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ABSTRACT Optimal reactive power dispatch (ORPD) in a typical power system is a complicated

multi-objective optimization problem. The proper modeling of the multi-objective optimization problem

has a significant impact on system operation and control. In this paper, an Improved Heap-based opti-

mizer (IHBO) is proposed to improve the performance of a recently published technique called Heap-based

optimizer (HBO). In addition, two algorithms based on the original HBO and IHBO are developed for solving

OPRD problem. Pareto front approach is utilized in the proposed OPRD algorithm with the aim of solving

two or three objective functions simultaneously. The performance of HBO is improved by utilizing the

chaotic sequences with the aim of improving its global search capability and avoiding getting stuck in a

local optimum. Both original HBO and proposed IHBO are applied to determine the optimal settings of the

generator’s voltages, shunt capacitor reactive power, and tap settings of transformers. Therefore, this study

aims for minimizing three most objective functions of the real power loss, total voltage deviation (TVD) and

voltage stability index (VSI), with satisfying different operational constraints. The effectiveness of the IHBO

is tested on three test systems IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus test systems. The results of the

proposed IHBO are compared with recently published algorithms in the literature. The simulation results

proven the superiority and robustness of IHBO in solving the ORPD problem.

INDEX TERMS Reactive power dispatch, optimization, heap-based optimizer, chaotic sequence.

I. INTRODUCTION

Nowadays, the existing power systems are imperative to

operate at entire capacity due to the imbalance investment

in power generation, transmission, and distribution sectors.

Often, due to the aforementioned situation the heavy cur-

rent flows in whole system tend to incur more losses and

threatening power system stability. At last, this may lead

to the risk of electricity interruptions in whole system of

various severity levels. Hence, there is unanimity amongst

the system operators to enhance the existing transmission

and distribution systems through installation of power grid

stations and new lines to make the system more smart, effi-

cient, and reliable [1]. To subtend the mentioned challenges,
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there are two optional solutions which are mostly employed

by the operators. The first solution is associated to increasing

the current infrastructure of power system through adding the

new substations and lines. The second solution is regarding

to profiteering of the existent transmission and distribution

system without upgrading, through optimal setting of the

system parameters which results in improving the effective-

ness of the system. This can be accomplished by carrying

out technical study of power system that is called optimal

power flow (OPF). OPF is utilized in an interconnected

power system to obtain the optimized operating parameters

of the system in such a way to achieve the predictable load

dispatch with minimizing the total operating cost and real

power losses [2]–[6]. Furthermore, OPF is divided to two sub

problems, the first one is called economic dispatch problem

and the second sub-problem is recognized as ORPD. The two
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problems are implemented in different scenarios according to

the requirement of objective functions [7], [8].

ORPD planning is mandatory requirement for viable and

efficient operation of the power transmission and distribu-

tion systems. The solving ORPD problem has got attention

through researchers in power system planning and opera-

tions [9], [10]. Solving the ORPD plays an important role

in the system security, reliability, and economic operations.

This is because it supports the voltage of the network to

maintain it within desirable acceptable limits based on the

proper coordination of the equipment that adjusts the flow of

reactive power.

The objective of solving ORPD is minimizing a considered

objective function, such as real power transmission losses,

voltage deviation, and voltage stability index. These opera-

tional problems arise due to the complexity emerging in grid

modernization. ORPD is fundamental to assist maintain the

voltage level at the different loading state through reducing

the voltage deviation as well as power quality issues which

arise from the fluctuations of electrical power [11].

The considered objective function is achieved by adjusting

the system control variables within different operating con-

straints. From a mathematical model optimization point of

view, the problem of ORPD is a complex nonlinear problem,

due to its nonlinear objective function and various type of

constraints [12].

However, numerous efforts have been conducted for solv-

ing ORPD based on various classical optimization meth-

ods including linear and non-linear programming [13], [14],

interior point method [15], [16] and decomposition algo-

rithm [17], Regardless of the convergence characteristics of

the classical optimization methods, these techniques may

almost fail for obtaining the global solution due to difficulties

of nonlinearity, and nonconvexity.

The metaheuristic optimization algorithms are inspired

based on animals’ behavior and physical phenomena have

become widespread popular due to their flexibility, simplic-

ity, ability to get global solutions, and prevent local optimal

solutions [18]. The essence of metaheuristic techniques is

based on the iterative correction solutions concept through

generating new populations with implementing stochastic

search operators [19]. Over recent years, there are growing

attention on population-based and metaheuristics techniques

for solving different power system optimization problems.

These modern techniques have been extensively employed

to overcome the problems of the conventional gradient-based

optimization techniques [20], [21].

ORPD problem has been solved based on several meta-

heuristic optimization algorithms such differential evolution

(DE) [22], [23], differential search algorithm [24], grav-

itational search algorithm (GSA) [25], enhanced marked

algorithm [10], gray wolf optimizer [26], krill herd algo-

rithm (KHA) [27], cuckoo search (CS) algorithm [28],

ant-lion optimizer (ALO) [29], PSO with bat algorithm

(BA) [30], Sine-Cosine algorithm (SCA) [31] and frac-

tional order particle swarm optimization (FOPSO) [32].

