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Vehicular ad-hoc network (VANET) is the direct application of mobile ad-hoc network (MANET) in which the nodes represent
vehicles moving in a city or highway scenario. The deployment of VANET relies on routing protocols to transmit the information
between the nodes. Different routing protocols that have been designed for MANET were proposed to be applied in VANET.
However, the real-time implementation is still facing challenges to fulfill the quality of service (QoS) of VANET. Therefore, this
study mainly focuses on the well-known MANET proactive optimized link state routing (OLSR) protocol. The OLSR in VANET
gives a moderate performance; this is due to its necessity of maintaining an updated routing table for all possible routes. The
performance of OLSR is highly dependent on its parameter. Thus, finding optimal parameter configurations that best fit VANET
features and improve its quality of services is essential before its deployment. The harmony search (HS) is an emerging met-
aheuristic optimization algorithm with features of simplicity and exploration efficiency. Therefore, this paper aims to propose an
improved harmony search optimization (EHSO) algorithm that considers the configuration of the OLSR parameters by coupling
two stages, a procedure for optimization carried out by the EHSO algorithm based on embedding two popular selection methods
in its memory, namely, roulette wheel selection and tournament selection. The experimental analysis shows that the proposed

approach has achieved the QoS requirement, compared to the existing algorithms.

1. Introduction

Vehicular ad hoc network (VANET) is considered as an
emerged class of the well-known mobile ad hoc network
(MANET) [1, 2]. However, VANET and MANET can be
distinguished with their features given in Table 1. The idea of
vehicles communicating between them and forming a
network to support different applications has attracted many
researchers in both academic and manufacturer commu-
nities. Nodes in VANET are vehicles, and they communicate
between each other using vehicle to vehicle (V2V) or vehicle
to infrastructure (V2I) communication, where the first one
enables vehicles to communicate with each other to share
their information and the second one enables the vehicles to
communicate with Road Side Units (RSU) that gather and

broadcast information. These communications have led to
the emergence of intelligent transportation systems (ITS),
which can be used to transmit different kinds of information,
thereby making driving more efficient and safe. For instance,
in the case of an accident, it is useful to broadcast a message
indicating the accident and warning drivers to slow down or
take another route before reaching the accident area; for this
reason, it’s an interesting field of study for the researchers to
work on and develop these kind of applications, which can
save humans lives [3-5]. Figure 1 demonstrates A VANET
network.

The VANET is a multi-hop network where the nodes can
communicate with each other even when the sender node
and the destination node are not in the same radio range. Its
highly dynamic topology characterizes it, and network
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TaBLE 1: Summary of VANET and MANET features.

Property VANET MANET
Node’s mobility High, nonrandom Random
Network size Large Medium
Energy limitations Low Very high
Node’s computation power High Low
Location dependency Very high Low

fragmentation frequently happens as the vehicles can move
at very high speeds. Thus, it’s challenging to design a routing
protocol that delivers the packets through the network with
such unique features, especially with the absence of a central
entity and the road’s obstacles [6, 7]. Many routing protocols
that were designed for MANET were proposed to be applied
in VANET. According to their working nature, these routing
protocols can be classified into proactive protocols, reactive
protocols, and hybrid protocols. Proactive protocols are
table-driven that need to update the routing tables and
maintain network topology by sending periodic control
messages, such as Destination-sequenced-Distance-Vector
(DSDV) and Optimized Link State Routing Protocol
(OLSR). Reactive protocols need to update their routing
table by sending control messages whenever a new route is
necessary. Dynamic Source Routing (DSR) and Location-
Aided routing protocol (LAR) are examples of this type of
routing protocol [8, 9]. Optimized Link State Routing
protocol was mainly designed for MANET by the REF
community [10, 11].

This paper mainly contributes to solving the OLSR
optimization and network quality challenges by using the
proposed improved Harmony Search Optimization (EHSO)
algorithm. We have defined the optimal parameter values for
OLSR optimization that significantly improves the network
quality by maintaining the standard QoS.

The rest of the paper is organized as follows: Section 2
discusses the recent related works on the OLSR protocol and
harmony search. Section 3 focuses on the proposed ap-
proach and its design consideration. Section 4 describes the
simulation setup and parameter configuration of the sim-
ulation environment, data generation, and the node’s mo-
bility model. It then displays the performance metrics used
to evaluate the results. Section 5 presents the results analysis
and discussion of the proposed work. Section 6 concludes
this work.

1.1. Optimized Link State Routing Protocol. The IETF
community is credited for the design of the Optimized Link
State Routing (OLSR) protocol, and it is mentioned as an
experimental protocol in the Request for Comments 3626. It
applies the shortest path routing algorithm, which is an
extended traditional link-state approach for decreasing the
overhead of link-state updates, particularly in dense ad hoc
networks.

The exchange of HELLO messages amongst nodes allow
them to learn their local vicinity and the link status with their
neighbor (i.e. considering the link to be bidirectional or
unidirectional). Through periodic topology control
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messages, this local information is distributed throughout
the entire network. After obtaining the information through
TC and HELLO messages, each node creates its view of the
network topology independently and runs the Dijkstra al-
gorithm to select the shortest routes to the potential des-
tination. Analogous to DSDV, each protocol message is
tagged by the OLSR with a sequence number to differentiate
between fresh and stale information. In terms of network
resources, flooding with TC messages can be a costly op-
eration. Each node forwards a copy of the message through
regular blind flooding. The OSLR uses the MPR technique to
check on the cost of forwarding flooded messages, which
also keeps the number of nodes required to deliver a message
to a minimum, even though it still reaches the whole
nonpartitioned section of the network. In the MPR ap-
proach, a node N is assumed to have knowledge of its 2-hop
neighborhood. In the OLSR, this is achieved by employing
neighborhood information to enrich the HELLO messages.
Then, a subset of relays is selected by N amongst its 1-hop
neighbors, which covers the same 2-hop nodes similar to
that of the complete 1-hop neighborhood. This subset is
referred to as the MPR set of N, where the MPR selector of
each node in the set is defined by N. If a message has to reach
the whole 2-hop neighborhood, forwarding of messages
occurs for only those nodes that were selected by the source
as MPRs. Figure 2 presents an example where the message
reaches all the nodes through only four retransmissions,
instead of the required eight transmissions in the case of
blind flooding. When applying the same behavior to bigger
networks, forwarding occurs for only those broadcast
messages that were received through an MPR selector.
The source selects gray nodes as MPRs. Here, to reach all
the nodes, just four out of eight retransmissions are required.
The OLSR assumes that accessing the medium turns out to
be costlier for transmitting several packets than putting
more bytes in a given packet. This holds true for most
wireless data link layers. Thus, the aggregation of the OLSR
messages is maintained as long as possible into control
packets. The trade-off between probability of reception and
medium access is biased to the former, since large messages
are more prone to suffering from transmission errors. Let us
analyze an example of the functioning of the OLSR. The
HELLO messages issued by the nodes are presented in
Figure 3 in an ad hoc network. The list of neighbors is
embedded in the HELLO messages regarding the sending
node, and a link code that indicates the type of link is present
between them: symmetric, asymmetric, or MPR.
Consequently, the basis of computing the MPR is de-
fined by the set of HELLO mechanism to inform a neighbor
if it has been selected as an MPR. In the figure, the optimal
MPR is computed by D, which is {A}. The nonoptimal MPR
set {A, C} is sometimes selected to add redundancy.
Furthermore, it is not necessary for the optimal MPR to
be unique. For instance, C’s optimal MPR set can either be
{B} or {C}, as the whole 2-hop neighborhood {A} is covered
by both the sets with the same number of elements. Each
node can set up optimal routes (in terms of the number of
hops) for all 1-hop and 2-hop neighbors by utilizing only the
information obtained from the HELLO messages, even
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V2I : vehicle to infrastructure
V2V : vehicle to vehicle
RSU : roadside unit

Ficure 1: VANET communication architecture.

