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ABSTRACT Harris Hawks Optimization (HHO) algorithm is a new metaheuristic algorithm, inspired by the 
cooperative behavior and chasing style of Harris’ Hawks in nature called surprise pounce. HHO demonstrated 
promising results compared to other optimization methods. However, HHO suffers from local optima and 
population diversity drawbacks. To overcome these limitations and adapt it to solve feature selection 
problems, a novel metaheuristic optimizer, namely Chaotic Harris Hawks Optimization (CHHO), is proposed. 
Two main improvements are suggested to the standard HHO algorithm. The first improvement is to apply the 
chaotic maps at the initialization phase of HHO to enhance the population diversity in the search space. The 
second improvement is to use the Simulated Annealing (SA) algorithm to the current best solution to improve 
HHO exploitation. To validate the performance of the proposed algorithm, CHHO was applied on 14 medical 
benchmark datasets from the UCI machine learning repository. The proposed CHHO was compared with the 
original HHO and some famous and recent metaheuristics algorithms, containing Grasshopper Optimization 
Algorithm (GOA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Butterfly Optimization 
Algorithm (BOA), and Ant Lion Optimizer (ALO). The used evaluation metrics include the number of 
selected features, classification accuracy, fitness values, Wilcoxon’s statistical test (P-value), and 
convergence curve. Based on the achieved results, CHHO confirms its superiority over the standard HHO 
algorithm and the other optimization algorithms on the majority of the medical datasets. 

INDEX TERMS Harris Hawks Optimization (HHO) algorithm; Feature Selection; Wrapper method; Chaos 
Theory; Simulated Annealing (SA). 

I. INTRODUCTION 

Recently, high dimensional data become an essential source 
for many Machine Learning (ML) research, such as data 
mining and pattern recognition. However, increasing data 
volume and data dimensionality causes many problems, like 
the appearance of noisy, irrelevant, and redundant data [1], [2]. 
This problem increases the ML complexity and decreases the 
classification performance. Also, the majority of ML 
classifiers cannot relate with all features included in the 
complex dataset. However, this stated problem can affect data 
mining performance and pattern recognition since it mainly 
depends on the ML classifier. Thus, Feature Selection (FS) is 
a critical process in ML to select relevant features and remove 
noisy and irrelevant ones. In high-dimensional datasets, 
choosing the most significant features is a challenging task. 

However, many studies have proven that; the FS methods can 
efficiently select the crucial features and remove irrelevant and 
redundant ones [3], [4], and [5]. Also, reducing the 
computational complexity and required storage space are 
essential tasks of FS, which consequently enhance the 
classifier [6]. Therefore, the FS process has the potential to 
improve the classification performance of the ML classifier 
substantially. 
Generally, the FS process consists of four parts: feature subset 
search, evaluation, search stop criteria, and validity [2]. Based 
on the evaluation criteria, FS methods are separated into two 
main types: Filters and Wrappers methods. Filter-Based 
Methods (FBM) utilize statistical functions to choose and rank 
the feature subsets. Additionally, FBM, such as Chi-square, 
Information Gain, Relief, and Gini-Index has no direct contact 
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with the classifier, and they operated before employing the 
classifier [7]. On the other hand, the Wrapper-Based Methods 
(WBM) have direct contact with the used classifier [8]. Many 
studies have been applied to WBM methods in optimization 
algorithms for feature selection purposes [9], [10], [8]. WBM 
is computationally more expensive, but it achieved better 
results than the FBM. Commonly, WBM is employed in FS 
problems since it considers the classification performance and 
feature reduction conditions, and due to its ability to interact 
directly with the classifier. 

In WBM, the fitness function is applied to assess the FS 
process depending on the accuracy of classification. In order 
to improve the accuracy in FS, various studies have been 
conducted using optimization algorithms [1], [10], [11], and 
[12]. However, the main goal of using optimization 
algorithms in FS is to determine the optimal features or the 
features near to the optimal during a reasonable time (i.e., the 
optimal feature sets). On the other hand, the standard 
inclusive-search seeks to find all possible combinations of 
features from the complete set of features. This process is 
considered a time-consuming search and is regarded as an 
NP-hard problem [13]. Therefore, optimization algorithms 
are needed to solve the problem stated above appropriately 
due to their ability to obtain a solution that might be optimal 
or near the optimal solution. However, in high-dimensional 
problems such as the FS problem, the optimization 
algorithms suffer from local optima and population diversity 
problem. To find a tuned algorithm and make it appropriate 
for feature selection problems, we focus on improving the 
HHO algorithm by proposing two contributions folds. The 
first is to employ chaotic maps to improve population 
diversity. The second is to use the Simulated Annealing (SA) 
to improve the exploitation capability of the algorithm and 
avoid local optima problem.  

In this study, an improvement of the standard HHO 
algorithm named CHHO is proposed. The chaotic map 
algorithm is used to initialize the solutions (search-agents) at 
the initialization phase of HHO. The proposed version is 
expected to accelerate the convergence rate of the HHO and 
diversify the generated solutions of HHO. Furthermore, we 
used Simulating Annealing (SA) algorithm to improve the 
exploitation ability of HHO and avoid the local optima 
problem. In the literature, different forms of hybrids 
optimization algorithms were proposed for feature selection 
problems. Still, as far as the authors’ knowledge, this is the 
first time that a hybrid model using HHO with chaos theory 
and SA algorithm to be proposed and applied in feature 
selection problems. CHHO will be used to improve the 
classification performance for the feature selection problem. 
In this work, the main contributions can be summarized as 
follows:  
 
1) CHHO: An improved variant of the HHO algorithm to 

solve its weaknesses and make it suitable for the feature 
selection problem. 

2) Two main improvements were introduced into standard 
HHO including: 

• The use of the Chaotic maps at the initialization 
phase of HHO to improve its solution diversity. 

• Simulated Annealing (SA) algorithm is 
combined with HHO to improve its exploitation 
and avoid local optima problem. 

3) The development of a wrapper-based feature selection 
model based on the CHHO algorithm. 

4) To evaluate the performance of the CHHO algorithm, 
CHHO compared with original HHO and other popular 
optimization algorithms involving Grasshopper 
Optimization Algorithm (GOA), Particle Swarm 
Optimization (PSO), Genetic Algorithm (GA), Butterfly 
Optimization Algorithm (BOA), and Ant Lion 
Optimizer (ALO). The experiments were conducted on 
14 benchmark medical datasets from the UCI machine 
learning repository. The used evaluation metrics include 
the number of features, classification accuracy, fitness 
values, P-value, and convergence rate.  
 

The rest of the paper is structured as follows. Section II 
formally introduces the related works in the literature. 
Section III provides all the details about the HHO algorithm. 
In Section IV, the proposed CHHO algorithm is presented. 
Section V presents the performed experiments and achieved 
results. Finally, Section VI concludes the paper. 

 
II. RELATED WORK 

Recently, optimization algorithms have become very 
popular due to their demonstrated efficiency in solving 
feature selection problems. Examples of these algorithms are 
Butterfly Optimization Algorithm (BOA) [14], Grasshopper 
Optimization Algorithm (GOA) [15], Ant Lion Optimizer 
(ALO)  [11], The Whale Optimization Algorithm (WOA) 
[16], Slap Swarm Algorithm (SSA) [7]. Despite the unique 
structure of meta-heuristic algorithms, there is a common 
characteristic. The majority of the techniques start with a 
random population initialization, solution evaluation on each 
iteration based on a fitness function, solution updating, and 
eventually determining the best solution based on the 
termination criterion. The phases, as mentioned earlier, 
define the search behavior were it is mostly referred to as 
exploration and exploitation phases. In the former stage, the 
optimization algorithm attempts to discover the best region 
of the search space. The optimization algorithms apply its 
stochastic operations as much as possible to examine all 
areas and sections of the feature space deeply. 

