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ABSTRACT
Motivation: Knowledge of the transmembrane helical topology can
help identify binding sites and infer functions for membrane proteins.
However, because membrane proteins are hard to solubilize and
purify, only a very small amount of membrane proteins have structure
and topology experimentally determined. This has motivated vari-
ous computational methods for predicting the topology of membrane
proteins.
Results: We present an improved hidden Markov model, TMMOD, for
the identification and topology prediction of transmembrane proteins.
Our model uses TMHMM as a prototype, but differs from TMHMM by
the architecture of the submodels for loops on both sides of the mem-
brane and also by the model training procedure. In cross-validation
experiments using a set of 83 transmembrane proteins with known
topology, TMMOD outperformed TMHMM and other existing methods,
with an accuracy of 89% for both topology and locations. In another
experiment using a separate set of 160 transmembrane proteins,
TMMOD had 84% for topology and 89% for locations. When util-
ized for identifying transmembrane proteins from non-transmembrane
proteins, particularly signal peptides, TMMOD has consistently fewer
false positives than TMHMM does. Application of TMMOD to a col-
lection of complete genomes shows that the number of predicted
membrane proteins accounts for ∼20–30% of all genes in those gen-
omes, and that the topology where both the N- and C-termini are in the
cytoplasm is dominant in these organisms except for Caenorhabditis
elegans.
Availability: http://liao.cis.udel.edu/website/servers/TMMOD/
Contact: lliao@cis.udel.edu

INTRODUCTION
Membrane proteins serve as highly active mediators between the
cell and its environment or between the interior of an organelle and
the cytosol. They catalyze specific metabolites and ions across the
membrane barriers, convert the energy of sunlight into chemical and
electrical energy and couple the flow of electrons to the synthesis of
ATP. Furthermore, they act as signal receptors and transduce signals
such as neurotransmitters, growth factors and hormones across the
membrane. Because of their vast functional roles, membrane proteins
are important targets of pharmacological agents.

∗To whom correspondence should be addressed.

Unfortunately, membrane proteins are hard to solubilize and purify
in their native conformation because they have both hydrophobic and
hydrophilic regions on their surfaces, and thus it is difficult to determ-
ine their structure experimentally. Such a situation has motivated
the development of various computational methods for predicting
the topology of membrane proteins. Most of these computational
approaches rely on the compositional bias of amino acids at differ-
ent regions of the sequence (von Heijne, 1994). For example, there is
a high propensity of hydrophobic residues in transmembrane alpha
helices due to the hydrophobic environment in lipid membranes.
Because such a bias is quite noticeable and consistent, the location
of transmembrane domains can often be easily identified with high
accuracy even by a simple method such as applying a threshold on
the hydrophobic propensity curve.

Another compositional signal in membrane proteins is the abund-
ance of positively charged residues in the segments (loops) that are
located on the cytoplasmic side of the membrane and therefore is
referred to as the ‘positive inside rule’ for predicting the orienta-
tion of a transmembrane helix (von Heijne, 1986, 1992). Unlike the
hydrophobicity signal for transmembrane helices, the ‘positive inside
rule’ is a weaker signal and often confused by significant presence of
positively charged residues in globular domains of the protein on the
non-cytoplasmic side. Consequently, it is more difficult to correctly
predict the overall topology of a given protein, i.e. the orientation of
all transmembrane segments.

There are basically two ways for improving the prediction accur-
acy of any given model: by enhancing the signal/noise ratio for those
weak signals or by identifying new signals and associating them with
the topology. For example, significant improvements of prediction
accuracy were reported (Persson and Argos, 1994) by applying mul-
tiple sequence alignment to proteins with similar topology so that
the positive residue content in the cytoplasmic loops may become
obvious in the aligned motifs. A more recent work along this line is
PRODIV–TMHMM, a profile-based hidden Markov model (Viklund
and Elofsson, 2004), where a 10% increase in performance is repor-
ted with the use of homologous sequences. However, it shall be noted
that multiple sequence alignment may not always be suitable, either
due to insufficient number of homologs or due to the length variations
in these cytoplasmic loops. Other methods have been attempted at
exploring more subtle signals such as correlation of compositional
bias at different positions. The best performance attained so far is by
using artificial neural networks (Rost et al., 1996), a method known
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for its capability of capturing complex nonlinear signals. Despite
its improvement at prediction accuracy, the artificial neural network
method, well known for its black-box property, provides little insight
into those signals that the network is designed to capture.