Hybrid methods of more than one or two optimization

algorithms can extract a synergy of their advantages simul-

taneously. This approach has been applied to develop

several effective algorithms such as differential evolution

algorithm (DDEA) and modified teaching learning-based

algorithm (MTLBA) has been proposed in [33], hybrid fire-

fly algorithm (FFA) and Nelder-Mead simplex method [34],

modified imperialist competitive and invasiveweed optimiza-

tion (MICAIWO) [35], hybrid particle swarm optimization

and Imperialist competitive algorithm (PSOICA) [36], hybrid

chaotic (ABCDE) algorithm [37], hybrid PSO and GSA

algorithm (PSOGSA) [9], hybrid PSO with artificial physics

optimization (APO) (APOPSO) [38], and hybrid PSO and

multi verse optimizer algorithm (PSOMVO) [11].

It worth noting that, these techniques may stuck in local

optimal solution while solving complex multi-objective

problems. Also, the convergence speed depends on the

proper adjustment of the parameters of each meta-

heuristic [39], [40].

To improve the performance and effectiveness of meta-

heuristics techniques, various modifications maybe applied

to them. Until now, chaos theory has been implemented on

a broad of numerous metaheuristics and a wide range of

applications for improving their performance to get better

convergence and avoid getting stuck in a local minimum [41].

For example, of meta-heuristics that utilize chaos theory,

the GSA technique [42], GWO technique [43], butterfly opti-

mization algorithm (BOA) [44], salp swarm algorithm (SSA)

[45], moth-flame optimizer (MFO) [46]. The metaheuristics

based on chaos theory for solving the ORPD problem of dif-

ferent objective functions have been introduced in [47], [48]

and Chaotic Bat Algorithm (CBA) with two modified tech-

niques CBA_III andCBA_IV [49]. On the other hand, solving

multi-objective ORPD problems based on different objective

functions have been presented in the literature in [50] based

on Pareto evolutionary algorithm for minimizing both active

power loss and total voltage deviation. In [51], an improve

voltage stability has been included in multi-objective ORPD

problem with considering minimizing active power loss after

that the problem has been solved using chaotic PSO. The

modeling of ORPD as fuzzy goal programming for power

loss reduction, improving voltage profile and enhancing static

voltage stability then solved by genetic algorithm (GA) has

been proposed in [52].

These metaheuristic techniques have their own demerits

and merits in solving the ORPD problem, though definite

complications are continued due to multi modal, discrete and

nonlinear characteristic of power system that necessarily to

be achieved in more adequate manners. Moreover, a wider

set of utilized optimization techniques coverages towards sub

optimal problem solutions due to the complex non-linear

nature of the ORPD problems.

Therefore, solving ORPD problem is still a very important

hot research issue in the electrical engineering due to its

complexity, nonlinear characteristic of the system, and the

stricter requirements of power quality. Hence, it is important
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to develop new optimization methods that are capable of

overcoming these barriers and handle the ORPD difficulties.

In this paper, an ImprovedHeap-based optimizer (IHBO) is

proposed to solve ORPD for minimizing the most objective

functions of the real power loss and total voltage deviation

simultaneously based on the Pareto front technique. The orig-

inal HBO is improved using the chaos theory. A circle chaotic

map is employed to update the probability variable instead of

using the random update function. The main contributions of

this paper could be summarized in the following points:

• Proposing an improved version of the original HBO,

called IHBO, with the aim of improving its performance

and avoid getting stuck in a local optimum.

• Developing solution algorithms based on the original

HBO and proposed IHBO to solve ORPD problem.

• Solving the bi and tri multi-objective solve ORPD prob-

lem based on the proposed IHBO and Pareto Optimal

Front.

• Several objective functions such as minimizing the real

power loss, total voltage deviations, and voltage stability

index, are studied as single and multi-objective func-

tions.

• Validating the proposed IHBO using several standard

small and large test systems (IEEE 30-bus, IEEE 57-bus,

and IEEE 118-bus).

• The simulation results confirm that IHBO has better

performance or comparable superiority over other algo-

rithms utilized in the literature.

The paper is presented as follows: Section II introduces the

mathematical model of the ORPD problem. The IHBO algo-

rithm is presented in Section III. In Section IV, the IHBO

algorithm is implemented for solving the ORPD problem.

The obtained results are introduced and discussed in section

V. Finally, the conclusion is presented in Section VI.

II. THE MATHEMATICAL FORMULA OF ORPD

It is worth noting that, the ORPD problem is characterized

as a complicated nonlinear optimization problem, however,

it treated as a sub problem of optimal flow problem which

determines the optimal output power of generators with the

aim of minimizing a specific objective function considering

several equality and inequality operating constraints. The

objective functions in the present work are minimizing real

power loss, the voltage deviations, and voltage stability index

individually or simultaneously. The generator voltages, trans-

former tap settings, and reactive power of shunt capacitors are

considered the control variables of the ORPD problem while

the dependent variables are the load voltages, the flow of the

lines, and the slack bus power.

A. OBJECTIVE FUNCTIONS

Mathematically, the formulation problem of the ORPD is

expressed as follows [53], [35]:

minimize U (x, v) (1)

Subject to constraints

z (x, v) = 0 (2)

h (x, v) ≤ 0 (3)

where U is the objective function should be minimized, x is

the vector consists of the control variables which represent the

voltages of generators VG, reactive power of shunt capacitors

Qsc and transformer tap settings TS . However, x may be

expressed as follows:

xT =
[

VG1...,VGNG ,QSC ...,QSCNC ,TS1...,TSNT
]

(4)

where NG,NC and NT define the number of generators, shunt

Var compensators, and regulating transformers, respectively.

v is the state vector consisting of the dependent variables

which include the voltages at load buses VL , the generated

reactive powerQG, the loading of the transmission line SL and

the power at slack bus PGsl . The state vector v is expressed as

follows:

vT =
[

VL1...,VLNL ,QG...,QGNG , SL1..., SLnl ,PGsl
]

(5)

where, NL , and nl depict the total number of load buses

and transmission lines, respectively. Further, z (x, v) = 0 and

h (x, v) ≤ 0 represent the equality and inequality constraints,

respectively.