On the contrary, the next phase intends to enhance the 
search process for local regions rather than all feature spaces. 
Usually, exploitation is performed after the exploration 
phase [17]. In most complex applications, optimization 
algorithms are trapped in local optima due to the incorrect 
balance between the exploitation and exploration and the 
randomness nature of the initialization process. One of the 
methods used in literature to solve the population diversity 
problem is chaos theory. Chaos Optimization Algorithm 
(COA) [18] is one of the chaos implementations that takes 
advantage of the nature of chaotic structures. It has proven 
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that changing the random parameter values with a chaotic 
system can enhance classification performance [19]. As a 
result, several optimization algorithms studies combined the 
chaos theory to improve the performance and to adjust 
specific parameters. Examples of these implementations are 
Chaotic Crow Search Optimization (CCSA) [19], where a 
chaotic system was used to overcome the low convergence 
rate and local optima entrapment. Chaotic Whale 
Optimization Algorithm (CWOA) [20] applied a chaos 
system to improve the global convergence rate and obtain 
improved performance. Chaotic Genetic Algorithm (CGA) 
[21] examined a chaotic system to improve GA performance. 
Chaotic Gray Wolf Optimization (CGWO) [22] applied a 
chaotic system to accelerate the global convergence rate. 
Chaotic Grasshopper Optimization Algorithm (CGOA) [23] 
utilized the chaos system to balance exploration and 
exploitation more effectively. These algorithms and more 
were applied in different fields and applications. The 
noticeable improvements of adding chaotic maps in these 
algorithms, which was confirmed by the reported results, 
motivated the current study to combine chaos theory with 
HHO to improve population diversity.   

On the other side of the search behavior, Simulated 
Annealing (SA) is proposed to solve the HHO local optima 
problem in high dimensional FS. SA was presented in 1983 
by Kirkpatrick. It is considered to be a hill-climbing method 
that attempts to enhance the candidate solution for the 
objective function [24]. SA algorithm was used to improve 
the exploitative capability of the algorithm and prevent local 
search problems. Many optimization algorithms used SA to 
enhance the local search strategy. For instance, it was used 
to evaluate the performance of feature selection [9], to 
improve the best solution after each iteration [25], to enhance 
the exploitation search capability [26], to evaluate PSO 
performance as a wrapper-based method [8]. The 
performance obtained by employing the SA in these previous 
studies inspired this study to include the SA algorithm into 
the iteration process to enhance the local search in the FS 
problem.  

Optimization algorithms have been applied successfully 
for FS in many applications such as data mining [27] using 
Particle Swarm Optimization, pattern recognition [28] using 
Binary Genetic Swarm Optimization, Medical applications 
[5] using Crow Search Optimization, and image analysis [29] 
using Genetic Algorithm Optimization, image processing 
[30], [31], [32] using Optimized Deep Neural Network, and 
there are many more. Nowadays, FS is an essential step to 
preprocess high-dimensional datasets. It must be pointed that 
there are representative computational intelligence 
algorithms that have been applied to improve the FS in 
different studies such as [7], [9], [33], [34], [27], [46], and 
[47]. The optimization methods aim to obtain the optimal 
solution for FS (i.e., significant feature subset) within an 
appropriate time and cost. The successful application of 
these algorithms, which confirmed by performance results in 
different fields, inspired this study to apply the improved 
HHO to the FS problem.   

Harris Hawks Optimization (HHO) is a recent metaheuristic 
algorithm developed by [35]. Inspired by the cooperative 
behavior and chasing style of Harris’ Hawks in nature called 
surprise pounce. HHO is capable of solving unconstructed 
benchmark problems compared to other popular optimization 
algorithms, as reported by the author. Also, HHO is a 
population-based and gradient-free optimization technique to 
be applied to any optimization problem subject to an 
engineering formulation. However, HHO is considered a 
random optimization algorithm and suffers from various 
issues as population diversity and local optima when dealing 
with high-dimensional datasets. The reasons above and HHO 
characteristics motived this study to improve the performance 
of the HHO in the feature selection problem. In addition to 
that, to investigate the performance of the improved HHO 
(CHHO) in obtaining the optimal subset of the feature 
selection while achieving better classification performance. 
The importance of this work comes from the fact that the 
Harris Hawks Optimization algorithm has been applied in 
many fields such as image processing [36], Optimal Power 
Flow Problem [37], drug design, and discovery [38].  Also, 
HHO applied in feature selection by using the Elite 
Opposition-Based Learning method [39] and provide good 
results. In the following section, basics and background about 
the HHO algorithm.  

    
III. BASICS AND BACKGROUND  

A. HARRIS HAWKS OPTIMIZATION ALGORITHM  

Harris Hawks Optimization Algorithm (HHO) is a novel 
optimization algorithm developed by Heidari and Mirjalili et 
al. in 2019 [35].  The algorithm simulates the collaborative 
behavior and hunting technique of Harris Hawks in nature 
named surprise pounce. In this smart strategy, the Hawks 
collaboratively attack from many directions to surprise the 
prey. Harris Hawks exposes several chase styles based on the 
nature of the plots and the escaping patterns of the victim. 
The standard HHO algorithm proposes the exploration and 
exploitation strategies, motivated by exploring prey, surprise 
pounce, and the unique attacking technique of Harris Hawks. 
HHO algorithm. The HHO algorithm is a population-based 
and slope optimization method. Therefore, it was utilized to 
many optimization problems subject to an appropriate 
formulation. In the next steps, the HHO mathematically 
simulates these useful techniques and behavior to develop an 
optimization algorithm. 

 

1) INITIALIZATION PHASE  

In this phase, the objective function and the search-space are 
defined. Also, the initial population-based chaotic maps are 
initiated. In addition, all parameter values are set. 
 
2) EXPLORATION PHASE 

In this phase, all Harris hawks are considered as candidate 
solutions. In each iteration, the fitness value is computed for 
all these possible solutions based on the intended prey. Two 
approaches are applied to mimic the exploration 
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performances of Harris Hawks in the search-space specified 
in (1) 
 𝑋(𝑡 + 1) = 

  {𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝑟1|𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑋(𝑡)|                            𝑞 ≥ 0.5(𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋𝑚(𝑡)) − 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵))     𝑞 < 0.5  , (1) 

                              
where 𝑋(𝑡 + 1) is the position-of Hawks in second iteration 𝑡. 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) is the prey  position and the 𝑋𝑟𝑎𝑛𝑑(𝑡)  stands for 
the random solution chosen in the current population. 𝑋(𝑡) is 
the position vector of Hawks in the current iteration t, the 𝑟1, 𝑟2, 𝑟3 , 𝑟4 and 𝑞 are random scaled factor within [0,1], 
which are updated in each iteration, 𝐿𝐵 and 𝑈𝐵 are the upper 
and lower bounds of variables, and the 𝑋𝑚 is the average 
number of the solutions. 

This intended approach generates the positions of Hawks 
within (𝑈𝐵 − 𝐿𝐵) bounds based on two rules; 1) create the 
solutions based on randomly selected hawk from the current 
population and the other hawks. 2) create the solutions based 
on the prey location, the average position of Hawks, and 
random scaled factors. While 𝑟3 is a scaling factor, once the 
value of 𝑟4 is close to 1, it will help increase the randomness 
of the rule. In this rule, a randomly scaled movement length 
is added to 𝐿𝐵. A random scaled component is considered to 
provide more diversification techniques to explore different 
areas of the feature space. The average position of hawks 
(solutions) is formulated in (2). 
 𝑋𝑚(𝑡) =  1𝑁 ∑𝑋𝑖(𝑡)𝑁

𝑖=1                                                (2) 
 

where 𝑋𝑚(𝑡) is the average number of the solutions in the 
current iteration. 𝑁 indicates all possible solutions. 𝑋𝑖(𝑡) 
implies the location of each solution in iteration 𝑡 , which 
created based chaos theory.  Usually, in Eq. (1), rule one is 
applied when the hawk uses the information from the random 
hawks to catch the prey. While rule two is applied when all 
hawks share the best solution and the best hawk employed. 