A hidden Markov model, TMHMM, has recently been used
for transmembrane topology prediction (Sonnhammer et al., 1998;
Krogh et al., 2001). Hidden Markov models, as a probabilistic
framework, have been widely applied in computational biology with
remarkable success (Durbin et al., 1998). Unlike artificial neural
networks, the architecture of hidden Markov models corresponds
closely to the biological entities being simulated by the model. In
TMHMM, the model comprises seven sets of states, with each set
corresponding to a type of regions in the protein sequence. Each set
of states has an associated probability distribution over the 20 amino
acids characterizing the compositional bias in the corresponding
regions. In addition, the model architecture specifies the intercon-
nection of states within each set or submodel and also specifies how
these submodels are connected to one another. Transitions among
states within a given submodel determine the length distribution of
the corresponding regions whereas transitions from one submodel
to another reflect how the different regions are arranged to form
the entire protein. The transition probabilities, along with emission
frequencies, enable the model to capture correlations among signals.

In this work, we present an improved hidden Markov model,
TMMOD, for predicting transmembrane topology and identifying
transmembrane proteins from soluble proteins. The TMMOD differs
from TMHMM in both model architecture and training procedure.
The architectural differences are on the cytoplasmic and the non-
cytoplasmic loop submodels. For the training procedure, we adopt
the Bayesian based approach where the model parameters are set
by posterior mean estimator (PME). In cross-validation experiments
using the datasets which were used by TMHMM, our model outper-
formed TMHMM in both topology prediction and identification of
membrane proteins.

MATERIALS AND METHODS

The TMMOD model architecture
The overall skeleton of the TMMOD’s architecture is a linear structure of
three two-way connected submodels for cytoplasmic loop, transmembrane
helix and non-cytoplasmic loop. The two-way connections between the cyto-
plasmic loop and the transmembrane helix and between the transmembrane
helix and the non-cytoplasmic loop, plus a self return connection in the loop
submodels, allow a path cycling through the three components of transmem-
brane proteins: cyto-loop, helix and noncyto-loop. A path can start with either
a cyto-loop or a noncyto-loop, reflecting the fact that a transmembrane protein
can have its N-terminus either inside or outside the cell. The architectures of
the submodels for these three components are illustrated in Figure 1.

The submodel for transmembrane helix, identical to that of TMHMM, has
two cap regions each of five residues surrounding a core region of variable
length 5–25 residues (Fig. 1A). Therefore, the model can represent helices
of size 15–35 residues long, a range that covers the actual sizes observed for
transmembrane domains. This submodel contains two chains of transmem-
brane states, with one chain going inwards and the other going outwards,
as a mechanism to enforce the structural constraint, i.e. a transmembrane
helix has to span the membrane. Since there are no observed differences in
amino acid composition and length distributions between ‘inwards’ helices
and ‘outwards’ helices, the emission and transition parameters for these two
chains are estimated collectively.

The architecture of TMMOD differs from that of TMHMM by how the
loops are modeled (Fig. 1B, C and D). In order to capture the known biases of

Fig. 1. Architecture of the four submodels: (A) transmembrane submodel
(C, M and X state types), (B) cytoplasmic loop submodel (G and I state
types), (C) non-cytoplasmic short loop submodel (S and G state types), (D)
non-cytoplasmic long loop submodel (L and G state types). To assemble the
model, panel (B) shall be attached to the left of panel (A), with UI1 and LI1
in (B) pointing to C1 in (A), and C5 in (A) pointing to LI1 and TI1 in B. Both
panels (C) and (D) shall be attached to the right of panel (A).

amino acid compositions at near the border between loops and helices, the first
and last 10 residues of a loop region are explicitly modeled, i.e. each residue
corresponds to an individual state in the model. These 20 states are marked as
LI1–LI10 and UI1–UI10 in Figure 1B for loops inside the cytoplasm and as
LS1–LS10 and US1–US10 in Figure 1C for short loops in the non-cytoplasm.
As shown in Figure 1B and C, a ladder-like structure is formed to allow for
loop length to vary from just one residue, by traversing only state LI1 or LS1,
to 20 residues, by traversing all 20 states. All other residues in the middle
of a loop longer than 20 are collectively represented by one ‘globular’ state
which has a transition back to itself and thus can repeat as many times as
the loop length dictates. Following TMHMM, since non-cytoplasmic loops
longer than 100 appear to have compositional characteristics different from
those of the short non-cytoplasmic loops, two separate non-cytoplasmic loop
submodels are used for representing them, as depicted in Figure 1C and D.

