 0.0270 560.6552 76.0269 75.9006

Std 0.0076 0.0110 52.2074 15.3837 11.3528

F12

Best 0.1056 0.2154 8.6436e + 006 20.1113 20.6985

Ave 0.1551 0.3968 3.2730e + 007 1.3921e + 004 6.5202e + 003

Worst 0.3331 0.4306 9.5779e + 007 1.4818e + 005 8.1864e + 004

Std 0.0406 0.0612 4.3908e + 007 3.2646e + 004 0.8511

Table 6. Numerical statistics results of D = 100.
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 (2) Calculate �tness of each wolf, choose the �rst three best wolves and save them as alpha beta and Delta in 
turn.

 (3) Update position. According to Eqs (5–11) update position of the other wolves, that is, update position of 
omega wolf.

 (4) Evolution operation. Use alpha, beta, and delta to form variation factor according to the Eq. (14). A�er 
crossover and selection operation, select the individual with good �tness as the wolf of next generation. 
Choose the �rst three best wolves and save them as alpha beta and Delta in turn.

 (5) Update wolves. Sort �tness values that correspond by wolves from small to large, eliminate R wolves with 
larger �tness value. Meanwhile, randomly generate new R wolves.

 (6) Update parameter a, A and C.
 (7) Judge whether the termination condition is satis�ed, if satis�ed, output the position and �tness value of 

alpha as the optimal solution. If not satis�ed, return to step (2).

Simulation Experiments and Results Analysis
Before carrying out the simulation experiments to compare the performances of adopted optimization algorithm, 
twelve benchmark functions are selected2, which are listed in Table 1. �e experiment consists of two parts. For 
validating the performance of two improvements to the GWO, one part is that separately do experiments for the 
GWO with di�erential evolution (DGWO), GWO with SOF mechanism (SGWO) and IGWO. And meanwhile, 
compare results with DE algorithm. �e second part is that do experiments to compare IGWO with other swarm 
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Figure 18. Convergence curves Function F7.
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Figure 17. Convergence curves Function F6.
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Figure 19. Convergence curves Function F8.
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Figure 21. Convergence curves Function F10.

Figure 20. Convergence curves Function F9.
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intelligence algorithm, including PSO algorithm, ABC algorithm and CS algorithm. �e parameter settings of 
GWO, PSO algorithm, ABC algorithm, CS algorithm and, DE algorithm are de�ned according with literature and 
can be found respectively in8,9,12,13,23, which are listed in Table 2.

Experiment and analysis for two improvement of IGWO. For validating the performance of two 
improvements to the GWO, �rst of all, simulation experiments are separately carried out for the grey wolf opti-
mizer with di�erential evolution (DGWO), grey wolf optimizer with SOF mechanism (SGWO) and IGWO. And 
meanwhile, �e simulation results compared with GWO and DE algorithm are shown in Figs 5–11. It can be seen 
from the simulation convergence curves for the adopted testing functions, compared with GWO, the convergence 
velocity and optimization precision of DGWO, SGWO and IGWO all have been improved, but IGWO is the best.

�en for further validating the searching accuracy of DGWO, SGWO and IGWO, every optimization algo-
rithm is run independently thirty times and the best, worst and average values are recorded for the adopted 
twelve testing functions under the 30-dimension and 100-dimension. �e maximum iterations number is Max 
Max_iter = 500. �e statistical results of D = 30 and D = 100 are shown in Tables 3 and 4 respectively.

Simulation contrast experiments and results analysis. �ree swarm intelligence algorithms (PSO 
algorithm, ABC algorithm and CS algorithm) are selected to carry out the simulation contrast experiments with 
the proposed IGWO so as to verify its superiority on the convergence velocity and searching precision. When 
dimension D = 30, the simulation convergence results on the adopted testing functions are shown in Figs 12–23. 
when D = 100, the simulation convergence results on the adopted testing functions are shown in Figs 24–27.
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Figure 23. Convergence curves Function F12.
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Figure 22. Convergence curves Function F11.
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It can be seen from the simulation convergence curves, IGWO has better convergence velocity and searching 
precision than other three algorithms (ABC, CS and PSO). Especially for function F8, F9 and F12, compared with 
GWO, the IGWO make their convergence speed are improved obviously. It can be seen from their surface �gure 
that the three functions are multimodal function. So there are a lot of local minimum values within the scope of 
search. For IGWO, the addition of di�erential evolution and the SOF mechanism can improving the weakness of 
easily falling into the local extreme and obtain smaller function value. �us, the convergence speeds of the three 
functions are improved signi�cantly. At the same time, it suggests that the IGWO has the superiority to jump out 
of the local optimal.