 
3) TRANSITION FROM EXPLORATION TO 

EXPLOITATION  

This phase explains the movement of HHO from exploration 
to exploitation, based on the energy of the prey (𝐸). HHO 
assumes that the energy of prey is reduced gradually through 
the escaping actions. 𝐸0 is the initial energy decreases from  [1, −1], modeled in (3). 
 𝐸 =  2𝐸0  (1 − 𝑡𝑇)  , 𝐸0 ∈ [−1,1]                      (3)      

 
where 𝑇 indicates the maximum number of iterations, and 𝑡 
is the current iteration.  
 

 

4) EXPLOITATION PHASE 

In this phase, the exploitation phase is accomplished using 
four approaches at parameter sets. These approaches are 
based on the position identified in the exploration phase. 
However, the prey tries to escape frequently, while the 
hawks tracing and try to catch it. HHO exploitation is mimic 
the attacking strategy of the Hawks by using four possible 
approaches. These approaches are the soft besiege, hard 
besiege, soft besiege with progressive rapid dives, and hard 
besiege with progressive rapid dives. These approaches 
based on two variables 𝑟 and |𝐸|, which specify the executed 
approach. Where |𝐸| is the escaping energy of the prey, 𝑟 
refers to the probability of escaping, where 𝑟 < 0.5 indicates 
the higher possibility for the prey to escape successfully and 𝑟 ≥ 0.5  for unsuccessfully escape. A summary of these 
approaches are presented as follows:  
 
In the soft besiege approach, where 𝑟 ≥ 0.5 and|𝐸| ≥ 0.5, 
the rabbit still has some energy to escape, while the hawks 
are softly encircling the prey make it lose more energy before 
performing the surprise pounce. Soft besiege mathematically 
formulated in (4), (5), and (6). 
 𝑋(𝑡 + 1) =  ∆𝑋(𝑡) − 𝐸|𝐽𝑋𝑟𝑎𝑏𝑏𝑖𝑡 − 𝑋(𝑡)|                   (4)                           
 ∆𝑋(𝑡) = 𝑋𝑟𝑎𝑏𝑏𝑖𝑡 − 𝑋(𝑡)                                            (5) 
                                 𝐽 = 2(1 − 𝑟5) , 𝑟5 ∈ [0,1]                                (6) 
        

where ∆ 𝑥(𝑡) is the difference among the position vector of 
the prey and the current location in iteration t, and  𝐽 presents 
the jump power of the prey and 𝑟5 is a random variable.  
 
In the hard besiege strategy, where 𝑟 ≥ 0.5 and |𝐸| < 0.5, 
the prey is tired with a weak escaping chance. In this 
condition, the hawk hardly encircles the prey to perform the 
final surprise pounce. Thus, the solution is updated using (7).  
 𝑋(𝑡 + 1) =  𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸|∆𝑋(𝑡)|                              (7) 
 
Eq. (8) shows the soft besiege with progressive rapid dives 
approach. In this condition r < 0.5 and |E|≥0.5, the prey still 
has the energy to escape. The hawk moves smartly around 
the prey and patiently dives before the surprised pounce. This 
action is considered as intelligent soft besiege, where the 
position of the hawks is updated in two steps. In the first step, 
the hawks move toward the prey by estimating the next move 
of the prey as formula (8) 
 𝑌 = 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸|𝐽𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋(𝑡)|                     (8) 

 

In the second step, the hawk decided whether to dive or not, 
based on the comparison between the previous dive and the 
possible result. If it is not, the hawks producing irregular 
dive, based on the Levy Flight (𝐿𝐹) concept, as formulated 
in (9) 
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 𝑍 =  𝑌 +  𝑆 ×  𝐿𝐹(𝐷𝑖𝑚)                                                   (9) 
 

where the dimension of solutions is defined as 𝐷𝑖𝑚, 𝑆 is a 
random vector of size 1 × 𝑑𝑖𝑚. 𝐿𝐹 is the Levy Flight 
function calculated using (10). 
  𝐿𝐹(𝑥) = 0.01 × 𝑢×𝜎|𝑣|1𝛽   ,   𝜎 = ( 𝛤(1+𝛽)×𝑠𝑖𝑛(𝜋𝛽2 )𝛤(1+𝛽2 )×𝛽×2(𝛽−12 ))1𝛽     (10) 

 

where 𝛽 is a default constant set automatically to 1.5, and 𝑢, 𝑣 
are random values within [0,1]. Therefore, updating the Harris 
hawks positions in with progressive rapid dives can be 
formulated in (11) 

 𝑋(𝑡 + 1) = {𝑌     𝑖𝑓 𝐹(𝑌) < 𝐹(𝑋(𝑡))𝑍     𝑖𝑓 𝐹(𝑍) < 𝐹(𝑋(𝑡))                        (11) 

 

where 𝑌 and 𝑍 are performed using (8) and (9), and both refer 
to the new iteration’s next location.  
 
The last approach is called hard besiege with progressive 
rapid dives, where r < 0.5 and |E|<0.5. In this condition, the 
prey has no energy to escape, and the Harris hawks attempt 
to reach the prey by rapid dives before performing a surprise 
pounce to catch the prey. The movement of the hawks in the 
condition is formulated in (12) 

 𝑋(𝑡 + 1) = {𝑌     𝑖𝑓 𝐹(𝑌) < 𝐹(𝑋(𝑡))𝑍     𝑖𝑓 𝐹(𝑍) < 𝐹(𝑋(𝑡))                       (12) 

 

where 𝑌 is set as in (13), and 𝑍 is updated as in (14)  

 𝑌 = 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸|𝐽𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋𝑚(𝑡)|                 (13) 
 𝑍 =  𝑌 +  𝑆 ×  𝐿𝐹(𝐷𝑖𝑚)                                                 (14) 
 

Finally, the classification accuracy computed using the fitness 
function set in Eq. (15). The fitness function includes the 
computation of classification error, as mathematically 
formulated in (15) 
 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  𝛼𝛾𝑅(𝐷) + 𝛽 |𝑅||𝑁|                           (15) 
 
where 𝛼𝛾𝑅(𝐷) refer to the classification error rate of the used 
classier KNN. Besides, |𝑅| is a cardinal number of the 
selected subset and |𝑁| is the total number of features in the 
dataset, 𝛼, and 𝛽 are two parameters corresponding to the 
importance of classification quality and subset length, 𝛼 ∈[0, 1] and 𝛽 = (1 − 𝛼) approved in [25]. 
 

B. CHAOTIC MAPS  

Chaos optimization is a dynamic system. This system is one 
of the most modern methods to search for the global 
optimum solutions in a search space. In this study, we have 
implemented ten chaotic maps to replace the Harris Hawks 
position’s random variables as listed in Table I. The main 
idea of it is to replace the random initialization variables with 
chaotic maps variables.  The initial value set to all chaotic 
maps 𝑥0 is 0.7. While 𝑦 refers to the symbol of chaotic 
sequence 𝑥. Also  𝑥𝑦 is the 𝑦𝑡ℎ number on the chaotic 

sequence. The remaining variables 𝑑, 𝑐 𝑎𝑛𝑑 𝜇 are the control 
variables that help to define the chaotic performance of the 
algorithm. 