Inspired by TMHMM’s design of using a separate submodel for long
loops, we studied the length distribution of the loops in the training sequences
(Fig. 2). The length distribution shows that, ∼90% of the loops are shorter
than 40 residues, and the rest are quite spread out, as indicated by a long tail.
Similar findings with respect to the loop length distribution were reported in
Wallin and von Heijne (1998) and Liu and Rost (2001). To capture this distri-
bution more effectively, we introduced a separate chain of states (Figure 1B
and C) in parallel to the ladder-like structure in cytoplasmic and short non-
cytoplasmic loop submodels. As such, we want the transition parameters in
the ladder-like part of the submodels to explicitly model the length distribu-
tion of the loops that are <40 amino acids, while the longer loops are directed
through the bypass. More specifically, the transition probability LIk → LIk+1

or LSIk → LSk+1 now reflects the likelihood of loops with length >2k but
<40; whereas the same transition parameter in a submodel without the bypass
would have to reflect the likelihood of all loops with lengths >2k. We expect
that such an effective estimation of the distribution of loop lengths would
enhance the signal-to-noise ratio of the topogenic signal.

Another architectural difference from TMHMM is the use of a simpler
submodel, as shown in Figure 1D, for non-cytoplasmic loops with lengths
>100 amino acids. These long loops do not require a ladder-like structure
since all of them are >100 amino acids and thus there is no need for an early
exit. Overall, TMHMM reported 83 transition and 133 emission parameters,
whereas our model has 66 transition and 133 emission parameters.
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Fig. 2. Length distribution of cytoplasmic and short non-cytoplasmic loops.

The TMMOD model training
Model parameters are estimated by Bayesian approach (PME) using single
Dirichlet and substitution matrix mixtures priors (Durbin et al., 1998). For
each of the seven types of states as shown in Figure 1, the substitution matrix
mixtures is given by

βja = A
∑

b

cjbP (a|b) (1)

where βja is the pseudocount for amino acid ‘a’ in state type j , cjb is the
observed frequency (or count) for amino acid ‘b’ in state type j , P(a|b) is
the conditional probability of amino acid ‘a’ given amino acid ‘b’ (derived
from BLOSUM50 matrix), and A is a constant.

The technique of using Dirichlet prior assumes that the observed frequen-
cies of 20 amino acids in each of the seven types of states were stochastically
generated from a distribution �p = (p1, . . . , p20), which itself is chosen from
a distribution specified by a parametric Dirichlet density ρ( �p),

ρ( �p) =
∏20

a=1 p
αa−1
i

Z
(2)

where Z is the normalizing constant. Each of the training sequences, with
their topology known, is partitioned into segments according to the state
types such that all residues in a segment are emitted from the same type of
states. An observed count vector over amino acids is found for each of these
segments, and these count vectors are grouped into seven classes according
to the state types. For each class, the parametric Dirichlet density function
(α parameters) is estimated from the observed count vectors by following a
procedure outlined in Brown et al. (1993) and Sjolander et al. (1996). Then,
a pseudocount for amino acid ‘a’ in states of type j is given as

σja = A
αja∑
a′ αja′

(3)

The above equation for deriving pseudocounts differs from the standard by
the constant A, which is introduced to tighten the Dirichlet density without
affecting its mean (Durbin et al., 1998). The final emission frequency of
amino acid ‘a’ from state type j after adding both types of pseudocounts is
then given as follows:

eja = cja + σja + βja∑
a′ (cja′ + σja′ + βja′ )

(4)

We also produce a single component Dirichlet pseudocount vector to regu-
larize transitions in the ladder-like part of the submodels by taking the three
outgoing transition counts from each of the lower chain of states as vectors
in three dimensions. A detailed description of our model training procedure
is described in Kahsay et al. (2004).

The topology of a membrane protein is predicted using Viterbi algorithm.
We also compute the three posterior probabilities that a given residue is in a
transmembrane helix, on the cytoplasmic side or on the periplasmic side. This
additional information, which at times can be even more informative than the
single most probable state path, shows where the prediction is certain and
what alternatives there might be.

Datasets
The two datasets used to validate the model on topology prediction
were downloaded from the TMHMM website (http://www.cbs.dtu.dk/
services/TMHMM). The first dataset contains 83 transmembrane sequences
of known topology, with 45 of them being single spanning. The second data-
set has 160 transmembrane sequences, with 52 of them being single spanning.
The topology of most proteins in these datasets is determined experimentally.

We adopted the same 10-fold cross-validation for topology prediction as
in Sonnhammer et al. (1998). Both datasets are divided into 10 subsets. The
subsets from the first dataset contain either eight or nine sequences, and all
the subsets of the second dataset have exactly 16 sequences each. To make the
learning task more challenging, the subsets are prepared in such a way that
sequences from different subsets are no more than 25% identical to each other.
The model is trained on nine subsets and then is used to make predictions
on the remaining subset. This is repeated 10 times, and each time a different
subset is selected as the test set. The prediction accuracy is the average over
the 10 runs.