For further validating the searching accuracy, every optimization algorithm is run independently thirty 
times and the best, worst and average values are recorded for the adopted twelve testing functions under the 
30-dimension and 100-dimension. �e maximum iterations number is Max Max_iter = 500. �e statistical results 
of D = 30 and D = 100 are shown in Tables 5 and 6 respectively. Seen from the numerical results listed in Tables 5 
and 6, the IGWO proposed in this paper makes optimization accuracy of 12 typical functions have a certain 
improvement. And the optimization accuracy of IGWO is better than that of PSO, ABC, CS algorithm under 
the same dimension. For the F1 function, when its dimension D = 30, its average value is raised from e-27 to 
e-63, relative to GWO been increased by 36 orders of magnitude; and when D = 100, its average value is raised 
from e-12 to e-34, relative to GWO increased by 22 orders of magnitude. For the F2 function, when D = 30, its 
average value has been improved 35 orders of magnitude relative to GWO; and when D = 100, relative to GWO 
its average value is improved 22 orders of magnitude. For function F9 and F11, when D = 30 and D = 100, IGWO 
respectively search to their ideal minimum value 0. �e optimization performance for other testing functions all 
has been improved.

�us, the simulation experiments results, including convergence curves and statistics data, show that the pro-
posed improved grey wolves optimizer has a better convergence rate and optimization performance. According 
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Figure 25. Convergence curves Function F8 (D = 100).
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Figure 24. Convergence curves Function F5 (D = 100).
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to the improvement above, three reasons can be summarized: Firstly, the adding of evolution operation is able to 
increase the diversity of wolves, that is to say to increase the solution diversity so as to make the algorithm jump 
out the local extreme. Secondly, the selection method of parents of DE and dynamic scaling factor F can make 
the algorithm has a good exploration ability in the early search stage and has a good exploitation ability in the 
later search stage, therefore, both search precision and convergence speed are improved. In addition, the adding 
of SOF wolf updating mechanism can also decrease the probability of the algorithm falling into the local extreme.

Conclusions
For achieving the proper compromise between exploration and exploitation, further accelerate the convergence 
and increase the optimization accuracy of GWO, an improved grey wolf optimizer (IGWO) is proposed in this 
paper. �e biological evolution and SOF principle in nature are added to the standard GWO. �e simulation 
experiments are carried out by adopting twelve typical function optimization problems. �e simulation results 
show the proposed IGWO has better convergence velocity and optimization performance than DE algorithm, 
PSO algorithm, ABC algorithm and CS algorithm. On the one hand, the adoption of evolution operation can 
increase the wolves diversity and make the algorithm has a good exploration ability in the early searching stage 
and has a good exploitation ability in the later search stage. On the other hand, the adoption of SOF wolf updating 
mechanism can decrease the probability of falling into the local optimum. In the future work, we will carry out 
similar hybridisation of other swarm intelligent optimization algorithms, such as dragon�y algorithm (DA), ant 
lion optimizer (ALO), multi-verse optimizer (MVO), coral reefs optimization (CRO) algorithm, etc.