1) MINIMIZATION OF TOTAL REAL POWER LOSS

The most objective function U considered in ORPD is that

the total real power loss of the system. The ORPD solution

aims to minimize the total real system loss in the transmission

network. However, the minimization of real power loss acts

as an important target for system operators, which can be

formulated as follows [54]:

U1 (x1, v1) = min(PL) =
∑nl

k=1
Gk [V

2
i + V 2

j

− 2ViVjcos(θi − θj)] (6)

where, PL is the total real power loss, Gk is the conductance

of k’th branch, Vi,V j, θi and θj are the magnitudes and angles

of voltage at bus i and j, respectively.

2) MINIMIZATION OF (TVD) AT LOAD BUSES

One of the most important indices for achieving the security

of the system is minimizing the voltage deviations at load

buses, to prevent the appearance of an unaccepted voltage

profile. The voltage deviation is defined as the difference

between the nominal reference voltage and the actual volt-

age. The voltage deviations are mathematically expressed as

follows:

U2 (x2, v2) = min(TVD) =

NL
∑

k=1

|Vk − V
Ref
K | (7)

where, TVD is the total voltage deviation, k is the element of

the total number of load buses, Vk is the voltage magnitude at

bus k , and V
Ref
K is the reference of the voltage magnitude at

k th load bus and its value set to 1 p.u.
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3) ENHANCEMENT OF VOLTAGE STABILITY

It’s worth noting that, when the system subject to differ-

ent operating situations such as disturbance or sudden load

change, all buses should maintain acceptable bus voltage.

L-index is the voltage stability index that plays an important

role in voltage stability analysis. The values of the L− index

is ranged from 0 to 1, where the lowest value refers to more

stable system and vice versa [10]. The L-index of k’th bus is

formulated as follows:

U3 (x3, v3) = min[max(Lk )] k = 1, 2, 3...,NL (8)

where,

Lk =

∣

∣

∣

∣

∣

1−

NG
∑

i=1

Fik
Vi

Vk

∣

∣

∣

∣

∣

(9)

Fik = −[YA]
−1[YB] (10)

where, i and k define the buses of generators and load,

respectively. YA and YB depict the system sub-matrices for

Y bus which obtained from the separation of generator and

load buses.

B. THE PROBLEM CONSTRAINTS

The ORPD subject to equality and inequality operational

constraints of the system as presented follows:

1) EQUALITY CONSTRAINTS

The following power balance equations are considered the

equality constraints of the studied optimization problem.

PGi − PDi − Vi

NL
∑

j=1

Vj(Gijcosθij + Bijsinθij) = 0 (11)

QGi − QDi − Vi

NL
∑

j=1

Vj(Gijsinθij − Bijcosθij) = 0 (12)

where, PGi andQGi are the output of active and reactive pow-

ers from the generator of bus i, respectively. PDi and QDi are

demand active and reactive powers of bus i, respectively. Gij
and Bij are the branch conductance and susceptance between

two buses, respectively.

2) INEQUALITY CONSTRAINTS

From (3), h represents the inequality constraints that includ-

ing:

a: GENERATOR CONSTRAINTS

The voltages and reactive power outputs at all generating

buses must be bounded within their upper and lower limits:

Vmin
Gi ≤ VGi ≤ Vmax

Gi , i = 1, 2, 3 . . . ,NG (13)

QminGi ≤ QGi ≤ QmaxGi , i = 1, 2, 3 . . . ,NG (14)

PminGsl ≤ PGsl ≤ PmaxGsl , i = 1, 2, 3...,NC (15)

where, Vmin
Gi ,Vmax

Gi are the minimum and maximum gen-

erating voltages of bus generating i’th, QminGi ,QmaxGi are the

minimum and maximum generating reactive power of bus

generator i’th and PminGsl ,P
max
Gsl are the minimum and maximum

active power output of slack bus i’th.

b: CONSTRAINTS OF SHUNT VAR CAPACITORS

The upper and lower limits of the shunt reactive power com-

pensators are represented as:

QminSCi ≤ QSCi ≤ QmaxSCi , i = 1, 2, 3...,NC (16)

where, QminSCi,Q
max
SCi are the minimum and maximum shunt

reactive power limits injected by the compensator i’th.

c: CONSTRAINTS OF TRANSMISSION LINE LOADING AND

VOLTAGES AT LOAD BUSES

The inequality constraints of transmission line loading and

voltages at load buses are represented as:

Sli ≤ Smaxli , i = 1, 2, 3..., nl (17)

Vmin
Li ≤ VLi ≤ Vmax

Li , i = 1, 2, 3...,NL (18)

where, Smaxli is the apparent power of the branch i’th, Smaxli

indicates the maximum apparent power limit of branch i’th

and Vmin
Li ,Vmax

Li are the minimum and maximum load voltage

magnitudes of i’th bus.

d: TRANSFORMER CONSTRAINTS

The constraints of transformers in the system are represented

as:

Tmini ≤ Ti ≤ Tmaxi i = 1, 2, 3...,NT (19)

where, Tmini ,Tmaxi are the minimum and maximum tap trans-

former setting limits of i’th transformer.