FIGURE 2: MPR selection and the working principle of the OLSR
[8, 9, 12-14].

though link states need to be exchanged via TC messages
with the remaining nodes in the network in case there are
more distant nodes.

Following the same example, in Figure 4, it can be seen that
just A and D are in charge of sending TC messages and the
nodes have to be selected as the MPR by at least one neighbor
[8,9, 12-14]. Besides, the MPR selectors are the only ones that
forward these, i.e., messages from D are forwarded by A since
the former selects the latter as the MPR, and vice versa. And
finally, within the TC, an announcement is required for only
those links with the MPR selectors. This information is enough
to compute optimal routes. For instance, the HELLO exchange
facilitates node B to gain information and decide that it has a
direct 1-hop route to A and C.

It recognizes S and D to be neighbors of A, which helps
configuring routes to them with two hops each with A being
the next hop. A node identifies if a neighbor is not reachable,

(A) is the optimal MPR set for D
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FIGURrE 3: The working principle of the OLSR [8, 9, 12-14].
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FiGUure 4: Continuation of the working principle of the OLSR
(8,9, 12-14].

which is achieved when either the link layer informs that it
cannot deliver packets or several periodic HELLO messages
were not received from the neighbor. In that case, the new
topology is inserted in the HELLO and TC messages to
facilitate immediate propagation. Even though the MPRs
allow for achieving more significant optimization, large



networks still face flooding TC messages. In addition, in the
case of highly mobile conditions experiencing frequent
topology changes, the protocol overhead increases, triggered
by TC messages’ issue to prevent loops.

1.2. OLSR Parameter Tuning. The OLSR’s standard config-
uration provides a moderate quality of services when it is
applied in VANETSs. Hence, after considering the effect of the
parameter configuration on the whole network’s perfor-
mance, we have examined the optimal OLSR parameter
tuning problem to establish the best protocol configuration
for the deployment of VANET. Definition of the standard
OLSR parameters was done without having any exact values
for their ranges. Here, each parameter range of importance
has been defined based on the OLSR restrictions. The aim
was to avoid having pointless configurations.

Based on this, the OLSR parameters can be utilized to
define a solution vector of real variables, with each one used
to represent a particular OLSR parameter (see Table 2). The
harmony search algorithm as an optimization technique can
be used to automatically fine-tune a solution vector to obtain
efficient OLSR parameter configurations that can be used for
the VANETs.

The OLSR mechanisms are regulated by a set of pa-
rameters predefined in the OLSR RFC, and they are the
timeouts before resending HELLO, MID, and TC messages
(HELLO-INTERVAL, MID-INTERVAL, and TC-INTER-
VAL, respectively); the “validity time” of the information
received via these three message types, which are NEIGHB
HOLD TIME (HELLO), MID HOLD TIME (MID), and
TOP HOLD TIME (TC); the WILLINGNESS of a node to
act as an MPR (to carry and forward traffic to other nodes);
and DUP HOLD TIME, which represents the time during
which the MPRs record information about the forwarded
packets [15].

2. Related Works

In the VANETS, some of the challenging features include the
high node mobility, the limitation of the WiFi in the cov-
erage and the channels’ capacity, the presence of many
obstacles that generate a data packet loss, topology changes,
and network fragmentation [16]. Hence, Toutouh et al. [17]
and Muniyandi et al. [18] proposed several optimization
techniques like the Differential Evolution (DE), Particle
Swarm Optimization (PSO), Genetic Algorithm (GA), and
the Simulated Annealing (SA) for improving the OLSR
performance in the VANETs. They did so after defining the
optimization problem for tackling the optimal parameter
settings. Also, they expressed a set of representative VANET
scenarios (for the city of Mélaga) for an accurate evaluation
of the OLSR network performance using NS2. In their ex-
periments, the authors noted that the tuned OLSR algorithm
showed a better QoS as compared to the standard scheme for
parameters like end to end (E2E) Delay, packet delivery ratio
(PDR), and the overhead metrics [19]. However, the bio-
inspired optimization algorithms have the fitness density
and complexity issue that needs to be considered.
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Karimi et al. [20] pointed that network lifetime was an
essential factor in the design of Wireless Sensor Networks,
and it depended on the sensor nodes’ energy, which in turn
was limited by the node’s battery. Clustering is considered to
be a strategy in energy management for wireless sensor
networks. Consequently, Leach (Low-Energy Adaptive
Clustering Hierarchy) [20] is regarded as one of the most
popular clustering mechanisms. In this method, random
cluster selection resulted in its inefficiency. Karimi et al. [20]
proposed two algorithms—HS-leach and GP-leach. They
were able to enhance the energy consumption through
network partitioning. They also utilized the evolutionary
algorithms to optimize the selection of the cluster heads
while taking into consideration the position information and
the residual energy of the WSN nodes. The simulation results
obtained using MATLAB revealed that their proposed al-
gorithms had more efficiency and increased the network’s
lifetime. However, the overhead, the packet loss ratio, and
the complexity can be challenges for such a proposal.

Furthermore, Patil and Dhage [21] addressed the net-
work load issue for the OLSR algorithm in the VANETs. The
authors suggested using the Necessity First Algorithm
(NFA) for selecting the MPR in the OLSR algorithm rather
than the basic greedy algorithm after auto-tuning the dif-
ferent OLSR parameters. The NFA was seen to improve the
routing protocols’ performance and enhanced the network
data rates and reduced the network load. After that, they
developed an optimization technique for fine-tuning the
OLSR protocol after automatically obtaining the configu-
ration that best fits the VANET characteristics. This opti-
mization problem was defined using the search space and
quality or fitness functions. They used a simulation process
for assigning the quantitative quality values (fitness) for
determining the OLSR algorithm performance for the
computed configurations with regard to the communication
costs. The automatic selection of the best available config-
urations affected the fitness values. The research was carried
out using the NS2. Patil and Dhage [21] observed that their
proposed OLSR implemented with the novel automated
selection of the optimized configuration offered better
performance and further reduced the network load and was
more suited for the higher density networks.

Kots and Kumar [22] proposed a heuristic approach for
the effective selection of the MPRs in the OLSR routing
protocol. The MPR selection was seen to be an essential
function of the OLSR protocol. The researchers proposed
using a novel Fuzzy logic-based routing metric for the choice
of the MPRs. Their proposed process helped select the
QMPRs (quality multipoint relays) for the OLSR protocol in
the MANET environment. They used the fuzzy-based al-
gorithm for predicting the quality nodes in the OLSR routing
protocol in the MANET setting. For determining the node
quality within the network, they considered the total sum of
the quality factors like stability, energy, and buffer occu-
pancy. They captured these metrics during the OLSR pro-
tocol’s initialization, and these values were regularly updated
whenever a new MPR was chosen from the nodes. This
method was validated with the help of the predicted values’
statistical study, while the approach was verified in
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TABLE 2: Predefined OLSR parameters [15].

Parameter Standard value Range
HELLO_INTERVAL 2.0s R € [1.0,30.0]
MID_INTERVAL 2.0s R € [1.0,30.0]
TC_INTERVAL 5.0s R € [1.0,30.0]
WILLINGNESS 3 R € [7]
NEIGHB_HOLD_TIME 3x HELLO_INTERVAL R € [3.0,100.0]
MID_HOLD_TIME 3xTC_MID R € [3.0,100.0]
TOP_HOLD_TIME 3x TC_INTERVAL R € [3.0,100.0]
DUP_HOLD_TIME 30.0s R € [3.0,100.0]

MATLAB. The method ensured an improved network and
lesser power consumption in a MANET setting and en-
hanced network efficiency. However, an experimental study
is mandatory to test network efficiency and energy
consumptions.