There are some studies available in the literature were they 
utilized chaotic maps to improve HHO. Examples of these 
studies, in [40], they replaced the random parameters in 
HHO with a chaotic logistic map.  Moreover, in [41] they 
replaced the random parameters in Multi-Verse Optimizer 
(MVO) using chaotic maps. Also, they used HHO as a local 
search operator within MVO to solve its local optima 
problem.  Furthermore, in [42], they replaced the random  

 
TABLE I  

THE TEN APPLIED CHAOTIC MAPS  

S.No Chaotic Map 

Name 

Definition  Range 

CHHO1 Singer 𝑥𝑦+1=𝜇(7.86𝑥𝑦-23.31𝑥𝑦2 +28.75𝑥𝑦3 − 13.302875𝑥𝑦4, 𝜇 = 1.07 

(0,1) 

CHHO2 Sinusoidal 𝑥𝑦+1=𝑐 𝑥𝑦2 sin(𝜋𝑥𝑦), 𝑐 = 2.3 (0,1) 

CHHO3 Chebyshev 𝑥𝑦+1= cos(𝑎. cos−1 𝑥𝑦) (-1,1) 

CHHO4 Circle 𝑥𝑦+1=𝑥𝑦 + 𝑏 −( 𝑎2𝜋) sin(2𝜋𝑥𝑦) 𝑚𝑜𝑑(1) (0,1) 

CHHO5 Tent 𝑥𝑦+1={ 𝑥𝑦.7 , 𝑥𝑦 <0.7103 (1 − 𝑥𝑦), 𝑥𝑦 ≥ 0.7 
(0,1) 

CHHO6 Sine 𝑥𝑦+1=
𝑐4 sin(𝜋, 𝑥𝑦), 𝑐 = 4 (0,1) 

CHHO7 Piecewise 𝑥𝑦+1= 

{  
  𝑥𝑦1   ,  0≤𝑥𝑦<1 𝑋𝑌−1.5−1 , 1 ≤ 𝑥𝑦 < .51−𝑙−𝑥𝑦.5−1 , .5 ≤ 𝑥𝑦 < 1− 𝑙, 𝑙 = .41−𝑥𝑦𝑙 , 1 − 𝑙 ≤ 𝑥𝑦 < 1

 

(0,1) 

CHHO8 Logistic 𝑥𝑦+1=𝑐𝑥𝑦 (1 − 𝑥𝑦), 𝑐 = 4 (0,1) 

CHHO9 Iterative 𝑥𝑦+1=sin 𝑐𝜋𝑥𝑦, c=0.7 (-1,1) 

CHHO10 Gauss/mous

e 𝑥𝑦+1={1,      𝑥𝑦 = 01𝑚𝑜𝑑 (𝑥𝑦,1) , 

otherwise  

 

(0,1) 

 
parameter in HHO with chaotic map value. However, the 
main differences in our work compared to these previous 
improvements on HHO include the following: 1) chaotic 
maps used to initialize the solutions (search_agents) 
positions at the initialization phase of HHO instead of using 
the standard random numbers for initializing the HHO 
solutions positions. 2) we utilized SA as a local search 
operator within HHO to solve its local optima problem. 
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C. SIMULATED ANNEALING 

Simulated Annealing (SA) was proposed by Kirkpatrick et 
al. in 1983. It is a local search algorithm based on a single 
solution. It is considered a hill-climbing method that 
repeatedly tries to improve the available solutions for the 
objective function [24]. The improved solution will be 
accepted, while the worst solution will be taken with a well-
defined probability of the algorithm to avoid the local 
optima. The probability of choosing a worse solution is 
determined by Boltzmann probability function 𝑃 = 𝑒 − 𝜃𝑇, 
were 𝜃 is the difference of evaluation of the objective 
function between the best solution (Soltrial) and the trial 
solution (Solbest). In the same time, 𝑇 is a parameter (named 
temperature) that periodically decreasing throughout the 
search process [24]. 
 

IV. THE PROPOSED CHAOTIC HARRIS HAWKS 
ALGORITHM (CHHO) 

In this study, feature selection is regarded as a multi-
objective optimization problem, in which two contradictory 
goals must be achieved. These goals are to minimize the 
number of selected features and maximize the classification 
accuracy. In other words, to reach a minimum number of 
selected features in the solution that leads to higher 
classification accuracy. Every solution is calculated 
according to the proposed fitness function, which depends on 
the KNN classifier [43], to obtain the classification accuracy 
of the solution as well as the number of selected features. To 
balance the number of selected features in each solution (to 
be minimum) with the classification accuracy (to be 
maximum), we have chosen the fitness function in the 
equation (15) is applied for evaluating the search agents in 
the algorithm. 

Based on the previous studies, which utilized HHO for 
solving different problems and confirmed its outperformance 
in comparison to other recent and well-known optimization 
algorithms, we have been motivated to apply HHO on feature 
selection problem. However, the standard HHO algorithm 
suffers from two significant problems when applied to high- 
dimensional problems such as the feature selection problem. 
These problems are including 1) problem of solutions 
diversity; 2) problem of local optima. Therefore, to improve 
the HHO algorithm and make it suitable for the feature 
selection problem, two main improvements are introduced in 
this study to solve the weakness of the HHO algorithm. The 
first improvement includes the use of chaotic maps at the 
initialization phase to improve the diversity of the solutions. 
The second improvement consists of using the SA algorithm 
with the HHO algorithm to enhance its exploitation and 
avoid being stuck in local optima. The details of these 
contributions into HHO are detailed as follows:  

In the CHHO algorithm, the chaotic map value replaced 
the randomly generated values for initializing the Harris 
Hawks population positions at the initialization phase. The 
chaotic values are generated from chaotic maps.  In this 
work, ten chaotic maps were applied to the algorithm to 
contrast the effect of employing different chaotic maps. 
These maps are Singer, Sinusoidal, Chebyshev, Circle, Tent, 

Sine, Piecewise, Logistic, Iterative, and Gauss/mouse. The 
maps with its statistical equations are listed in Table I. These 
maps significantly increase the convergence rate and the 
fitness performance of the HHO, as will be demonstrated 
later in the experimental discussion section. 

Moreover, the second improvement is to embed the SA in 
the CHHO algorithm to enhance its local searchability. This 
embedding will improve the exploitation capability of the 
algorithm. After implementing chaotic maps and obtaining 
the best solution, SA is used to improve the current best 
solution at the end of each HHO iteration. The pseudocode 
of the proposed CHHO algorithm is illustrated in Algorithm 
1.  
 

Algorithm 1: Pseudo-code of CHHO algorithm 
Inputs: The population size 𝑁 and maximum number of iterations 𝑇  

Outputs: The location of the rabbit and its fitness value  

Initialize the chaotic population 𝑋𝑖  (𝑖 = 1, 2, . . . , 𝑁)  

while (fitness value != stopping criteria) do  

      Compute the fitness values of hawks  

      Set 𝑋𝑟𝑎𝑏𝑏𝑖𝑡 as the location of rabbit (best location)  

      for (each hawk (𝑋𝑖)) do  

           Update the initial energy 𝐸0 and jump strength  𝐽 𝐸0 = 2𝑟𝑎𝑛𝑑() − 1, 𝐽 = 2(1 − 𝑟𝑎𝑛𝑑())  
Update the 𝐸 using Eq. (3)                  ▷ Exploration phase 

           if (|𝐸| ≥ 1) then 

           Update the location vector using Eq.                  (1)  

            if (|𝐸| < 1) then                          ▷ Exploitation phase 

               if (𝑟 ≥ .5 and |𝐸| ≥ .5) then           ▷ Soft besiege 

               Update the location vector using Eq.              (4) 

               else if (𝑟 ≥ .5 and |𝐸| < .5) then   ▷ Hard besiege                   

               Update the location vector using Eq.              (7) 

               else if (𝑟 < .5 and |𝐸| ≥ .5) then   ▷ Soft besiege 

with progressive rapid dives 

               Update the location vector using Eq.             (11) 

               else if (𝑟 < .5 and |𝐸| < .5) then   ▷ Hard besiege 

with progressive rapid dives 

               Update the location vector using Eq.             (12)  

Apply SA  𝑇 = 𝑡 +  
Return 𝑋𝑟𝑎𝑏𝑏𝑖𝑡 
 

To explain the computational complexity of the CHHO 
algorithm. The computational complexity stands on 
initialization, fitness evaluation, and updating of candidate 
solutions processes. Considering all the possible solutions 𝑁, 
the computational complexity of the initialization process is O(𝑁). Also, the computational complexity of the updating 
process O(𝑇 ∗ 𝑁) +  O(𝑇 ∗ 𝑁 ∗ 𝐷𝑖𝑚), which is contained the 
updating the search-agents positions and finding the best 
solution, 𝑇 indicates the maximum number of iterations and 𝐷𝑖𝑚 is the dimension of the search space. However, the 
computational complexity of utilizing the SA search strategy 
can be identified as 𝑂(𝑇 × 𝐼 × 𝑆), where the 𝐼 is the number 
of SA iterations, and 𝑆 is the SA search strategy. 
Consequently, the computational complexity of CHHO is O(𝑁 ∗ (𝑇 + 𝑇𝐷𝑖𝑚 + 1) + 𝑇𝐼𝑆).   