The objective function including the inequality constraints

is given as:

Up=Ui+λv
∑NL

k=1

(

VLk−V
lim
Lk

)2
+λs

∑nl

k=1
(Slk − S limlk )2

+ λq
∑NG

k=1
(QGk − QlimGk )

2 (20)

where, λv, λs and λq are the penalty factors. Further, the limit

values of any variable in (20) are given as follows:

Y lim =

{

Ymax Y > Ymax

Ymin Y < Ymin
(21)

where, Y lim define V lim
L , S liml and S liml .

III. ORIGINAL HBO

HBO is a human behavior based meta-heuristic that has

been developed in [55]. It is based on the corporate rank

hierarchy (CRH) in a very distinctive style. HBO’s mathe-

matical model is based on three pillars: (1) the relationship

between subordinates and their immediate supervisor; (2) the

relationship between colleagues; and (3) the employees’ self-

contribution. Heap data structure has been used in thismanner

to simulate the CRH. The using of the heap data structure

in the CRH mapping allows organizing the solutions based
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on their fitness in a hierarchy and using the arrangement in

the algorithm’s position-updating process in a very specific

way. In this article, the mapping of the whole concept is

divided into four steps: (i) modeling CRH, (ii) modeling

the relationship between the subordinates and the immediate

supervisor, (iii) modeling the interaction among colleagues,

and (iv) an employee’s self-contribution to executing a task.

A. IMPLEMENTATION OF THE CRH

Heap data structure has been used to implement the CRH

where the heap is a data structure shaped by a non-linear tree.

Hence, the entire CRH is considered as the population. In the

implementation process, a search agent corresponds to a heap

node. The search agent’s fitness is the key to the heap node,

and the population index of the search agent is the value of

the heap node.

B. IMPLEMENTATION OF THE INTERACTION WITH THE

IMMEDIATE BOSS

In a centralized organizational structure, laws and regulations

are applied from the upper levels and subordinates obey their

immediate supervisor. This can be mathematically modeled

by updating the search agent’s position as follows:

xki (t + 1)=Bk+

∣

∣

∣

∣

∣

2−

(

t mod T
C

)

T
4C

∣

∣

∣

∣

∣

(2r−1)

∣

∣

∣
Bk−xki (t)

∣

∣

∣
(22)

where, x is the position of the search agent, B is the parent

node, t and k are the current iteration and the number of

the component vector, respectively, r is a random number

between [0,1], T is the total number of iterations, and C is

a defined parameter which has been set to T
25

based on the

experimental study.

C. IMPLEMENTATION OF THE INTERACTION BETWEEN

COLLEAGUES

Officials of the same rank are colleagues. To achieve official

duties, they communicate with each other. In heap, it is

assumed that the nodes are colleagues at the same level, and

each search agent xi updates its location according to the

following equation about its randomly selected colleague Sr :

xki (t + 1)

=

{

Skr + γ λk
∣

∣Skr − xki (t)
∣

∣ , f (Sr ) < f (xi(t))

xki + γ λk
∣

∣Skr − xki (t)
∣

∣ , f (Sr ) ≥ f (xi(t))
(23)

D. IMPLEMENTATION OF THE SELF-CONTRIBUTION OF

AN EMPLOYEE

This implementation is very simple, where the position of

the employee is retaining the previous position in the next

iteration as follows:

xki (t + 1) = xki (t) (24)

E. OVERALL POSITION UPDATES

Based on the previous implementation, the position can

be updated using different equations. However, these

equations can bemerged into one equation using probabilities

parameters to balance exploration and exploitation phases.

A roulette wheel is utilized to balance between these prob-

abilities p1, p2, and p3.

Where, p1 can be calculated as:

p1 = 1 −
t

T
(25)

and p2 is expressed as:

p2 = p1 +
1 − p1

2
(26)

Finally, p3 is calculated as:

p3 = p1 +
1 − p1

2
(27)

Hence, the overall position update equation can be written as

follows:

xki (t + 1)=



























































xki (t) ,

p ≤ p1

Bk + γ λk
∣

∣Bk − xki (t)
∣

∣ ,

p > p1 and p ≤ p2

Skr + γ λk
∣

∣Skr − xki (t)
∣

∣ ,

p > p2 and p ≤ p3 and f (Sr )< f (xi (t))

xki + γ λk
∣

∣Skr − xki (t)
∣

∣ ,

p>p2 and p≤p3 and f (Sr )≥ f (xi (t))

(28)

where, p is a random number within [0,1].

F. OVERALL HBO IMPLEMENTATION

The overall steps of HBO are presented in this section. Firstly,

randomly initialize the population-based on control variables

number N and the number of populations n as follows:

X =







x11 · · · xN1
...

. . .
...

x1n · · · xNn






(29)

where, the population X must be within the boundary limits

as:

Xlb ≤ X ≤ Xub (30)

Secondly, the heap is created using a d-array tree. In HBO, 3-

arries is used to implement the CRH based on the following

mathematical expression:

parent (i) =

⌊

i+ 1

d

⌋

(31)

Eq. (33) is used to give the index of the parent node i in the

heap array. A node can have up to 3 children in a 3-array

heap. Hence, in the CRH mapping, it has been assumed that

a supervisor cannot have more than 3 direct subordinates.