In VANET, frequent topology changes happen because
of the high mobility of the nodes and the limitation of signal
coverage [23]. However, the reactive routing protocol’s
scope in VANET is limited due to VANET’s topology in-
stability. On the other hand, proactive routing protocols like
the OLSR, which are mainly designed for the MANET, also
fail to satisfy the wide range of data services that have been
intended for the VANET. This is due to the existing OLSR
protocol’s inability to predict channel overload and sense
channel conditions. To obtain better routing efficiency, the
network has to gain some cognitive capacity that will allow it
to select an optimal path that considers both the channel
information and the link-state, thereby helping it overcome
the problem of channel incapacity [13]. Hasan et al. [24]
attempted to improve the OLSR routing by utilizing cog-
nitive processes that obtain and store knowledge on routing
strategies to determine and select the most suitable route and
channel for transmission. The focus of this research was on
optimizing the OLSR routing protocol to adapt to the
VANET’s high mobility. First, it utilized cognitive radio to
address the issue of channel inadequacy. Next, the optimal
next-hop neighbor was chosen to strengthen the COG-
OLSR or the link connectivity time. Based on the simulation
experiments, OLSR and Cog-OLSR were compared based on
performance measures such as end-to-end delay for the
urban roadmap and packet delivery ratio. The former was
found to have successfully estimated the projected lifetime of
the link that was connected to the next hop. It was found out
that the projected lifetime was close to the actual connec-
tivity time.

Recently, it has been seen that the energy-aware and
green communication protocols have garnered a lot of in-
terest in the scientific community, specifically when using
wireless mobile networks. Toutouh et al. [14] attempted to
deal with decreasing the power consumption in the OLSR
routing protocols used for vehicular networks. This can be
accomplished by changing the standard parameter config-
urations and thereby reducing the routing overhead.
Therefore, in this regard, meta-heuristics are a promising
tool for determining the precise energy-aware OLSR con-
figurations within a short period, despite considering a huge
parameter set. Toutouh et al. [14] proposed the application

of an automated configuration of the main OLSR parameters
after using the parallel Evaluation Annealing (EA). The
primary objectives of this study were: (i) improving the
efficiency of the OLSR algorithm in the VANETSs by reducing
the energy consumption when standard OLSR configura-
tions were used and (ii) scaling down the time needed for
performing the automatic configurations for studying huge
and realistic VANET-based scenarios. Toutouh et al. [14]
studied the search space for probable combinations of 8
parameter values, which could define the OLSR routing,
with GA’s help.

Furthermore, the power consumed because of the data
exchange for every OLSR configuration was also inves-
tigated based on the available data after carrying out the
VANET simulations using the NS2. As all simulations
needed a long time for their execution, Toutouh et al. [14]
also parallelly used the GA to reduce the search time. Their
results showed a significant improvement compared to the
standard configuration with regard to the power con-
sumed, with no consequential loss in the performance
metrics.

Wahab et al. [25] had been applying the VANET QoS-
OLSR protocol, which could maintain vehicular network
stability while fulfilling the QoS requirements. This protocol
was composed of three components: (1) QoS-based clus-
tering with the help of the Ant Colony Optimization, (2)
MPR recovery algorithm, and (3) the cheating prevention
process. For ensuring cluster stability, Wahab et al. [25] also
included the distance and the velocity of the vehicles, rep-
resenting mobility metrics within the QoS functions. Then,
the protocol selected the cluster-heads based on the local
maximal QoS values. The cluster heads chose a set of op-
timized MPRs that could satisfy the mobility and the routing
constraints as per the Ant Colony Optimization algorithm.
For guaranteeing that the selection procedure was reliable
and fair, Wahab et al. [25] also included a cheating pre-
vention mechanism. Finally, they used the MPR recovery
algorithm to select alternative MPRs and maintain network
connections to avoid link failure. The simulation results and
the performance analysis showed that the application of the
newly proposed protocol could extend the life of the network
by 12%, decrease the percentage of the chosen MPRs by 20%,
show a 10% improvement in the PDR, and also reduce the
path length by two hops.

Park et al. [26], Al-Terri et al. [27], and Prakash et al. [28, 29]
addressed the issue of the MPR node disconnection because of
the mobility present in the VANETs with the QoS-OLSR



protocol’s help. This protocol used the MPR nodes for com-
municating within the clusters. The MPR disconnection is a big
challenge in the VANET because of the frequent changes in the
network topology. Consequently, the routing protocol perfor-
mance would decline as it could significantly affect the network’s
connectivity. Hence, the authors proposed a novel cluster-based
QoS-OLSR protocol, which was based on the Intelligent Water
Drop (IWD) algorithm. This IWD-QoS-OLSR protocol was
seen to improve the network connectivity and consisted of three
components: the cluster formation, the MPR selection, and the
MPR failure management. They carried out the cluster for-
mation with the help of the algorithm described in the QoS-
OLSR. The MPR selection was carried out using the IWD al-
gorithm, which helped select the best path within a limited time.
After that, the authors used an MPR failure management al-
gorithm for tackling the link failure scenarios. The algorithm
allowed the cluster heads to choose alternative MPR sets after
the MPR was detached from the network because of their
mobility. The authors used the MATLAB and Mobisim software
for simulating the IWD-QoS-OLSR algorithm. However, the
study conducted mainly theoretical simulation-based experi-
ments to improve the connectivity issue. Nonetheless, in the
actual experimental testing, the packet delivery ratio and the
packet losses might be affected.

Mehra et al. [30] and Li et al. [31] suggested a clustering
approach that was based on the routing protocol for the
VANETs. Their proposed algorithm was a type of the dis-
tributed clustering algorithm along with the OLSR routing
protocol and possessed an excellent data dissemination rate.
The output of the protocol defined this data dissemination.
This proposal could minimize the end to end (E2E) delay;
however, the throughput and overhead are still a concern.
Moreover, the cluster stability is another challenge for the
vehicle’s position (determined by the vehicle GPS), and its
velocity changes with its dynamicity. Therefore, improving
the mobility issue can provide ample scope to consider the
clustering process between the cluster heads and the
members. Moreover, the real-time experimental scenario is
mandatory to measure the required QoS performance, such
as E2E Delay, PDR, packet loss ratio, and throughput.

The harmony search algorithm was firstly proposed by
Geem et al. [26, 32, 33]. This algorithm simulates the be-
havior of musicians that compose the harmony. For ex-
ample, consider a group of musicians who are a part of one
orchestra. The appropriate blend of organized notes that are
performed by each musician is finally turned into beautiful
music. Every composition of notes played by the musicians
is referred to as the harmony. After production, each har-
mony should be esthetically checked to determine if the
harmony obtained is the same. Successive exercises are
performed until the harmony in consideration is produced.
Musicians at any given time will practice and repeat their
performance to deliver better harmonies. Consequently,
each of the descriptions given about orchestra performance
can be considered similar to the Harmony Search Algorithm
components. Every musician in an orchestra can be used to
represent a single variable in the Harmony Search Algo-
rithm. How each musician performs notes in specific time
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intervals could mean how each variable is chosen from
particular intervals. The harmony produced by the orchestra
can be considered as one answer vector. In the same way that
each harmony created by the orchestra should be checked,
each solution produced by the Harmony Search Algorithm
should also be evaluated based on the fitness function. Since
musicians strive to improve their music quality at every
practice, it means that new harmonies should be better than
the previous ones. Every musician in an orchestra has three
options that they can choose from for playing notes: (1) Play
the notes strictly based on their memory. (2) Play notes that
are somewhat similar (with minimal changes in the notes).
(3) Play a random note. In the first case, a musical orchestra
player can take notes from past practice sessions to improve.
A variable within the harmony search algorithm can also
perform a similar process using information currently stored
in the harmony’s memory. Each variable’s position for all the
rows of the matrix memory harmony remains the same.
Thus, when a variable chooses the first case, one of the
variables found within the memory column harmony is
chosen. The selection of variable rate depends on the
Harmony Memory Considerating Rate (HMCR). For the
second case, a musician in a musical orchestra can imple-
ment some changes to the notes that he/she will play. This is
referred to as the Pitch Adjustment Rate (PAR). Similarly, in
a harmony search algorithm, a variable can slightly alter the
chosen HMCR parameter’s value. For the third case, a
musician playing in an orchestra can also choose to play
random notes. Similarly, a harmony search algorithm can
also randomly select a variable’s value. For this third case, the
randomized term is utilized. Music improvisation refers to a
process of searching for better harmonies by trying out
different pitch combinations that should adhere to any of the
three rules below:

(i) Playing any pitch based on memory

(ii) Playing a pitch that is adjacent to one pitch based on
memory

(iii) Playing a random pitch that belongs and is a part of
the possible range

This process is imitated every time the HS algorithm
selects a variable. Similarly, any of the three rules presented
below should be followed:

(i) Selecting any value taken from the HS memory.