The proposed CHHO is also presented in the form of a 
flowchart in Figure. 1. The starts of the CHHO process by 
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initializing the Harris Hawks (search-agents) population using 
chaotic maps. Then, compute the fitness value of the candidate 
solution. After that, SA applied in each iteration. Then the 
evaluation of fitness value using wrapper FS based KNN 
classifier. All earlier process will be reiterated until the 
stopping condition is satisfied. 

 

 
FIGURE 1. The flowchart of the proposed CHHO algorithm using chaotic 

maps and SA techniques. 

 
V. EXPERIMENTAL RESULTS AND DISCUSSION  

To validate and evaluate the performance of the proposed 
CHHO algorithm. CHHO was compared with some famous 
and recent optimization algorithms, including GOA, GA, 
PSO, BOA, and ALO algorithms. All experiments were 
conducted on 14 benchmark datasets from the UCI repository. 
The used datasets and all experiment details presented in the 
following steps: 

A. DATASETS DETAILS 

In this experiment, fourteen medical benchmark datasets 
were used from the UCI machine learning repository. The 
details of these datasets are presented in Table II. All 
experiments were conducted using the settings stated in 
Table III.   

 

TABLE II 
UCI MEDICAL DATASETS DESCRIPTION  

ID Dataset No. of Features No. of Instances 

Ds1 Lung 57 32 

Ds2 Heart Disease 14 270 

Ds3 Lymphography 19 148 

Ds4 Primary Tumor 18 339 

Ds5 Parkinson 29 1040 

Ds6 Breast Cancer  10 699 

Ds7 CTG 23 2126 

Ds8 Cervical Cancer  36 858 

Ds9 Dermatology 35 366 

Ds10 HCV 29 1385 

Ds11 ILPD 11 583 

Ds12 SPECT 23 267 

Ds13 WDBC 31 569 

Ds14 Fertility dataset 10 100 

 
TABLE III  

PC SPECIFICATIONS 
Name Detailed settings 

CPU Core(TM) i7 1.80GHz 

RAM 16.0GB 

OS Windows10 

Language MATLAB R2020a 

B. ALGORITHMS AND EXPERIMENTS PARAMETER 

SETTING  

In all experiments, the wrapper method based KNN classifier 
(10-fold cross-validation) was utilized to validate the fitness 
performance of the proposed algorithm. This validation 
technique uses 𝑘 − 1 folds for training and one-fold for 
testing. Also, the parameter settings of other baseline 
optimization algorithms GOA, GA, PSO, BOA, and ALO, are 
shown in Table IV. Furthermore, for all algorithms, the 
population size was set to 10, and the maximum number of 
iterations was 50. The classification accuracy was chosen as a 
critical metric for evaluating and validating the optimization 
algorithms performance. The results are presented in Table V, 
were the results performed based on the average number of 20 
runs, in each run 50 iteration modified by the SA algorithm.  
 

TABLE IV 
PARAMETER SET OF OPTIMIZATION ALGORITHMS  

Algorithm Parameter Ref. 
GOA cMax=1; 

cMin=0.00004 
[44] 

GA Crossover Ratio 0.9 
Mutation Rate 0.2 

[45] 
 

PSO Inertia Weight value 0.9 
Inertia Weight Damping 
Ratio 0.4 
Accelerating-constant values 
are C1=2, C2=2 

[45] 
 

BOA Probability-switch 0.8 
Power exponent=0.1    
Sensory modality=0.01 

[14] 
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C. RESULTS AND DISCUSSION  

In this section, we present the summary and results of all 
experiments. Two main experiments were conducted using 
the CHHO algorithm to customize the algorithm to solve the 
feature selection problem. The first experiment includes 
evaluating the performance of the CHHO with the original 
HHO algorithm, where ten different variants of CHHO were 
tested using different previously mentioned chaotic maps. 
The second experiment includes the comparison of the 
CHHO algorithm with other state-of-the-art and recent 
optimization algorithms GOA, GA, PSO, BOA, and ALO. 
Four metrics were used in all experiments, including 
Average Number of selected features (AFS), Average 
Fitness Value (AFV), Average of Classification Accuracy 
(AAC), and the P-value statistical test to distinguish the 
performance of the competing algorithms in each phase. 
These metrics were calculated within 20 runs, while the SA 
algorithm chose the best solution among 50 iterations on 
each run. 
 

1) THE EFFECT OF DIFFERENT CHAOTIC MAPS 
WITH SA ON THE STANDARD HHO ALGORITHM 
PERFORMANCE 

The first aim of this experiment is to evaluate the 
performance of CHHO with ten chaotic maps and determine 
the best chaotic map while including the SA algorithm into 
the iterations process. In Table V, the evaluations of CHHO 

with ten chaotic maps and the standard HHO are reported. 
The P-value of Wilcoxon’s statistical test was used to 
evaluate the HHO with ten CHHO variants to highlight the 
significance of the improvement. In Table V, P-value is 
underlined were the significant P-value < 0.5. It must be 
indicated that CHHO1, CHHO2, ..., CHHO10 in Table V 
refer to the ten implemented chaotic maps as presented in 
Table I. Additionally, it is worth mentioning that Ds1, Ds2, 
…, Ds14 in Table V refer to the 14 benchmark datasets as 
shown in Table II. It can be seen from Table V. that CHHO 
with chaotic maps outperformed the standard HHO. Also, for 
the statistical comparison between chaotic maps among all 
datasets, the best results of the P-value are underlined as 
presented in Table VI.   P-value results in Table VI show the 
outperforming expansion of Sine chaotic map in comparison 
with all other maps. As observed in Table VI, the CHHO6 
(Sine map) variant obtained significant statistical results 
compared to the others in most cases. Therefore, this result 
concludes that CHHO6 is a significant improvement over the 
original HHO algorithm. As shown in Table V, the CHHO2 
variant (Sinusoidal) provided the best number of selected 
features followed by the CHHO6 variant. In addition,  the 
CHHO6 variant obtained the best classification accuracies 
while the CHHO2 variant obtained the best fitness values. 
 
 
 

 
TABLE V 

THE PERFORMANCE RESULTS OF CHHO’S WITH THE STANDARD HHO ALGORITHM IN TERMS OF AVERAGE SELECTED FEATURES (AFS), 
AVERAGE FITNESS VALUE (AFV), AVERAGE CLASSIFICATION ACCURACY (AAC) AND P-VALUE.  