Data Availability
�ere are no data available for this paper.
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Figure 26. Convergence curves Function F9 (D = 100).
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Figure 27. Convergence curves Function F12 (D = 100).

https://doi.org/10.1038/s41598-019-43546-3


2 1SCIENTIFIC REPORTS |          (2019) 9:7181  | https://doi.org/10.1038/s41598-019-43546-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

References
 1. Derrac, J., García, S. & Molina, D. A practical tutorial on the use of non-parametric statistical tests as a methodology for comparing 

evolutionary and swarm intelligence algorithms. J. Swarm and Evolutionary Computation. 1, 3–18 (2011).
 2. Cui, Z. H. & Gao, X. Z. �eory and applications of swarm intelligence. J. Neural Computing and Applications. 21, 205–206 (2012).
 3. Zhang, Z. et al. On swarm intelligence inspired self-organized networking: its bionic mechanisms, designing principles and 

optimization approaches. J. Communications Surveys & Tutorials IEEE. 16, 513–537 (2014).
 4. Leboucher, C. et al. A swarm intelligence method combined to evolutionary game theory applied to the resources allocation 

problem. J. International Journal of Swarm Intelligence Research (IJSIR). 3, 20–38 (2012).
 5. Parpinelli, R. S. & Lopes, H. S. New inspirations in swarm intelligence: a survey. J. International Journal of Bio-Inspired Computation. 

3, 1–16 (2011).
 6. Kennedy, J. & Eberhart R. Particle swarm optimization, in Neural Networks, 1995. Proceedings., IEEE International Conference on. 

pp. 1942–1948 (1995).
 7. Ebrahimi, J., Hosseinian, S. H. & Gharehpetian, G. B. Unit commitment problem solution using shu�ed frog leaping algorithm. J. 

Power Systems, IEEE Transactions on. 26, 573–581 (2011).
 8. Fang, C. & Wang, L. An e�ective shu�ed frog-leaping algorithm for resource-constrained project scheduling problem. J. Computers 

& Operations Research. 39, 890–901 (2012).
 9. Karaboga, D. & Basturk, B. On the performance of arti�cial bee colony (ABC) algorithm. J. Applied so� computing. 8, 687–697 (2008).
 10. Dorigo, M., Birattari, M. & Stutzle, T. Ant colony optimization. IEEE Computational Intelligence Magazine 1, 28–39 (2006).
 11. Simon, D. Biogeography-based optimization. Evolutionary Computation, IEEE Transactions on 12, 702–713 (2008).
 12. Yang, X. S. & Deb, S. Cuckoo search via Lévy flights. A. Proceedings of World Congress on Nature & Biologically Inspired 

Computing. C. IEEE Publications. USA, 210–214 (2009).
 13. Mirjalili, S., Wang, G.-G., dos, L. & Coelho, S. Binary optimization using hybrid particle swarm optimization and gravitational 

search algorithm. J. Neural Computing and Applications. 25, 1423–1435 (2014).
 14. Črepinšek, M., Liu, S. H. & Marjan, M. Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 45, 

1–33 (2013).
 15. Mirjalili, S., Mirjalili, S. M. & Lewis, A. Grey wolf optimizer. J. Advances in Engineering So�ware. 69, 46–61 (2014).
 16. Brambilla, M. et al. Swarm robotics: a review from the swarm engineering perspective. J. Swarm Intelligence. 7, 1–41 (2013).
 17. Liao, J. et al. A neighbor decay cellular automata approach for simulating urban expansion based on particle swarm intelligence. J. 

International Journal of Geographical Information Science. 28, 720–738 (2014).
 18. Das, S. & Suganthan, P. N. Di�erential evolution: a survey of the state-of-the-art. J. Evolutionary Computation, IEEE Transactions on. 

15, 4–31 (2011).
 19. Palmer, Katie et al. Di�erential Evolution of Cognitive Impairment in Nondemented Older Persons: Results From the Kungsholmen 

Project. J. Psychiatry. 159, 436–442 (2014).
 20. Agrawal, R. et al. Parallelization of industrial process control program based on the technique of di�erential evolution using multi-

threading[C]//Industrial Engineering and Engineering Management (IEEM), 2014 IEEE International Conference on. IEEE, 
546–550 (2014).

 21. Islam, S. M. et al. An adaptive di�erential evolution algorithm with novel mutation and crossover strategies for global numerical 
optimization. J. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on. 42, 482–500 (2012).

 22. Zheng, Y. J. et al. A hybrid �reworks optimization method with di�erential evolution operators. J. Neurocomputing. 148, 75–82 (2015).
 23. Zhang, P., Wei, Y. X. & Xue, H. Q. Heterogeneous Multiple Colonies Ant Colony Algorithm Based on Survival of Fittest Rules. J. 