(ii) Selecting an adjacent value taken from the HS
memory.

(iii) Selecting a random value given the possible value
range. The HS algorithm’s three rules are effectively
directed with the use of two vital parameters: pitch
adjusting rate (PAR) and harmony memory con-
sidering rate (HMCR).

Various investigations have been conducted on the HS
algorithm by modifying its structure or hybridizing it with
other meta-heuristic methods to solve different optimization
problems in different fields. The HS algorithm has three
essential parameters, which are harmony memory
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consideration rate (HMCR), pitch adjustment rate (PAR),
and bandwidth (BW).

An improved version of the global-best harmony search
(IGHS) algorithm was proposed by Wang and Huang [34].
The IGHS algorithm combines initialization conferring to
opposition-based learning to enhance the quality of solution
in the initial harmony memory, a new improvisation scheme
that employs differential evolution to improve the local
search capability, a modified random consideration for
decreasing the randomness of the global-best harmony
search (GHS) algorithm that uses the artificial bee colony
algorithm, and two perturbation schemes that are used to
avert premature convergence. Moreover, pitch adjusting rate
and harmony memory consideration rate were two pa-
rameters of IGHS that dynamically updated according to the
composite function consisting of a periodic function, a linear
time-varying function, and a sign function with regard to the
estimated periodicity of evolution in nature. Twenty-eight
benchmark functions were tested, the results of which
specify far better performance through IGHS compared with
the basic harmony search (HS) algorithm, and eight popular
GHS meta-heuristics were also compared with IGHS. The
results indicated that IGHS was either better than or at least
similar to those methods on most of the test functions.

The Hybrid Binary Differential Evolution Harmony
Search Algorithm (HBDEHS) was used in Wireless Sensor
Networks [35]. Wang et al. [35] focused on the Industrial
Wireless Sensor Networks” (IWSNs) optimal node place-
ment problem. As opposed to the nonindustrial Wireless
Sensor Networks, IWSNs had a vital requirement on the
networks’ reliability. Thus, they developed a new model for
node placement in IWSNs. This model was able to take into
account the cost, reliability, load constraint, and scalability.
Given its NP-hard quality, a new hybrid Binary Differential
Evolution Harmony Search Algorithm (HBDEHS) was
chosen to address the problem of optimal sensor deploy-
ment. Four large-scale node deployment problems were
selected as the benchmarks and used to verify the optimi-
zation algorithm and the proposed model.

In addition, the other five binary optimization algo-
rithms, i.e., Modified Binary Differential Evolution Algo-
rithm (MBDE), Global Harmony Search Algorithm
(NGHS), Discrete Binary PSO algorithm (DBPSO), Discrete
Binary Harmony Search Algorithm (DBHS), and Simple
Genetic Algorithm (SGA), were also implemented to address
the problems for a comparison. Based on the experimental
results, it was established that all the algorithms could de-
termine the feasible solutions. This signified the proposed
model’s validity and its capacity to address the optimal node
placement problem effectively. Furthermore, the compari-
son results also showed that HBDEHS possesses the best
global search ability and that it was able to perform better
than DBHS, DBPSO, MBDE, NGHS, and SGA in terms of
convergence speed and search accuracy.

Amin et al. [36] came up with a modified HS with diversity
injection and multi sub-harmony memories (sub-HMs) to
solve the MANETS’ dynamic SP problem. In the problem, the
least cost solutions for bandwidth-delay-constrained systems
were being sought for. Both links with minimum bandwidth

and end-to-end delay were used as quality-of-service metrics to
guarantee real-time applications’ best performance. It exploited
a set of experiments to make comparisons between the restart
HS (RHS), modified HS (MHS), and standard HS (SHS). The
results revealed that the MHS that was proposed performed
better compared to both RHS and SHS. Furthermore, the MHS
could recover from topological changes and converge rapidly
to reasonable solutions before a new topological change occurs.

Moh’d Alia et al. [37] introduced a clustering algorithm
based on the Harmony Search Algorithm. They developed
cluster-based, energy-efficiency protocols that can be used
in the Wireless Sensor Networks (WSNs). One challenging
issue was determining how to organize the sensors dy-
namically and into a wireless communication network.
They also routed the sensed information from the field
sensors and sent it to a remote base station so that the
lifetime of WSNs is prolonged. The authors proposed a
clustering algorithm for WSNs that was energy-efficient,
dynamic, and able to automatically organize the sensors
into a suitable number of clusters that could be used in the
network. This algorithm was based on the Harmony Search
Algorithm, which was considered a meta-heuristic, music-
based optimization algorithm, which got rid of the need to
pre-set the number of clusters. Moreover, in the cluster
head selection algorithm, a multi-objective approach was
utilized to choose the best cluster headset. The simulation
results revealed that the proposed algorithm was able to
achieve an optimal number of clusters, prolong the lifetime
of the network, and increase the delivery of data at the base
station compared to other popular clustering-based routing
protocols.

A differential harmony search (DHS) algorithm by
blending differential evolution and harmony search
processes was introduced to address the economic loading
dispatch [38]. To start with, the pitch adjustment oper-
ation of the actual HS was collaborated with the differ-
ential mutation operation to improve exploitation
capability. Next, the memory consideration and the im-
proved pitch adjustment operation were deployed to boost
the exploration capability. In comparison to the pure HS,
the utilization of differential mutation and crossover
achieved the potential to improve the exploitation in the
DHS As against the pure DE; the DHS might obtain el-
ements from as many individuals as its quantity of di-
mensions when creating a new individual for improving
the exploration capability. Third, the researchers rec-
ommended a repair process and three straightforward
selection rules to deal with the optimization problem’s
limitations. Simulation tests were conducted using Visual
Studio 2008. The DHS outcomes were matched against a
few of the current algorithms, particularly with a few other
HS and DE variants. The results depicted the efficacy,
competence, and sturdiness of the recommended HS
when collaborating with DE to deal with large-scale op-
timization problems. Furthermore, the DHS was nearly
robust on several parameters.

A new variant of the HS algorithm called Geometric
Selective Harmony Search (GSHS) was developed by Castelli
et al. [39] and Li et al. [40]. The key dissimilarities between



the actual HS and GSHS were: (i) the presence of a selection
process stimulated by the tournament selection of genetic
programming and genetic algorithms; (2) the definition of a
new mutation operator that significantly enhances the
evolvability of improved solutions due to their geometric
attributes; and (3) the definition of a new memory con-
sideration procedure, which was centered on the utilization
of a recombination operator. Mainly, by construction, a
geometric semantic crossover generates an offspring that
was not inferior to the lowest of its parents. Geometric
semantic mutation triggers a perturbation on the semantics
of solutions, whose scale was regulated through a parameter.
A comparison of GSHS had been made with the actual HS
and another variant, the improved HS (IHS). The com-
parison of the algorithms had been made on 20 benchmark
problems from the CEC 2010 suite. The outcomes indicated
that GSHS outdoes the other approaches with statistically
significant dissimilarities in nearly all cases.