 

Ds1 AFS  AFV AAC P-Value 

HHO 4.764 0.0003571 0.6  

CHHO1 3.4607 0.012643 0.8375 3.79E-04 

CHHO2 1.7913 0.0001696 0.65 1.96E-02 

CHHO3 2.1691 0.016812 0.48333 2.36E-01 

CHHO4 1.7749 0.0001875 0.6 4.49E-02 

CHHO5 2.0136 0.012571 0.6375 4.29E-02 

CHHO6 2.5185 0.0002054 0.6 4.52E-02 

CHHO7 2.1462 0.029152 0.67083 2.91E-02 

CHHO8 2.5442 0.0001875 0.7 7.20E-03 

CHHO9 2.9034 0.016795 0.78333 1.51E-03 

CHHO10 1.7136 0.0001786 0.6 4.47E-02 
 

 

Ds2 AFS  AFV AAC P-Value 

HHO 3.7082 0.10524 0.8963  

CHHO1 3.712 0.06518 0.93704 1.43E-03 

CHHO2 3.9146 0.06717 0.93519 8.11E-05 

CHHO3 3.9 0.07083 0.93148 1.44E-06 

CHHO4 4.1686 0.07282 0.92963 1.89E-06 

CHHO5 4.0289 0.05983 0.94259 1.08E-03 

CHHO6 4.1806 0.07278 0.92963 3.90E-03 

CHHO7 4.0294 0.07458 0.92778 3.57E-03 

CHHO8 3.8673 0.09096 0.91111 9.81E-05 

CHHO9 4.25 0.0766 0.92593 3.18E-03 

CHHO10 4.05 0.07462 0.92778 4.63E-05 
 

 

Ds3 AFS  AFV AAC P-Value 

HHO 6.6012 0.32224 0.67787  

CHHO1 5.7234 0.23306 0.76778 4.90E-03 

CHHO2 5.5168 0.18202 0.8192 1.55E-03 

CHHO3 6.5 0.17649 0.82538 2.75E-05 

CHHO4 6.2662 0.24451 0.75655 5.62E-04 

CHHO5 7.1 0.21697 0.78483 2.34E-03 

CHHO6 6.3332 0.21427 0.78716 3.96E-03 

CHHO7 6.4237 0.16456 0.83729 1.60E-04 

CHHO8 6.65 0.2067 0.79494 2.92E-03 

CHHO9 6.5 0.20172 0.79989 3.64E-03 

CHHO10 6.4 0.18115 0.82061 1.17E-03 
 

 

Ds4 AFS  AFV AAC P-Value 

HHO 7.2008 0.13649 0.86618  

CHHO1 6.8 0.09453 0.90856 1.14E-02 

CHHO2 7.7632 0.08925 0.91448 1.22E-03 

CHHO3 6.7 0.1149 0.88792 4.38E-05 

CHHO4 6.75 0.09 0.9131 2.71E-04 

CHHO5 7.65 0.10271 0.9008 2.43E-03 

CHHO6 7.1 0.09299 0.91029 1.68E-04 

CHHO7 6.7724 0.09878 0.90423 3.33E-04 

CHHO8 6.75 0.10474 0.89822 6.19E-04 

CHHO9 6.55 0.11635 0.88636 2.03E-03 

CHHO10 6.7098 0.09627 0.90677 1.03E-04 
 

https://en.wikipedia.org/wiki/Statistical_significance
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Ds5 AFS  AFV AAC P-Value 

HHO 4.1812 0.0010295 0.99952  

CHHO1 1.3207 0.0003571 1 8E-09 

CHHO2 1.068 0.0003571 1 8E-09 

CHHO3 1.6571 0.0003571 1 8E-09 

CHHO4 1.4191 0.0003571 1 8E-09 

CHHO5 1.5753 0.0003571 1 7.99E-09 

CHHO6 1.1926 0.0003571 1 7.98E-09 

CHHO7 1.1539 0.0003571 1 7.95E-09 

CHHO8 1.1138 0.0003571 1 2.96E-08 

CHHO9 1.3018 0.0003571 1 8.01E-09 

CHHO10 1.5811 0.0003571 1 8.01E-09 
 

 

Ds6 AFS  AFV AAC P-Value 

HHO 3.1847 0.01207 0.9914  

CHHO1 3.2 0.01913 0.98427 2.81E-01 

CHHO2 2.9704 0.01956 0.98355 7.55E-02 

CHHO3 2.9098 0.01807 0.985 4.30E-02 

CHHO4 3.4466 0.01733 0.98637 3.42E-01 

CHHO5 3.1 0.01618 0.98713 2.40E-02 

CHHO6 3.3748 0.00934 0.99427 9.89E-02 

CHHO7 3.2341 0.01488 0.98856 2.62E-01 

CHHO8 3.102 0.01123 0.99213 1.81E-01 

CHHO9 2.8838 0.01313 0.98999 1.12E-01 

CHHO10 3.1043 0.01474 0.98853 1.18E-01 
 

 

Ds7 AFS  AFV AAC P-Value 

HHO 5.1684 0.017239 0.98401  

CHHO1 2.6697 0.010757 0.99035 1.32E-07 

CHHO2 2.9573 0.0099321 0.9913 9.07E-08 

CHHO3 2.9723 0.010685 0.99058 3.15E-07 

CHHO4 2.9976 0.010185 0.99107 6.69E-08 

CHHO5 3.1431 0.0090956 0.99224 1.35E-06 

CHHO6 2.2474 0.0086811 0.99224 5.12E-07 

CHHO7 3.2293 0.012643 0.9887 6.64E-08 

CHHO8 3.1054 0.0097613 0.99154 1.26E-06 

CHHO9 2.7568 0.011028 0.99012 5.96E-07 

CHHO10 2.4241 0.01018 0.99082 1.04E-06 
 

 