Therefore, the mathematical formulation of the child j for

node i can be written as:

child (i, j) = d × i− d + j+ 1 (32)
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In a 3-array heap, the depth of any node i can be calculated

as:

depth (i) = ⌈logd (d × i− i+ 1)⌉ − 1 (33)

To describe the colleaguewhich are all nodes at the same level

of a node i, a colleague (i) is used to generate a random integer

in the range as follows:

colleague (i)=

[

d × ddepth(i)−1

d − 1
+1,

d × ddepth(i)

d − 1

]

(34)

Heapify_Up (i): it searches upward in the heap and inserts the

node i at its correct location to maintain the heap property.

Then, a heap is built for the population where heap_value

is used to store the indices of the search agents into the

population and heap_key is used to stores the fitness of the

corresponding search agents. Thirdly, search agents repeat-

edly update their positions following previously discussed

equations and try to converge on the global optimum. The

flowchart of the HBO is shown in Fig.1.

IV. PROPOSED HBO

Chaos maps have been used in many fields for forecasting

erratic behaviors such as atmosphere, brain conditions, or tur-

bulent movement of air or water. Recently, in optimization

algorithms, several chaotic maps have been used. The key

benefit of using chaotic maps in optimization is to increase

the algorithm’s convergence rate using various chaotic maps

as an alternative for using random variables. To improve the

performance of the original HBO, a chaoticmap is involved to

change the probability variable p instead of using the random

function as follows:

pk+1 = mod

(

pk + b1 −

(

b2

2π

)

sin (2πpk) , 1

)

× b1 = 0.5, b2 = 0.2 (35)

A. MULTI-OBJECTIVE HBO

The single objective IHBO is considered the main core of

the multi-objective IHBO (MOIHBO). In the multi-objective

algorithms, Pareto dominance is employed to compromise

among the objective functions. Therefore, the solutions

obtained are categorized as dominated and non-dominated

solutions. Then, the optimal solution will be chosen from

the non-dominated alternatives by the decision-maker. In this

regard, two functions are used to formulate the Pareto opti-

mal solutions from the IHBO, namely archive and leader

selection. The archive is responsible for organizing the

non-dominant solutions accomplished so far and the selection

of leaders used to direct the other agents to obtain the right

solution. The MOIHBO is shown in Algorithm 1.

B. COMPROMISE SOLUTION

A fuzzy membership approach is applied to achieve the best

compromise solution. A membership function uni is repre-

sented for the all n functions at each i non-dominated solution

FIGURE 1. HBO implementation flowchart.

as follows:

uni =



















1 Fi ≤ Fmini

Fmaxi − Fi

Fmaxi − Fmini

Fmaxi ≤ F i ≤ Fmini

0 Fi ≥ Fmaxi

(36)
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FIGURE 2. Convergence characteristics of HBO and IHBO for single
objective function (IEEE 30-bus system).

where, Fmini and Fmaxi are the minimum and maximum value

of the ith objective function among all non-dominated solu-

tions, respectively. Hence, the normalized value for each

non-dominated solution is calculated as follows:

un =

∑nobj
i=1 u

n
i

∑M
n=1

∑nobj
i=1 u

n
i

(37)

where, M denotes the total number of the non-dominated

solution, therefore, the best compromise solution is the one

with the highest value of un.

Algorithm 1MOIHBO Formulation

1: Initialize a set of random search agents xki
2: Calculate the objective functions for each search agent

3: Find the non-dominate solutions and store in the archive

4: Select the leader using leader selection

5: while (iter <itermax)

6: for each search agents xki
7: Update the position using (30)

8: Calculate the objective functions

9: Find the non-dominate solutions and update the

archive

10: if the archive is full

11: Run the grid mechanism to omit one of the

current archive members

12: Add the new solution to the archive

13: endif

14: if any of the new added solutions to the archive is

located outside the hypercubes

15: Update the grids to cover the new

solution(s)

16: endif

17: Perform the leader selection

18: iter = iter + 1

19: end while

20: return final non-dominated solutions stored in the

archive

FIGURE 3. The statistical results for all single objective functions of ORPD
(IEEE 30-bus system).

V. SIMULATION RESULTS AND DISCUSSION

To prove the effectiveness and performance of the proposed

IHBO, both original HBO and IHBO are used to solve the

standard test systems; IEEE 30-bus, IEEE 57-bus and IEEE

118-bus with the aim of minimizing the real power loss,

total voltage deviations, and voltage stability index as single

objective and multi-objective functions. All simulation stud-

ies have been run onMATLAB 2016a, 2.8 GHz Intel Pentium
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TABLE 1. The optimal variables obtained by HBO and IHBO based on the single objective ORPD problem (IEEE 30-bus system).

i7 PC with 16 GB of RAM. The numerical optimal values

have been obtained for the two algorithms after 200 itera-

tions for all test systems. Moreover, the simulation studies

have been obtained after 30 independent runs for all the test

cases. The two algorithms have been implemented on a total

population of 50 particles.

A. IEEE 30-BUS TEST SYSTEM

The IEEE 30-bus test system consists of 6 generators with one

slack bus, 41 branches (transmission lines of 37 branches and

tap changing transformers of 4 branches), 9 reactive power

compensators and the total real and reactive power demand

of the system are 238.4 MW and 126.2 MVAR, respectively.