Furthermore, scrutiny of the parameters initiated by the
approach had been carried out. The outcomes indicated that
the tournament size’s small values were the most apposite.
With regard to the mutation stage, it was impossible to come
up with a generic inference: few of the problems perform
well with a small mutation step, whereas others entail a
higher value. The impact of the mutation operator was noted
to be marginal when a comparison was made with the
performance enhancements rising out of the other
alterations.

A modified harmony search (MHS) algorithm had been
presented that consists of an intersect mutation operator and
local cellular search to allow addressing continuous function
optimization problems [41]. During the searching process,
the MHS algorithm distributes all harmonies in the harmony
memory to be classified as a worse part and a better part
based on their fitness, rather than just concentrating on the
intelligent tuning of parameters. Harmony vectors were
produced through the novel intersect mutation operation.
Moreover, MHS now includes a local cellular search as well,
which helps in enhancing optimization performance
through the exploration of a vast search space in the early
run phase to prevent premature convergence, and in the
later run phase, to exploit a small region to Polish the final
solutions. For the proposed MHS algorithm, an orthogonal
test and a range analysis method were employed to deter-
mine the effects of parameters for achieving better parameter
settings. Finally, to test and examine the proposed MHS
algorithm’s performance, two sets of famous benchmark
functions were employed. In these benchmark sets, func-
tions include various characteristics to give a comprehensive
assessment of the performance of the MHS. Based on the
experimental results, the proposed algorithm provided
better performance than those state-of-the-art HS variants
but compared with other famous meta-heuristic algorithms
according to the solution’s efficiency and accuracy.

Al-Betar et al. put forward three new versions of the
harmony search algorithm [26]. The harmony search al-
gorithm had been projecting the variation of the natural
principle, the survival of the fittest, in the update process to
enhance diversity. Natural Proportional Harmony Search
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(NPHS) was the first version, which allocated a probability
for each individual in the HM [42]. There was a higher
probability of the worst fitness values being replaced by the
new harmony solution. Natural Tournament Harmony
Search (NTHS) was the second HS version, which picked a
set of individuals determined through the HM’s tournament
size, where, if better, the new harmony replaced the worst
individual among them. Natural Rank Harmony Search
(NRHS) was the third version of HS, which ranked indi-
viduals according to their fitness values to identify the best to
the worst. Four different economic loading dispatch prob-
lems were employed to examine the convergence charac-
teristics of the three HS versions. Based on the results,
proposed HS variations were seen to have the potential to get
fruitful results for all Electronic Logging Device problems.
Indeed, applying a natural update process in HS could be a
promising research direction that could result in numerous
future discoveries.

Shankar et al. [43] addressed the energy efficiency
challenge in wireless sensor networks by considering sensor
nodes as battery-operated devices. For transmitting data in
an energy-efficient manner, clustering-based techniques
were utilized via data aggregation. This was performed to
balance the consumption of energy among the network’s
sensor nodes. The current clustering techniques use Har-
mony Search Algorithm (HS), distinct Low-Energy Adaptive
Clustering Hierarchy (LEACH), and Particle swarm opti-
mization (PSO) algorithms. Nevertheless, individually, these
algorithms faced local search and exploration-exploitation
trade-off (PSO) constraints [24, 44]. To achieve a global
search that has faster convergence, an HSA and PSO al-
gorithm hybrid was proposed to conduct an energy-efficient
selection of the cluster head. The proposed algorithm pos-
sesses the HS’s high search efficiency and the PSO’s dynamic
capability. These qualities improved the sensor nodes’ life-
time. The hybrid algorithm’s performance was assessed
based on the number of dead nodes, the number of live
nodes, and throughput and residual energy. The authors
evaluated the proposed approach using MATLAB. Based on
the results, the hybrid HSA-PSO algorithm achieved an
improvement in throughput and residual energy by 29.00%
and 83.89%, respectively. This was in comparison with the
PSO algorithm.

A multi-objective optimization harmony search parallel
algorithm aligned with cloud computing was developed by
Li et al. [31] to address traditional harmony search issues in
complex function multi-objective optimization, like slow
convergence, low precision, and easy to fall under local
optimum. First, a single harmony library was employed to
store and process memory harmony, a characteristic of the
traditional harmony search algorithm, which was segmented
into numerous harmony sub-libraries based on various
harmonies. Simultaneously, the dynamic trade-off factor
and roulette selection strategies were employed to dynam-
ically set harmony memory library value-taking probability,
fine-tuning pitch bandwidth, fine-tuning pitch probability,
and other parameters that were relied upon by traditional
harmony search algorithm. The MapReduce programming
model was then utilized to set up the Map and Reduce core
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parallel computing functions to build the parallel algorithm
of dynamic parameter harmony search centered on cloud
computing [45]. Finally, a Hadoop platform was used to
perform algorithm optimization comparison tests and
compare them with other existing optimal harmony search
algorithms [46-49]. This helped improve this algorithm’s
searching precision, achieving a linear acceleration ratio in
parallel and a decrease in the iteration number with the
convergence speed. A higher optimization efficiency was
performed based on the experimental results through this
algorithm than with various existing optimal harmony
search algorithms.

3. Proposed Approach and
Design Consideration

To improve the performance of the OLSR in the VANET, an
optimization method, which is the improved harmony
search (IHS) algorithm, is applied to the routing protocol
OLSR, by defining and solving an optimization problem. The
use of this method aims to address the standard OLSR
parameters that were implemented without having any exact
values for their ranges and seek to avoid having pointless
configurations. The scenario evaluated in this section will
demonstrate the employment of the method, as applied on
moving cars in a highway scenario. Due to the constant
changing of the network topology, the high speed of the
nodes, and the continuous exchanging of messages
throughout the network that causes a high overhead and
dropping of packets, here we explore the scenario and apply
the proposed IHS algorithm to address these issues.

3.1. Harmony Search Algorithm with Selection Methods.
In this section, two selection schemes incorporated together
in the memory consideration are presented, including the
roulette wheel and tournament, as shown in Figure 5. The
selection schemes proposed are altered in a way that applies
to HS. These selection schemes were adopted in the memory
consideration phase in a way that selects a variable from a
solution in the harmony memory based on its fitness. The
selection is performed according to the HMCR.

Step 1: initialize the problem and algorithm parameters.
The optimization problem is specified as follows:

min {f(x)|x € X}, where f(x) is the objective
function; x = {x;|i=1,...,N} is the set of decision
variables; X = {X; =1,...,N} is the possible value
range for each decision variable where LB;, and UB; are
the lower and upper bounds for decision variables,
respectively. Besides, the HS algorithm parameters are
specified in this step. These parameters are harmony
solution vectors in the harmony memory; harmony
memory considering rate (HMCR); pitch adjusting rate
(PAR); distance bandwidth (BW); the number of de-
cision variables (n) and the number of improvisations
(NI), or the stopping criterion; memory size (HMS).
The optimization problem that has been considered
in this research is the communication cost. The

t=0
Number of iterations

Rand < (¢/number
of iterations)

Choose a solution
using k tournament

Choose a solution
using roulette wheel

t > number of iterations

FI1GURE 5: Selection of solutions using roulette and k-tournament
methods.

proposed optimization approach considers the
quality-of-services-aware communications, so the
main component of the objective function is to
maximize the PDR and minimize both the E2E delay
and overhead, and the solutions are guided by re-
ducing the communication cost during the search
process. As has been mentioned earlier, the OSLR is
governed by its configuration parameters. Thus, the
solutions are encoded as vectors with three param-
eters, which represent the timeouts before resending
HELLO, Multiple Interface Declaration (MID), and
Topology Control (TC) messages that describe the
decision variables. These parameters have been
chosen since they have the most impact on the
protocol’s functionality, as has been shown in the
conducted related studies. The lower and upper
bounds of these vectors have been set to be 1 and 15,
respectively. The goal of these bounds is to adjust the
timeouts runtime within these values according to
the conditions of the network. For example, in a high
mobility network (with frequent topology changes),
it is desirable not to use high values for runtime
before resending HELLO, TC, and MID to detect the
changes in the network quickly. Therefore, we have
chosen these bounds for the parameter to accom-
modate the high mobility of the highway environ-
ment by updating the routing table of the OLSR.