Ds8 AFS  AFV AAC P-Value 

HHO 8.1129 0.02699 0.97438  

CHHO1 4.0124 0.02017 0.98073 9.05E-07 

CHHO2 4.0024 0.01377 0.98719 1.06E-03 

CHHO3 4.4384 0.01679 0.98428 2.31E-04 

CHHO4 4.6151 0.01629 0.9848 1.22E-04 

CHHO5 4.8071 0.01679 0.98428 1.28E-03 

CHHO6 4.4496 0.01797 0.98312 1.23E-02 

CHHO7 3.9546 0.01259 0.98835 2.24E-05 

CHHO8 4.6576 0.01498 0.98603 1.31E-05 

CHHO9 4.1235 0.01378 0.98719 9.21E-05 

CHHO10 4.6047 0.01506 0.98602 1.22E-03 
 

 
Ds9 AFS  AFV AAC P-Value 

HHO 13.172 0.0076908 0.99587  

CHHO1 6.0566 0.0018235 1 1.83E-07 

CHHO2 5.6234 0.0016912 1 5.00E-08 

CHHO3 6.6319 0.0019706 1 6.48E-07 

CHHO4 6.3803 0.0019412 1 9.91E-08 

CHHO5 7.4578 0.0035143 0.99865 4.58E-05 

CHHO6 6.9455 0.0020441 1 3.35E-07 

CHHO7 6.6672 0.0019853 1 1.34E-07 

CHHO8 5.7319 0.0016912 1 2.79E-07 

CHHO9 6.1003 0.0018088 1 2.21E-07 

CHHO10 5.7329 0.0017353 1 4.68E-07 
 

 
Ds10 AFS  AFV AAC P-Value 

HHO 8.6004 0.65838 0.33768  

CHHO1 7.8372 0.63337 0.36294 4.54E-06 

CHHO2 5.8621 0.63074 0.365 1.44E-04 

CHHO3 7.5283 0.62924 0.36709 2.69E-06 

CHHO4 8.3032 0.62909 0.36744 3.50E-06 

CHHO5 7.6576 0.62988 0.36627 3.29E-05 

CHHO6 8.064 0.63956 0.35679 2.05E-06 

CHHO7 8.4373 0.63002 0.36653 3.10E-05 

CHHO8 7.1586 0.62991 0.36632 2.35E-06 

CHHO9 6.5711 0.63857 0.35718 2.59E-04 

CHHO10 7.2055 0.63207 0.36414 9.25E-05 
 

 
Ds11 AFS  AFV AAC P-Value 

HHO 3.6571 0.20995 0.79136  

CHHO1 3.2797 0.19004 0.81132 2.06E-02 

CHHO2 3.2373 0.19736 0.80383 2.55E-02 

CHHO3 3.85 0.19051 0.81146 1.23E-01 

CHHO4 3.1076 0.19427 0.8069 3.31E-03 

CHHO5 3.0484 0.20188 0.79906 1.11E-03 

CHHO6 2.9312 0.19675 0.80419 6.37E-02 

CHHO7 3.2705 0.19012 0.81119 3.34E-02 

CHHO8 3.2 0.20835 0.79278 9.77E-03 

CHHO9 2.9511 0.19292 0.80811 8.81E-02 

CHHO10 3.3273 0.1972 0.80419 1.14E-02 
 

 
Ds12 AFS  AFV AAC P-Value 

HHO 8.0716 0.17972 0.82187  

CHHO1 8.676 0.08721 0.91588 5.16E-05 

CHHO2 8.1229 0.08167 0.92123 9.61E-04 

CHHO3 8.3 0.07041 0.93269 8.70E-05 

CHHO4 7.8 0.07406 0.92877 9.17E-04 

CHHO5 7.6372 0.07961 0.92308 2.88E-04 

CHHO6 7.75 0.10443 0.89808 8.66E-03 

CHHO7 7.4839 0.05735 0.94551 8.73E-05 

CHHO8 8.4185 0.06886 0.93426 1.43E-04 

CHHO9 8.7596 0.08709 0.91603 6.81E-04 

CHHO10 8.8207 0.07639 0.92685 3.18E-03 
 

 

Ds13 AFS  AFV AAC P-Value 

HHO 6.6633 0.032007 0.96924  

CHHO1 4.023 0.017629 0.98327 2.85E-04 

CHHO2 3.626 0.01937 0.98158 8.68E-04 

CHHO3 4.5233 0.023808 0.97713 1.28E-03 

CHHO4 4.2427 0.020486 0.98067 1.19E-05 

CHHO5 4.0011 0.013357 0.9877 1.67E-04 

CHHO6 4.5712 0.020485 0.98065 2.12E-03 

CHHO7 4.0708 0.01858 0.98239 7.83E-04 

 

Ds14 AFS  AFV AAC P-Value 

HHO 3.1587 0.09683 0.855  

CHHO1 2.4689 0.05206 0.75 2.93E-01 

CHHO2 2.4992 0.04221 0.81 2.01E-01 

CHHO3 2.0329 0.03192 0.67 4.81E-01 

CHHO4 1.946 0.0416 0.61 4.54E-01 

CHHO5 1.5816 0.03131 0.52 6.59E-01 

CHHO6 2.6191 0.08203 0.87 1.24E-01 

CHHO7 1.4541 0.04616 0.605 5.98E-01 
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CHHO8 4.2592 0.017682 0.98332 1.27E-02 

CHHO9 4.1104 0.018585 0.98246 9.57E-04 

CHHO10 3.9305 0.021306 0.97981 1.08E-05 
 

CHHO8 1.25 0.03604 0.515 6.18E-01 

CHHO9 2.3432 0.06685 0.735 2.76E-01 

CHHO10 2.3605 0.05194 0.7 2.23E-01 
 

TABLE VI 
P-VALUE OF CHHO’S AMONG THE DATASETS  

 CHHO1 CHHO2 CHHO3 CHHO4 CHHO5 CHHO6 CHHO7 CHHO8 CHHO9 CHHO10 

Ds1 2.19E-01 1.14E-01 9.08E-01 3.17E-01 7.25E-01 6.31E-01 4.57E-01 1.25E-01 1.66E-01 5.12E-01 

Ds2 7.81E-02 1.04E-02 8.29E-02 1.10E-01 3.10E-02 7.31E-02 1.54E-01 2.00E-01 9.19E-02 5.28E-02 

Ds3 3.97E-02 4.10E-02 1.95E-03 4.31E-03 1.19E-02 1.43E-02 1.48E-03 7.40E-03 1.93E-02 1.79E-02 

Ds4 1.60E-02 1.69E-03 1.67E-03 1.50E-04 1.60E-02 2.53E-03 1.09E-02 3.04E-03 2.30E-02 6.56E-05 

Ds5 9.11E-04 1.62E-01 9.54E-03 1.97E-02 4.51E-03 4.49E-03 8.06E-02 1.96E-02 2.07E-03 8.06E-02 

Ds6 4.94E-01 6.74E-01 3.07E-01 4.71E-01 2.82E-01 5.47E-01 6.21E-01 3.82E-01 3.91E-01 5.31E-01 

Ds7 0.13286 2.21E-02 1.09E-02 1.48E-02 1.19E-01 4.01E-02 6.16E-02 1.01E-01 1.51E-01 8.54E-02 

Ds8 6.57E-02 6.26E-03 2.55E-02 8.79E-02 1.37E-01 4.97E-02 3.54E-02 6.55E-02 5.99E-02 5.12E-02 

Ds9 8.31E-07 5.00E-08 5.68E-06 1.95E-06 5.58E-05 5.48E-07 2.15E-07 3.64E-07 6.42E-07 1.14E-06 

Ds10 2.30E-02 7.42E-02 8.35E-04 2.67E-03 1.95E-03 6.23E-05 5.11E-03 2.67E-03 5.55E-03 4.90E-03 

Ds11 3.30E-01 1.26E-01 4.56E-01 4.89E-01 2.03E-01 3.04E-01 4.09E-01 1.89E-01 3.57E-01 5.42E-01 

Ds12 1.60E-04 5.83E-04 6.20E-05 2.72E-04 3.20E-04 3.33E-03 1.41E-05 2.73E-05 4.13E-04 7.94E-04 

Ds13 4.05E-02 1.37E-02 6.34E-02 2.35E-02 9.95E-04 2.73E-02 2.28E-02 3.95E-02 4.49E-02 4.35E-02 

Ds14 6.42E-01 8.05E-01 8.69E-01 9.22E-01 8.42E-01 5.18E-01 8.89E-01 7.43E-01 8.38E-01 7.94E-01 

 

Generally, most of the CHHO variants with the chaotic maps 
produced better solutions than the standard HHO in all 
metrics. This shows the importance and effect of employing 
a chaotic map and SA to improve the population diversity 
and enhance the local search. However, in most cases, the 
worst results were found by the CHHO7 (Piecewise map) 
variant, which makes it incompatible with the search 
mechanism the standard HHO algorithm. Based on the 
reported results in Tables V and VI, it can be concluded that 
the Sine chaotic map seems to be a proper choice to enhance 
the performance of the standard HHO algorithm and 
customize it for the feature selection problem.  It is worth 
mentioning that the highest classification performance 
results were obtained on Ds 5. This is due to the large number 
of experiments required from a small number of patients to 
identify Parkinson’s disease. In the following section, Sine 
chaotic map (CHHO6) has been selected for further 
investigation along with other states of the art algorithms to 
verify the performance of the CHHO in the feature selection 
problem. 
 

2) COMPARISON OF THE PROPOSED CHHO WITH 
STATE OF THE ART ALGORITHMS 

The second experiment in this study includes the comparison 
of CHHO performance with other optimization algorithms. 
The baseline algorithms are GOA, GA, PSO, BOA, ALO, 
and HHO. The parameter settings for all algorithms are 
shown in Table IV were the maximum iterations and the 
search-agents set to 50 and 10, respectively, for all 
algorithms. The performance score was calculated based on 
20 runs. Table VII. shows the number of selected features in 
all evaluated algorithms. It is observed that the CHHO 

achieved the best results of selected features in 11 datasets, 
while HHO succeeded in two datasets and GA in one dataset. 
In terms of classification accuracy presented in Table VIII, it 
is observed that the CHHO obtained the best results in most 
of the cases. Still, it gave similar classification accuracy to 
the HHO in four datasets. Also, PSO provided similar 
classification accuracy in two datasets. In the second place, 
PSO and HHO obtained similar classification accuracy in 
most cases, and GA comes in third place. However, in Table 
IX CHHO algorithm outperformed all other algorithms in 
terms of fitness value, considering it attained the minimum 
classification error among all the algorithms. 