The detailed data of buses and lines for the IEEE 30-bus

system are defined in [54]. Further, in this study, the system

level is constrained as follows, the voltage magnitude range

is 0.95 p.u. and 1.1 p.u. for all generating buses. The limits

between 0.95 p.u. bus 1.05 p.u. are considered for load buses

voltages. On the other hand, the tap changing transformers are

ranged from 0.9 p.u. to 1.1 p.u. In addition, the limits of shunt

VAR compensators are supposed between 0 to 5MVAR. This

system comprises 19 control variables including 6 generators,

4 settings of tap changing transformers, and 9 shunt VAR

capacitors.

1) SINGLE-OBJECTIVE ORPD FRAMEWORK

In this subsection, the effectiveness of the proposed IHBO

to solve the ORPD problem as single objective func-

tion (minimization of the total real power loss or TVD

or VSI) is proved. The results obtained by the proposed

IHBO are compared with those obtained by the origi-

nal HBO and other well-known optimization algorithms.

The obtained results for all cases are listed in Table 1.

The results that are reported at the base case of the test

system are acquired from previous literature [56]. The

three considered single objective functions are presented as

follows:

Case 1: this case aims to minimize the total real power

loss based on the original HBO and proposed IHBO. How-

ever, the real power loss is minimized to 3.6469 MW and

3.4923 MW using HBO and IHBO, respectively. By HBO,

the TVD and VSI are minimized to 1.9244 p.u. and 0.1576,

respectively, while they are minimized to 1.4794 p.u. and

0.1251, respectively by IHBO.

Case 2: the main objective function in this case, is to

minimize the TVD using the two algorithms. The TVD is

reduced to 0.1034 p.u and 0.0854 p.u. using HBO and IHBO,

respectively. In contrast, the real power loss, and VSI became

4.3519 MW and 0.1846, respectively by HBO, while the
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TABLE 2. Results of single-objective ORPD obtained using different optimization techniques (IEEE 30-bus system).

TABLE 3. The optimal results obtained by IHBO based on multi-objective ORPD problem (IEEE 30-bus system).

real power loss, and VSI became 4.2417 MW and 0.2106,

respectively by IHBO.

Case 3: in this case, VSI is taken as the main objective

function utilizing both HBO and IHBO. In this case, the VSI

is minimized to 0.0536 by HBO and 0.0505 by IHBO. On

the other hand, the real power loss and TVD are equal to

4.7557 MW and 0.9118 p.u, respectively by HBO, while,

these values are equal to 3.6435MW and 1.0658 p.u., respec-

tively by IHBO.

Table 2 provides the best values of the three considered

objective functions obtained by the original HBO, the pro-

posed IHBO and the other well-known algorithms, PSO-

GSA [12], (DE) [22], GSA [25], SCA [31], APOPSO [38],

MJAYA [54], and comprehensive learning particle swarm

optimization (CLPSO) [57]. From Table 2, it can be observed

that the IHBO outperforms other techniques, where it

provides the lower values all three objective functions com-

pared with other algorithms.

The convergence characteristics of real power loss, TVD,

and VSI for 200 iterations yielded by both HBO and IHBO

for IEEE 30-bus are shown in Fig. 2. It can be observed that

the proposed IHBO reaches to the optimal solution faster than

the original HBO.

Fig.3. shows the statistical results yielded by two algo-

rithms based on the three considered single objective func-

tions through 30 independent trials which conducted for each

algorithm to compare their best, worst, mean values and

standard deviation (SD).

2) MULTI-OBJECTIVE OF ORPD FRAMWORK

In this subsection, the optimal values of real power loss,

TVD, and VSI are obtained by the developed multi-objective
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FIGURE 4. Pareto set using IHBO based on multi-objective ORPD (IEEE 30-bus system).

HBO and IHBO algorithms. However, two models of

multi-objective problems namely bi and tri objective func-

tions are considered here. The simulation results based on

multi-objective IHBO are tabulated in Table 3. Fig. 4 shows

the generated Pareto optimal results for all cases of

multi-objective functions of the IEEE 30 bus test system.

The studied cases of multi-objective ORPD problems are

described as:

Case 4: both HBO and IHBO are utilized for minimizing

the real power loss and TVD simultaneously. The Pareto front

values are shown in Fig.4a for this case. On the other hand,

the optimal variables along with the best values of objective

functions are listed in Table 3. From this table, it is seen

that the ability of IHBO for obtaining the best values of real

power loss and TVD which are 3.8842 MW and 0.2955 p.u.,

respectively.

Case 5: In this case, the real power loss, and VSI are con-

sidered as bi-multi-objective function. Pareto front obtained

by IHBO is shown in Fig.4b. However, the optimal vari-

ables and the corresponding minimum values of the bi

multi-objective problem are presented in Table 3. From this

table, it can be displayed that the best values for real power

loss and VSI are 3.6188 MW and 0.0838 p.u., respectively.

Case 6: In this case, the TVD andVSI are optimized simul-

taneously. The Pareto front acquired by the proposed IHBO is

shown in Fig.4c. In addition, the simulation results of optimal

variables with the best values of each considered objective

function are listed in Table 3. The preferable compromise

values for TVD and VSI are 0.2163 and 0.0583, respectively.

Case 7: in this case, the results of the tri objective ORPD

problem are presented. The real power loss, TVD, and VSI

are optimized simultaneously. The Pareto front acquired

using IHBO is displayed in Fig.4d. The best values of the

three objective functions and the corresponding optimal con-

trol variables are tabulated in Table 3. From this table, it can

be observed that the best values for the real power loss, TVD

and VSI are 3.9254 MW, 0.31348, 0.0968 p.u., respectively.