Computer Engineering. 38, 182–185 (2012).
 24. Eyler, C. E. & Rich, J. N. Survival of the �ttest: cancer stem cells in therapeutic resistance and angiogenesis. J. Journal of Clinical 

Oncology. 26, 2839–2845 (2008).
 25. Whitley, D. An executable model of a simple genetic algorithm. J. Foundations of genetic algorithms. 2, 45–62 (2014).
 26. Vidal, T. et al. A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with 

time-windows. J. Computers & Operations Research. 40, 475–489 (2013).
 27. Kristian, B. & Frédéric, R. N. Survival of the Fittest in Cities: Urbanisation and Inequality. J. �e Economic Journal. 124, 1371–1400 (2014).
 28. Bak, P. & Sneppen, K. Punctuated equilibrium and criticality in a simple model of evolution. Physical Review Letters. 24, 4083–4086 (1993).
 29. Boettcher, S. & Percus, A. Nature’s way of optimizing. Arti�cial Intelligence. 1–2, 275–286 (2000).

Acknowledgements
This work was supported by the Project by National Natural Science Foundation of China (Grant No. 
21576127), the Basic Scienti�c Research Project of Institution of Higher Learning of Liaoning Province (Grant 
No. 2017FWDF10), and the Project by Liaoning Provincial Natural Science Foundation of China (Grant No. 
20180550700).

Author Contributions
Jie-Sheng Wang participated in the concept, design, interpretation and commented on the manuscript. A 
substantial amount of Shu-Xia Li’s contribution to the data collection, analysis and algorithm simulation, dra� 
writing, and critical revision of this paper was undertaken.

Additional Information
Competing Interests: �e authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© �e Author(s) 2019

https://doi.org/10.1038/s41598-019-43546-3
http://creativecommons.org/licenses/by/4.0/

	An Improved Grey Wolf Optimizer Based on Differential Evolution and Elimination Mechanism

	Grey Wolf Optimizer

	Improved Grey Wolf Optimizer (IGWO)

	Grey Wolf Optimizer with evolution operation. 
	Mutation operation. 
	Crossover operation. 
	Selection operation. 

	SOF wolves updating mechanism. 

	Simulation Experiments and Results Analysis

	Experiment and analysis for two improvement of IGWO. 
	Simulation contrast experiments and results analysis. 

	Conclusions

	Acknowledgements

	Figure 1 2D position vectors and possible next locations.
	Figure 2 Position updating of IGWO.
	Figure 3 Exploration and exploitation of wolf in GWO.
	Figure 4 Flow chart of IGWO algorithm.
	Figure 5 Convergence curves Function F8 (D = 30).
	Figure 6 Convergence curves Function F9 (D = 30).
	Figure 7 Convergence curves Function F10 (D = 30).
	Figure 8 Convergence curves Function F12.
	Figure 9 Convergence curves Function F4.
	Figure 10 Convergence curves Function F8 (D = 100).
	Figure 11 Convergence curves Function F9 (D = 100).
	Figure 12 Convergence curves Function F1.
	Figure 13 Convergence curves Function F2.
	Figure 14 Convergence curves Function F3.
	Figure 15 Convergence curves Function F4.
	Figure 16 Convergence curves Function F5.
	Figure 17 Convergence curves Function F6.
	Figure 18 Convergence curves Function F7.
	Figure 19 Convergence curves Function F8.
	Figure 20 Convergence curves Function F9.
	Figure 21 Convergence curves Function F10.
	Figure 22 Convergence curves Function F11.
	Figure 23 Convergence curves Function F12.
	Figure 24 Convergence curves Function F5 (D = 100).
	Figure 25 Convergence curves Function F8 (D = 100).
	Figure 26 Convergence curves Function F9 (D = 100).
	Figure 27 Convergence curves Function F12 (D = 100).
	Table 1 Test functions.
	Table 2 Parameters Settings of each algorithms.
	Table 3 Numerical statistics results of D = 30.
	Table 4 Numerical statistics results of D = 100.
	Table 5 Numerical statistics results of D = 30.
	Table 6 Numerical statistics results of D = 100.