Graphical representation of the convergence-curves was 
also considered to evaluate the convergence speed of CHHO 
on 14 benchmark datasets as displayed in Figure 2. From 
Figure 2, it is observed that the CHHO algorithm achieved 
higher performance results on 13 datasets while it is 
comparable with standard HHO in Ds5. Also, it is observed 
that the performance of HHO is comparable with the PSO in 
most cases where the ALO achieved the worst convergence 
speed. PSO algorithm is considered to be the second efficient 
method after HHO in all benchmark datasets. In other words, 
CHHO has a higher converged rate and lower classification 
error than the different competing algorithms. This 
superiority came from the improvement stated in the 
initialization and exploitation phases. The enhanced 
population diversity in the initialization phase leads to 
accelerate the convergence speed. Also, the enhanced in the 
exploitation phase provided high fitness value. These 
superiority results are a clue of the higher algorithm 
capability to avoid the local optima problem and solve the 
problem of feature selection.
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FIGURE 2.  Convergence-curves of the competing algorithms on all datasets.

TABLE VII 
 AVERAGE NUMBER OF SELECTED FEATURE OF CHHO IN THE COMPARISON WITH ALL OPTIMIZATION ALGORITHMS 

 GOA GA PSO BOA ALO HHO CHHO 

DS1 16.13 11.25 14.49 15.70 15.31 4.764 2.5185 

DS2 5.87 5.50 5.50 6.30 5.92 3.7082 4.1806 

DS3 9.11 8.95 8.48 10.65 8.88 6.6012 6.3332 

DS4 8.26 7.90 8.53 10.75 8.19 7.2008 7.1 

DS5 13.57 9.30 12.43 16.00 13.30 4.1812 1.1926 

DS6 4.34 3.35 4.17 5.60 4.49 3.1847 3.3748 

DS7 10.93 8.65 10.10 12.60 10.83 5.1684 2.2474 

DS8 16.45 13.25 15.45 16.20 16.20 8.1129 4.4496 

DS9 16.78 15.15 16.06 23.05 17.38 13.1718 6.9455 

DS10 13.23 10.35 12.91 17.90 13.86 8.6004 8.064 

DS11 4.92 4.00 4.38 5.05 5.08 3.6571 2.9312 

DS12 10.72 9.80 10.40 13.95 10.88 8.0716 7.75 

DS13 13.62 9.55 13.29 15.65 14.73 6.6633 4.5712 

DS14 3.64 2.10 3.43 3.25 3.28 3.1587 2.6191 

 
TABLE VIII 

 AVERAGE CLASSIFICATION ACCURACY OF CHHO IN THE COMPARISON WITH ALL OPTIMIZATION ALGORITHMS 

 GOA GA PSO BOA ALO HHO CHHO 

DS1 0.55 0.58 0.57 0.55 0.55 0.60 0.60 

DS2 0.83 0.85 0.88 0.80 0.81 0.90 0.93 

DS3 0.56 0.63 0.66 0.57 0.52 0.68 0.79 

DS4 0.79 0.84 0.85 0.81 0.80 0.87 0.91 

DS5 0.95 0.99 1.00 0.96 0.95 1.00 1.00 

DS6 0.98 0.99 0.99 0.99 0.98 0.99 0.99 

DS7 0.94 0.95 0.96 0.94 0.93 0.98 0.99 
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DS8 0.95 0.97 0.97 0.95 0.94 0.97 0.98 

DS9 0.97 0.99 0.99 0.97 0.95 1.00 1.00 

DS10 0.30 0.32 0.33 0.30 0.30 0.34 0.36 

DS11 0.73 0.76 0.78 0.75 0.73 0.79 0.80 

DS12 0.75 0.80 0.83 0.77 0.74 0.82 0.90 

DS13 0.95 0.96 0.96 0.95 0.94 0.97 0.98 

DS14 0.80 0.82 0.82 0.82 0.79 0.86 0.87 

 
TABLE  IX 

AVERAGE FITNESS VALUE OF CHHO IN THE COMPARISON WITH ALL OPTIMIZATION ALGORITHMS 

 GOA GA PSO BOA ALO HHO CHHO 

DS1 0.0521 0.0185 0.0343 0.0523 0.0520 0.0004 0.0002 

DS2 0.1761 0.1491 0.1221 0.2047 0.1966 0.1052 0.0728 

DS3 0.4369 0.3680 0.3410 0.4334 0.4766 0.3222 0.2143 

DS4 0.2130 0.1604 0.1545 0.1927 0.2043 0.1365 0.0930 

DS5 0.0492 0.0095 0.0062 0.0409 0.0558 0.0010 0.0004 

DS6 0.0215 0.0179 0.0155 0.0197 0.0226 0.0121 0.0093 

DS7 0.0659 0.0547 0.0427 0.0625 0.0698 0.0172 0.0087 

DS8 0.0567 0.0372 0.0284 0.0553 0.0626 0.0270 0.0180 

DS9 0.0359 0.0193 0.0103 0.0368 0.0579 0.0077 0.0020 

DS10 0.6983 0.6780 0.6712 0.6960 0.6966 0.6584 0.6396 

DS11 0.2689 0.2395 0.2217 0.2567 0.2763 0.2100 0.1968 

DS12 0.2563 0.2012 0.1675 0.2323 0.2604 0.1797 0.1044 

DS13 0.0526 0.0423 0.0434 0.0513 0.0594 0.0320 0.0205 

DS14 0.1568 0.1310 0.1359 0.1323 0.1658 0.0968 0.0820 

Precisely, the proposed CHHO framework succeeded in 
balancing the search process among the exploration and 
exploitation over the search iterations.  
 

3) THE LIMITATIONS OF CHHO ALGORITHM 

The proposed CHHO is a promising algorithm that can 
solve high dimensional and complex optimization problems. 
CHHO improved the standard HHO in different aspects, 
such as the reduction of selected features, increasing 
classification accuracy, and fitness values. However, similar 
to other optimization algorithms, CHHO also has some 
limitations. The primary limitation is that it is comparatively 
time-consuming in comparison to different algorithms. 
However, the reason for the time-consumption is the 
computational complexity of the standard HHO, not because 
of the proposed improvements. Also, we believe that the 
time-consumption could be decreased if we reduced ten 
iterations of SA.  

 
VI. CONCLUSION AND FUTURE DIRECTIONS  

In this study, an improved CHHO algorithm is proposed by 
including chaotic maps to the HHO algorithm at the 
initialization phase and including the SA algorithm to the 
exploitation phase. Ten different chaotic maps were tested to 
determine the best compatible choice with the HHO 
algorithm to enhance the population diversity and improve 
the convergence speed. Furthermore, the SA algorithm was 

employed to improve the exploitation phase, which avoids 
the local optima problem. The proposed framework CHHO 
was applied for the feature selection problem. Fourteen 
medical benchmark datasets from the UCI machine learning 
repository were selected for the experiments along with Five 
evaluation criteria. These criteria are the number of selected 
features, classification accuracy, fitness value, P-value, and 
convergence speed. 
Additionally, the performance of the CHHO was compared 
with other recent and famous optimization algorithms. These 
algorithms are GOA, GA, PSO, BOA, ALO, and original 
HHO. The experimental and evaluation results demonstrated 
the superiority of the CHHO in comparison with other 
optimization algorithms in all metrics. Moreover, the results 
showed that the CHHO with the Sine map could significantly 
improve the performance of the standard HHO in terms of 
classification performance, the number of selected features, 
and convergence rates. Also, the results showed that 
applying the SA algorithm in the exploitation phase 
enhanced local search. The modifications achieved a 
balanced search behavior and suggested that the proposed 
framework is convenient for medical applications. For future 
research, it could be attractive to investigate the performance 
of the proposed CHHO algorithm on more sophisticated 
science and engineering problems and further enhance its 
complexity without affecting the current performance. 
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