B. IEEE 57-BUS TEST SYSTE

The IEEE 57-bus test system comprises 7 generating units

with one slack bus, 80 transmission lines and 17 tap changing

transformers, 3 reactive power compensators.
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TABLE 4. The optimal values obtained by HBO and IHBO based on the single objective ORPD problem (IEEE 57-bus system).

TABLE 5. Results of single-objective ORPD obtained by different optimization techniques (IEEE 57-bus system).

The total real and reactive power load demands of the

system are 1250.8 MW and 336.4 MVAR, respectively. The

detailed data of this test system are given in [59].

Moreover, in this paper the system constraints are limited

as follows, for all generating buses, the magnitudes of voltage

are limited from 0.9 p.u. to 1.1 p.u. The voltage limits are

taken between 0.94 p.u. bus 1.06 p.u. at load buses. The tap

changing transformers are varied between 0.9 p.u. to 1.1 p.u.

Limits of reactive power compensation devices are assumed

between 0 to 30MVAR. Overall, the IEEE 57-bus test system

comprises 27 control variables comprehensive 7 generating

units, 17 tap changing transformers, and 3 shunt VAR com-

pensation devices.

1) SINGLE-OBJECTIVE ORPD

In this subsection, the proposed IHBO is also validated for

solving the single-objective ORPD problem described in

(20) of the IEEE 57-bus test system. The obtained optimal

variables for the three considered Cases 8–10, are given

in Table 4. These cases can be summarized as:

Case 8: This case aims to minimize the total real

power loss using HBO and IHBO. The total real power

losses are 14.7935 MW and 13.9725 MW using HBO and

IHBO, respectively. Further, the TVD and VSI are equal to

1.3780 p.u. and 0.8835, respectively using HBO as well,

the TVD and VSI are equal to 1.1208 p.u. and 0.8079, respec-

tively using IHBO.
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FIGURE 5. Convergence characteristics of HBO and IHBO of HBO and
IHBO for single objective function (IEEE 57-bus system).

Case 9: the main objective function is to minimize the

TVD using HBO and IHBO. As seen from the results,

the TVD is 1.0354 p.u. and 0.8781 p.u. using HBO and

IHBO, respectively. Moreover, the total real power loss and

VSI are equal to 18.7449 MW and 0.8168, respectively

using HBO. Likewise, the total real power loss and VSI

are equal to 16.4291MW and 0.8626, respectively using

IHBO.

Case 10: the main objective function in this case, is to min-

imize the VSI. Using HBO and IHBO, the VSI is minimized

to 0.6291 and 0.5085, respectively. In contrast, the real power

loss and TVD using HBO are equal to 21.1385 MW and

FIGURE 6. The statistical results for all single objective functions of ORPD
(IEEE 57-bus system).

1.3069 p.u., respectively. As well, these values using IHBO

are equal to 19.4196 MW and 1.2387 p.u., respectively.

To confirm the superiority and effectiveness of the pro-

posed IHBO, the objective function results using HBO and

HBO are compared with those obtained by other recently

reported algorithms. The best values of the studied single

objective functions obtained by different optimization algo-

rithms are tabulated in Table 5. The IHBO presents the best

capabilities for minimizing the objective function compared

with HBO, GSA [25], APOPSO [38], BA, CBA_III and

CBA_IV [49], CKHA [58], Seeker optimization algorithm

(SOA) [60], adaptive invasive weed optimization algorithm

(MICA-IWO) [61], PSOwith an aging leader and challengers

(ALC-PSO) [62], and stochastic ranking with differential

evolution SR-DE [63].

The convergence characteristics yielded by both HBO and

IHBO for single-objective functions of the ORPD prob-

lem over IEEE 57-bus are shown in Fig.5. This figure dis-

plays the robust performance of the IHBO for larger extent

systems.

The statistical results are obtained and compared

using HBO and IHBO, which are utilized for solving

single-objective ORPD through 30 independent trials per-

formed for each algorithm and the results are presented

in Fig 6.

2) MULTI-OBJECTIVE ORPD

As stated in the previous subsection of IEEE 30-bus test

system, two models of multi-objective problems are utilized

called bi and tri-objective functions. The simulation results

obtained by the IHBO for the considered cases are presented

in Table 6. Furthermore, Fig.7 depicts the produced Pareto

optimal values for two considered models of multi-objective

functions based on four cases implemented over the

IEEE 57-bus test system, which are described as follows:
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FIGURE 7. Pareto set using IHBO based on multi-objective ORPD (IEEE 57-bus system).

Case 11: IHBO is applied in this case for minimizing

the real power loss and TVD simultaneously. The values of

the Pareto front are shown in Fig.7a. As well, the optimal

variables and the best values of objective functions to be

minimized in this case are given in Table 6.It is seen from

the table, the capability of IHBO for achieving the best min-

imum values of real power loss and TVD which are equal to

16.0289 MW and 0.9498 p.u., respectively.

Case 12: The real power loss and VSI are solved as a bi

multi-objective problem for minimizing each of them simul-

taneously. The Pareto front based on the proposed IHBO

are shown in Fig.7b. The minimum values of the bi multi-

objective problem and the optimal variables are introduced

in Table 6. The results show that the best optimization values

for real power loss and VSI are equal to 15.7423 MW and

0.7799 p.u., respectively.