Step 2: initialize the harmony memory. The harmony
memory is an augmented matrix of size Nx HMS,
which consists of sets of solution vectors determined by
the HMS, where the value of HMS in this research is 40,
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and the number of N is 3 (OLSR timeouts before re-
sending parameters). In this step, these vectors are
randomly generated as follows: x/ =LB; + (UB;-
LB;) x Rand[0,1], and the rand returns a random
number between 0 and 1, and LB; and UB; represent the
lower and upper bounds of the decision parameter,
respectively. The generated solutions are stored in the
HM according to their objective function values.

1 1 1
xl xz e xN
X2 xZ xZ
HM=| ! 2 N (1)
HMS HMS HMS
xX; 0 Xy .. Xy

Step 3: improvise a new harmony; in the improvisation
stage of the HS algorithm, there is no way to control the
quality of the harmony selected from the HM; ac-
cordingly, any harmony of the HM can be a nominee.
However, this way may harm the HS performance. To
provide an effective way to select a note from the HM,
two aspects must be considered. From the standpoint of
the first aspect, using good harmonies for the impro-
visation, the process increases the probability of gen-
erating a new harmony with better quality. The second
aspect takes into account the fact that harmonies with
worse qualities may include some information in which
the algorithm can be quickly converged to the global
optimum. Therefore, in this research, a harmony se-
lection base is proposed. The selection schemes pro-
posed are altered in a way that applies to the HS. These
selection schemes were adopted in the memory con-
sideration phase in a way that selects a variable from a
solution in the harmony memory. The selection is
performed according to the HMCR, and it is used to
choose one variable from the solutions in the harmony
memory. The improvised solution is based on the
HMCR and PAR values. First, a random number is
generated in the range, from 0 to 1. If the rand is bigger
than the HMCR value, then improvise randomly. Else
select the rand based on roulette and k-tournament
selection features. The following flow chart will dem-
onstrate the selection process of the pitches where t is
the current iteration.

The condition of improvising a new solution when the
random solution is lower than the HMCR; the im-
provisation of a solution based on choosing between
the two selection methods depends on the current
number of iteration. At the beginning of the execution,
the number of the iteration is low, which means that the
condition of the random solution is bigger than the
current iteration, which will not be valid. As a result,
the selection will be based on tournament selection. In
this case, K (which is set to 10 in our research) indi-
viduals are sampled at random to enter the tournament.
The HS will select the best solution from the solutions
that participated in the tournament, where tournament
size determines the selective pressure; the higher the
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value of K, the stronger the selective pressure. These
selection methods have the advantage of being insen-
sitive to fitness scaling problems and the sense of
optimization. After a while, the number of iteration will
be increased, which means that the random solution
will be chosen based on the roulette wheel. The
probability of selecting an individual is proportional to
its fitness. This selection technique allows the selection
of the best individuals with greater probability, but at
the same time, the worst ones could be selected too. In
this way, exploration space will be more considered
since the roulette wheel tends to choose the solutions
based on their fitness values. This is effective in selecting
the best solution. Still, the best solution might be found
in the neighborhood, and not be global-based.
Therefore, to avoid local minima, the adoption of
k-tournament at the beginning of the execution of the
optimization method that enables more random se-
lection of the solutions to a certain number of iterations
will lead to the exploration for better solutions in the
search space. The roulette wheel is adopted to converge
toward the best solution. It means that adopting the two
selection methods will enable better exploration and
convergence to the solutions in the memory.

Step 4: update the harmony memory. In this step, the
decision on whether the new harmony vector impro-
vised in step 3 should be included in the harmony
memory is made judged by the objective function
(communication cost). If the fitness of the new har-
mony vector is better than the worst harmony vector in
the current harmony memory, it will be included in the
HM. Meanwhile, the existing worst harmony will be
excluded from the HM.

Step 5: repeat Steps 3 and 4 until the stopping criterion
is met.

3.2. Harmony Search Optimization with Optimized Link State
Routing Protocol. As mentioned earlier, the optimization
strategy that was utilized to obtain efficient OLSR parameter
configurations automatically was performed by coupling
two different stages: (1) a procedure for optimization and (2)
a simulation stage. A metaheuristic method was carried out
by an optimization block, which in this case is the IHS
algorithm, which has been developed to search for optimal
(or near-optimal) solutions within continuous search spaces.
In this case, that is represented by this research. A simulation
procedure was utilized to assign a quantitative quality value
(fitness) to the computed configurations’ (refresh intervals)
OLSR performance in terms of the communication cost. For
this, MATLAB network simulation was used to perform this
procedure. For this particular research, MATLAB was
modified so that it can automatically interact with the op-
timization procedure and therefore accept new routing
parameters. When the meta-heuristic process is used, it
requires an assessment of the solution; the tentative OLSR
configuration’s simulation procedure is invoked over the
defined VANET scenario. MATLAB was then started so that
it can evaluate the VANET based on the circumstances that
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have been defined by the OLSR routing parameters, which
are shown in Figure 6. These circumstances and parameters
were generated using the optimization algorithm. Once the
simulation is completed, MATLAB can then produce global
information about the packet overhead, the PDR, and the
E2E delay of the entire mobile vehicular network scenario. In
turn, this information is used to calculate the communi-

cation cost (comm_cost) function based on the following:
minimize comm_, = w3 - E2E Delay + w2 - Overhead

—-wl - PDR.

cost

(2)

The communication cost function is used to represent
the fitness function of this research’s optimization problem.
To enhance the QoS, one will have to maximize the PDR and
minimize both the E2E Delay and overhead. As seen in
equation (2), an aggregative minimizing function was used.
Because of this, the formulation of the PDR was done with a
negative sign. In addition, for this Equation, factors wi, w2,
and w3 were utilized to weigh each metric’s influence on the
resultant fitness value. Since the goal of this research is to
promote the PDR for the sake of efficient packet commu-
nication, it was decided that different biased weights will be
used in the fitness function, being wl=0.5, w2=0.2, and
w3=0.3. With this, the PDR will have more priority
compared to packet overhead and E2E delay [14, 17].

4. Simulation Setup and
Parameter Configuration

One of the most important and critical tasks to solve the
problem is to obtain the metrics necessary to evaluate the
performance of a particular routing protocol configuration.
This evaluation has been carried out by using the simulator
MATLAB (Matrix Laboratory), a high-performance lan-
guage aimed at technical computing, assimilating compu-
tation, visualization, and programming amid a simple-to-
use environment where problems, as well as solutions, are
articulated in a familiar mathematical notation.

To obtain results close to the real world, we have defined a
simulation VANET scenario (instances) from an area of Bangi
in Malaysia (Figure 7), creating highway scenarios. We have
described this distinct scenario since the characteristics of the
movement of vehicles for any scenario are different enough to
affect the transfer of files. For example, in urban areas, vehicle
density is higher, and these vehicles travel at lower speeds than
in interurban environments, increasing the likelihood that the
transfers are carried out successfully in urban areas than in the
highways. Therefore, we can analyze in our highway scenario
the behavior and performance of the compared algorithms, as
well as the differences in the resulting OLSR configurations in
terms of communication efficiency. Furthermore, we can
compare these automatically generated configurations against
the ones used in previously conducted studies and the original
configurations.