Case 13: In this case, the TVD and VSI are mini-

mized simultaneously using the proposed IHBO based on

the bi multi-objective model. The Pareto front are displayed

in Fig.7c. Moreover, the simulation results of optimal vari-

ables with the minimum values of the TVD and VSI are

presented in Table 6. The preferable results for TVD and VSI

are 1.0745 p.u. and 0.6916, respectively.

Case 14: the tri multi-objective ORPD problem is solved

using the proposed IHBO. The Pareto front of the three con-

sidered objective functions is displayed in Fig.7d. The best

minimum values of three objective functions along with the

optimal variables are listed in Table 6. The best values for the

real power loss, TVD and VSI are 18.1928 MW, 0.9205 p.u.

and 0.8152 respectively.

C. IEEE 118-BUS TEST SYSTEM

To achieve the robustness and strength performance 186 of

IHBO based on the large-scale test system, the IHBO is

applied in this section on the IEEE 118-bus test system.

The system comprises 54 generating units, 64 load buses,

transmission lines, 14 reactive power compensators, and

9 tap-setting transformers. Further, the total load of real and

reactive power is 4242 MW and 1438 MVAR, respectively.

The detailed system technical data are presented in [64].

Furthermore, the system constraints are as follows; the lim-

its of voltage magnitudes at the generating buses are between
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TABLE 6. The optimal values obtained by IHBO based on multi-objective ORPD problem (IEEE 57-bus system).

0.9 p.u. and 1.1 p.u., the limits of voltages at load buses are

considered between 0.94 p.u. bus 1.06 p.u., the tap-setting

transformers are considered between 0.9 p.u. to 1.1 p.u.,

the limits of shunt reactive compensators are supposed to be

between 0 to 20 MVAR.

The system comprises 77 control variables including

54 generating units, 9 tap changing transformers, and

14 shunts VAR compensation devices.

The proposed IHBO is applied on the IEEE 118-bus test

system for solving the single-objective and tri-multi objec-

tive ORPD problems in this section. The obtained results

of optimal variables and considered objective functions are

tabulated in Table 7 for cases 15-18. The cases are described

as follows:

Case 15: The purpose of this case is to minimize the real

power loss using IHBO. The real power loss is 108.2051MW,

where the TVD and VSI are equal to 1.1202 p.u. and 0.1086,

respectively.

Case 16: The aim of the case is to minimize the TVD

of the system by applying IHBO. The best-minimized

value for the TVD is 0.2814 and the values of real power

loss and VSI are equal to 138.1058 MW and 0.1707,

respectively.

Case 17: The IHBO is implemented here for minimizing

the VSI. The minimized value for the VSI is 0.0502. The

values of real power loss and TVD are equal to 141.6473MW

and 1.3530 p.u., respectively.

FIGURE 8. Pareto set using IHBO based on multi-objective ORPD (IEEE
118-bus system).

Case 18: The tri-multi objective ORPD problem is solved

based on IHBO. The real power loss, TVD, and VSI are

minimized simultaneously. Furthermore, the optimal val-

ues of the Pareto set are shown in Fig.8. Moreover, the

obtained results of minimum values for the real power loss,

TVD, and VSI are 126.1271 MW, 0.5712 p.u. and 0.0563,

respectively.

The proposed IHBO is also compared with other

well-known optimization algorithms and the results are

tabulated in Table 8. From this table, it can be observed
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TABLE 7. The optimal results obtained using IHBO based on single and tri- multi-objective ORPD problem (IEEE 118-bus system).

TABLE 8. Compared results of single-objective ORPD using different optimization techniques (IEEE 118-bus system).

that the IHBO gives the best minimum values for the

three considered objective functions compared with those

given by the exchange market algorithm (EMA) [10],

APOPSO [38], BA, CBA_III, and CBA_IV [49], FAH-

CLPSO [53], ALC-PSO [62],opposition based GSA

(OBGSA) [65],quasi-oppositional teaching-learning based
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TABLE 9. The best compromise solutions for all studied cases.

optimization(QOTLBO) [66], and Comprehensive learning

PSO (CLPSO) [57].

Finally, Table 9 display the summary of all studied cases

over all the three test systems based on the proposed IHB.

However, all results of minimized objective functions are

showed for single and multi-objective ORPD problem.

VI. CONCLUSION

In this paper, an effective optimization optimizer called IHBO

has been proposed to improve the performance of the original

HBO which recently published and applied for solving sev-

eral optimization problems in different fields. In addition, two

algorithms based on HBO and IHBO have been developed

for solving single and multi-objective ORPD problems. The

proposed algorithms have been evaluated and verified on

various standards of the IEEE 30-bus, IEEE 57-bus, and IEEE

118-bus test systems. The results confirm high performance

as well as the effectiveness of IHBO in solving the ORPD

optimization problems. Furthermore, the coincidence of the

optimal obtained results of the large systems like the IEEE

118 bus system validates that the proposed technique over-

comes the difficulties related to this type of test system. Also,

the results yielded by IHBO have been compared with those

obtained by the original HBO along with other available

recently meta-heuristics techniques. The simulated results

confirm that the IHBO outperforms other compared tech-

niques for solvingORPD in terms of robustness and effective-

ness. In the future work, the proposed IHBO could be applied

for solving other complex optimization problems in differ-

ent fields such as optimal distribution generation allocation

considering uncertainty of renewable energy resources and

load, optimal design and planning of hybrid renewable energy

systems, parameter estimation of fuel cells and photovoltaic

models.
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