The highway scenario coverage of 500x500 m, area was
considered to inspect the configured OLSR parameters’
performance in high density and velocity. The fast-changing
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topology nature has done the characterization, and we have
set the number of nodes to be 70. Each vehicle moves at
speeds ranging between 70 and 100 km/h, with nonrandom
movement patterns, as the constraints of the user map
dictate the nodes.

Furthermore, the simulation time for the conducted
simulation is set to be 1500 seconds, with a data counter of
60 bits for nodes transmitting packets and the routing table
size being set to be 100bits, where the communications
between the vehicles being conditioned by the use of [EEE
802.11b standard network interfaces. Finally, nodes com-
municate within a radius of 150 m. The other related pa-
rameters are presented in Table 3.

4.1. Performance Metrics. Performance metrics are pre-
sented in several ways, such as two basic performance
metrics that run by a delivery fraction of packet and E2E
delay that has been proposed [50, 51]. Apart from that, with
the consideration of the mobility pattern of nodes, Manjula
et al. suggested using the random waypoint mobility model
in terms of delay and packet drop [52].

4.1.1. Packet Delivery Ratio. The packet delivery ratio or the
fraction of data packets that come from an application is
delivered completely and correctly by the destination. The
PDR plays a vital role in every routing protocol, as there is no
margin for errors to have occurred, especially in real-world
environments. For evaluating the HSO, with the OLSR in
terms of PDR, equation (3) is used:

total number of recieved packets
PDR =

x 100. 3
total number of sent packets (3

4.1.2. End to End Delay (E2E Delay). E2E refers to the
difference between the time that an application sends a data
packet and the time that the destination receives this packet.
To evaluate the effectiveness of the HSO with the OLSR in
terms of E2E Delay, equation (4) is used:

total E2E
number of sent packets’

AVG.E2E (ms) = (4)

4.1.3. Overhead. Overhead is the network routing load or
the ratio of transmissions of the administrative routing
packet and the data packets delivered where every hop is
separately counted. For evaluating the effectiveness of the
HSO with the OLSR in terms of the network overhead ratio,
equation (5) is used:

number of packets sent

x 100. (5)
E2E

overhead =

4.1.4. Energy Consumption. The variance of energy is how
much energy each node in the network consumes in its
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FIGURE 7: The selected area of Bangi in Malaysia for the experimental simulation scenario.
TaBLE 3: Parameterization of HS. lifetime. For evaluating the effectiveness of HSO with the
OLSR in terms of energy consumption, equation (6) is used:
Parameter Value gy P q ©)
Pitch adjustment rate 0.3 ¢ = mean (x),
Harmony memory consideration rate 0.9 (6)
Harmony memory size Y (xi— #)2
Lower bounds 1 u(X) = TN-o1
Higher bounds 15
Decision variables 3 where N is nodes number, x; is consumed energy by the i
Distance bandwidth 05 node, and y is the mean of energy consumptions for all
Number of iterations 1

nodes.
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5. Results Analysis and Discussion

We compare the OLSR configurations in terms of the
network’s quality of services (PDR, E2E, Overhead, and
Variance of energy). To start with, we can see in Table 4 the
OLSR parameters settings considered for comparison in this
analysis. In this table, column 2 contains the OLSR con-
figurations of the standard OLSR proposed by the RFC 3626;
and columns 3-5 contain the OLSR configurations obtained
by each one of the meta-heurisitc algorithms studied in this
research:improved harmony search (OLSR-IHS), harmony
search algorithm (OLSR-HS), and particle swarm optimi-
zation, respectively. As it has been mentioned earlier, the
OLSR is regulated by these configurations, where the first
three intervals are responsible for the timeout values before
resending hello, topology control, and mid-times, which are
responsible for updating the protocol routing table in case
there are any changes in the topology and link breakage. The
second three intervals are the validity timeout values that are
responsible for the willingness of nodes of rerouting packets
and how long it takes before dropping these packets.

Figure 8 shows the PDR (the total number of correctly
delivered packets from source to destination) results ob-
tained by simulating the original OLSR parameter config-
urations and the obtained parameter configurations by our
OLSR_IHS, OLSR, the OLSR_HS, and PSO-OLSR on 70
nodes moving in our defined highway scenario. It can be
seen that a lag had occurred during the simulation time by a
0.48 ratio that caused the Y-axis not to make contact. This is
due to the time needed to collect the data and generate the
curve for the PDR.

It can be seen that the OLSR with the optimized
configurations obtained by our OLSR-IHS gives a high
ratio of PDR at the beginning of the simulation. It de-
creases gradually to about 0.4625 ratios at time 150 sec
and remains between 0.425 and 0.465 ratios until the end
of the simulation time. Meanwhile, the results obtained by
the OLSR parameter configurations achieve about a 0.46
ratio at the beginning of the simulation. Then it decreases,
reaching below 0.43 ratio and starts increasing, not ex-
ceeding 0.45 ratio until the end of the simulation time.
The final PDR results are obtained by simulating the HS-
OLSR based on the optimized parameter configurations
returned by the basic HS, where it achieves about 0.40
ratio at the beginning of the simulation and decreases
gradually to about 0.35 ratio. Then, it increases gradually,
not exceeding 0.35 ratio until the end of the simulation
time. It can be observed that the PDR of the OLSR with
our optimized parameter configurations returned by our
approach has outperformed both the original OLSR and
the HS-OLSR in terms of the total delivered packets;
however, the PSO-OLSR has achieved better results than
OLSR-IHS since the time for refresh intervals is the
shortest. The original OLSR parameters and the opti-
mized parameters obtained by the IHS and PSO are better
than those of HS-OLSR since the refresh intervals, and
MID-H-T is the longest, which means that its obtained
parameters are not effective for routing and neighboring
discovery.
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TaBLE 4: Original OLSR and the obtained OLSR parameters using
optimization methods.

Parameter OLSR  OLSR-IHS OLSR-HS OLSR-PSO
HELLO-INT 2 1 2 1
MID-INT 2 5 5 4
TC-INT 5 15 14 5
WILLING 3 3 3 3
NEIG_H_T 6 3 6 3
TOP_H_T 15 45 42 15
MID H T 15 45 42 15
DUP_H_T 30 30 30 30
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Figure 8: PDR simulation results.

Figure 9 shows the E2E delay (the time needed for the
packets to be delivered) results obtained by simulating the
original OLSR parameters along with the optimized pa-
rameter configurations returned by our IHS-OLSR, PSO-
OLSR, and HS-OLSR. A lag had occurred during the sim-
ulation due to the time needed to collect and generate the
results, which resulted in a disconnected Y-axis at a 0.48
ratio.

The E2E Delay performance for the OLSR with the
optimized parameters configuration obtained by the HIS. It
starts with a high E2E delay at the beginning of the simu-
lation by 0.39 ms. Then, it decreases gradually until the time
of simulation is about 750 sec, achieving 0.13 ms. After a
while, it again keeps reducing simulation time, reaching
0.09 ms at the end. Meanwhile, the results of the E2E delay
obtained by the time intervals returned by the OLSR start at
0.23ms at the beginning of the simulation. It starts de-
creasing, achieving 0.06 ms, and it stays between 0.06 ms and
0.05 ms until the end of the simulation time. Finally the E2E
delay performance for the OLSR-based optimized param-
eters configuration has done by HS, where the minimum
E2E Delay was 0.9ms at the very beginning. It profoundly
decreases at the time between 200 sec and 500 sec achieving
0.11 ms, and it keeps dropping until the end of the simu-
lation time. According to the E2E Delay metric, it can be
seen that the configurations by the OLSR and the PSO-OLSR
have achieved the minimum time needed for the packets to
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FIGURE 9: E2E Delay simulation results.

be transmitted from a source to the destination when
compared with our approach and the HS; this is due to the
short time intervals of Hello, TC, and MID messages, and
specifically the Hello messages. Note that the mobility of the
network in our scenario is high, as the link-changing rate is
constant; therefore, Hello messages need to be resent more
periodically. Thus, the PSO has outperformed the existing
approaches to detect the link failure and discovering the
alternative links to forward the packets whenever packets are
dropped.

Figure 10 shows the overhead (the total number of
generated packets in the network) obtained results for the
OLSR based on the original OLSR parameter configurations
and the optimized parameter configurations returned by
OLSR-IHS, PSO-OLSR, and HS-OLSR. It can be seen that a
lag had occurred during the simulation at a 0.48 ratio,
resulting in Y-axis not making contact due to the time
needed to collect and generate the results.

As can be seen from the figure, the OLSR based on the
configurations returned by our approach has out-
performed the original OLSR and the PSO-OLSR, as it
achieves about 36 at the beginning of the simulation and
then starts increasing gradually, reaching its highest peak
at 54. Meanwhile, the original OLSR curve begins at 55,
and it reaches its peak above 68 at the time of 25 sec. At
time 100 sec, the curve shows the overhead increases going
to 66 at time 250 sec, and it stays between 66 or 68 until the
end of the simulation. The parameter configurations of the
OLSR returned by the HS has outperformed the config-
urations of both the original OLSR and the OLSR-HIS. It
achieved less than 20 at the beginning of the simulation
until it reached the peak, resulting in an overhead above 40
at the end of the simulation time; this is due to the
constant generation of Hello and TC messages, which has
led to network congestion. Note that the network is
continuously changing. Thus, the number of generated
Hello and TC messages is more to adapt to these changes.
Since the HS has obtained the longest refresh intervals (the
timeout values before resending), it generated fewer
packets whenever a change or failure occurred. Thus, it has
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achieved the least overhead when compared with the other
approaches.

Figure 11 shows the results of simulating the optimized
parameters obtained by OLSR-IHS, HS-OLSR, PSO-OLSR,
and the original OLSR parameter configurations in terms of
the variance of energy metrics by showing how much
energy is consumed by the nodes in the network. It can be
observed that a lag had occurred during the simulating of
the results by 0.48 ratio due to the time needed to collect
and generate the data, resulting in the Y-axis not making
contact.

It can be seen that the optimized OLSR parameters
obtained by the HS outperformed the parameters returned
by our approach and the original OLSR parameters and the
PSO-OLSR. This is due to the fact that it had acquired the
worst results regarding the PDR and the E2E delay since the
refresh intervals parameters are the longest, which means it
did not generate many HELLO, TC, and MID messages.
Thus, the nodes did not consume much energy. Regarding
the parameters returned by our approach, it can be seen that
the energy consumed is lesser than the OLSR and the PSO-
OLSR, since the new configurations of the OLSR-IHS
achieved a better trade-off between the delivered packets and
the network’s overhead when the time difference between its
refresh time intervals are longer than both the OLSR and the
PSO-OLSR.

In summary, we can say that the optimized OLSR
configurations obtained by the improved harmony search
algorithm have given promising results compared with the
original OLSR configurations and the configurations ob-
tained by the basic harmony search and particle swarm
optimization methods. Also, it was able to achieve the best
trade-off between the network performance metrics (PDR,
E2E, overhead, and variance of energy). Concerning the
PDR metric, it can be observed that the proposed approach
has outperformed both the original OLSR and the basic
harmony search. This is because the proposed approach
could obtain the parameters configuration for accommo-
dating fast-changing in the network topology. In addition,
the Harmony search has achieved the lowest delivered
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packets throughout the network. This is because the basic
algorithm as an optimization method has failed to obtain a
set of configurations that can improve the routing protocol’s
performance in a highway scenario. It has randomly chosen
the parameters with no guided process, which led it to
choose the nonfittest set of variables. In contrast, the pro-
posed approach has overcome this issue by selecting the
fittest solutions (parameters) based on the principle of
choosing solutions with a higher probability of generating
new harmonies (solutions). Hence, it reacted to sending
more HELLO messages to detect the network changes by
obtaining lower values of resending timeouts. Finally, when
comparing the particle swarm with our approach in terms of
packet delivery, E2E delay, and energy consumption
achieved better results in low simulation time. This is be-
cause the PSO has obtained the lowest HELLO-interval
when compared with the other approaches. Thus, the
configurations were more successful in generating more
packets whenever a change in the topology or a link breakage
occurred by sending more hello messages to detect them.
Furthermore, concerning how long the packets have taken to
reach the network’s destinations, the configurations ob-
tained by the proposed approach, the PSO and the OLSR,
were able to outperform the basic harmony configurations
search. This is because the harmony search needed the
longest times to hold the packets since the parameters’
validity times are the highest. The nodes held the packets for
longer before sending any updates on the topology changing,
and link failures as an invalid link in the OLSR cause more
delay to the routing table’s recalculation, which is the main
feature of the simulated scenario that has been used in this
research. Moreover, when it comes to the amount of
overhead that causes traffic in the network, the configura-
tions of our approach have achieved better performance
compared with the configurations obtained by the PSO and
the OLSR, given that our approach properly maintained the
trade-off between the total number of generated packets and
the corrected packets. This is because the improved harmony
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search was able to react better to the topology changes by
acquiring the best set of configurations regarding the times
needed to send HELLO messages and TC messages. Thus,
the nodes were able to maintain the updates of their routing
by producing lesser packets. Simultaneously, the calculations
of forwarding these packets were better compared to the
approaches. Finally, the energy consumptions by the nodes
in the network obtained optimized configurations by our
proposed approach. It was able to outperform the config-
urations of the PSO and the original OLSR, as the opti-
mization method achieved lesser overhead compared with
the other approaches. However, the configurations obtained
by the basic harmony search helped achieve the least con-
sumed energy, since it produced the minimum number of
packets as the nodes did not react to the changes in the
topology and failures to resending the packets due to link
breakage. Generally, the improved harmony search is
suitable for highway scenarios. It has obtained promising
results, generating the packets and routing them correctly
without consuming the network resources by achieving
short times to route the packets and updating the nodes
routing the tables. The network is undergoing constant
changes. We conclude that parameters related to discovery
intervals have a far more significant impact on route quality
from the results obtained. Even within the limits of available
network bandwidth, we see that it can improve the route
availability in the OLSR protocol, just by decreasing the
refresh intervals for the HELLO messages and the TC
messages. The HELLO interval has more effect on improving
the route availability than the TC interval among the refresh
intervals. The HELLO interval and the TC interval decide the
rate at which the HELLO messages and the TC messages are
exchanged in the network. We found this to be good news
from the implementation perspective because decreasing the
HELLO interval alone is likely to affect the network
bandwidth compared to decreasing the TC interval. The
HELLO messages are only transmitted in the neighborhood.
In contrast, the TC messages are transmitted throughout the
network.

6. Conclusions

This work investigates the evaluation performance of the
OLSR routing protocol to auto-tune the parameters of this
routing protocol and finding the best configurations suited
for improving the performance of routing protocols for
vehicular ad hoc networks, which is known for their unique
and challenging features. Due to these features, it is essential
to design an efficient and reliable routing strategy, as it is one
of the most challenging problems in this field for this kind of
network. A method for flexible routing is required because of
the dynamic nature of the VANET, such as network to-
pology, the density of the nodes, and the high speed of the
nodes. This research has developed an improved meta-
heuristic algorithm, Harmony Search Optimization, based
on coupling two selection methods and investigates using it
to optimize the OLSR parameters for the VANET. The
simulation results, implemented on a highway scenario,
showed that the IHS could find better OLSR parameter
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configurations. Besides, three other experiments using the
original OLSR and the optimized OLSR using the basic
harmony search algorithms and particle swarm optimization
have been used as a benchmark. The results have shown an
overall improvement in comparison with the other algo-
rithms. The proposed improved harmony search algorithm
outperformed the original HS and the original OLSR in the
packet delivery ratio and has less overhead than the OLSR
and particle swarm optimization algorithm.
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