For discrimination or identification experiments, test datasets contain the
set of 160 transmembrane proteins (positives) and other non-transmembrane
proteins (negatives). The test datasets for discrimination experiments are
the same as used in Krogh et al. (2001). These datasets include 645 sol-
uble proteins, six porins and a set of signal peptides from different classes
of organisms. For whole genome analysis, all genes annotated in the
Genbank entry of the genomes and chromosomes used were downloaded
from ftp://ncbi.nlm.nih.gov/genbank/genomes/, except for Caenorhabditis
elegans, which was downloaded from the URL: ftp://genome.wustl.edu/pub/

RESULTS

Topology prediction
The accuracy is measured by the number of sequences from
the test sets whose topology and location of all transmembrane
helices are correctly predicted. Following the same criterion used
in Sonnhammer et al. (1998), a predicted helix is counted as correct
if it overlaps by at least five residues with a true helix. The perform-
ance is also measured by the sensitivity and specificity for identifying
individual transmembrane domains.

To help us understand and assess how the model architecture
and use of different regularizers have contributed to the perform-
ance, three variations of the architecture, including the one shown
in Figure 1, and three regularization schemes are tested. Model M1
is the architecture of TMHMM with our training. Model M2 has
two bypassed ladder-like submodels on each side of the membrane,
a design intended to see if differentiating long and short loops on
the cytoplasmic side as well will perform better. Model M3 is the
architecture shown in Figure 1. Regularizer scheme (a) uses Dirichlet
prior based pseudocounts; (b) uses substitution matrix based pseudo-
counts; and (c) uses both. The performance for these variations on the
two datasets is given in Table 1. It is shown that the model depicted
in Figure 1, using both Dirichlet and substitute matrix based regu-
larizers, has achieved the best performance: 89% accuracy for both
topology and location on the first dataset (83 sequences), and 84%
accuracy for topology and 89% accuracy for locations on the second
dataset (160 sequences). The performance improvement of TMMOD
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Table 1. Prediction accuracy for the cross-validation experiments

Model Regularizer scheme Dataset Correct topology Correct location Sensitivity (%) Specificity (%)

M1 (a) S-83 65 (78.3%) 67 (80.7%) 97.4 97.4
(b) 51 (61.4%) 52 (62.7%) 71.3 71.3
(c) 64 (77.1%) 65 (78.3%) 97.1 97.1

M2 (a) S-83 61 (73.5%) 65 (78.3%) 99.4 97.4
(b) 54 (65.1%) 61 (73.5%) 93.8 71.3
(c) 54 (65.1%) 66 (79.5%) 99.7 97.1

M3 (a) S-83 70 (84.3%) 71 (85.5%) 98.2 97.4
(b) 64 (77.1%) 65 (78.3%) 95.3 71.3
(c) 74 (89.2%) 74 (89.2%) 99.1 97.1

TMHMM S-83 64 (77.1%) 69 (83.1%) 96.2 96.2
PHDtm S-83 (85.5%) (88.0%) 98.8 95.2
M1 (a) S-160 117 (73.1%) 128 (80.0%) 97.4 97.0

(b) 92 (57.5%) 103 (64.4%) 77.4 80.8
(c) 117 (73.1%) 126 (78.8%) 96.1 96.7

M2 (a) S-160 120 (75.0%) 132 (82.5%) 98.4 97.2
(b) 97 (60.6%) 121 (75.6%) 97.7 95.6
(c) 118 (73.8%) 135 (84.4%) 98.4 97.2

M3 (a) S-160 120 (75.0%) 133 (83.1%) 97.8 97.6
(b) 110 (68.8%) 124 (77.5%) 94.5 98.1
(c) 135 (84.4%) 143 (89.4%) 98.3 98.1

TMHMM S-160 123 (76.9%) 134 (83.8%) 97.1 97.7

Numbers in bold represent the best results from different methods.

over that of TMHMM (77% topology and 83% locations on the first
dataset, and 77% topology and 84% locations on the second dataset)
is significant. It is noted that, on the first dataset where the results
for PHDhtm are also available, the TMMOD’s performance even
slightly exceeds the performance (86% for topology and 88% for
locations) of PHDhtm, the best existing method, which utilizes mul-
tiple alignments—a data source that carries extra information. It is
also worth noting that, because proteins with known topologies (ones
applied for the training) constitute a biased set, the expected accur-
acy when applied to entire proteomes may be significantly lower, as
was shown by Melen et al. (2004).

In addition to the outstanding performance for TMMOD, several
other observations can also be made from Table 1 about the effect of
different variations on model architecture and regularization. First,
we notice that the Dirichlet prior based regularizer is consistently
more effective than the substitution matrix mixture based regular-
izer for all three different architectures. Second, we noticed that
combining the Dirichlet and the substitute matrix mixture based pri-
ors enhanced the model performance, but not always; indeed the
performance was even decreased in some cases. In the contrast,
we notice that M3 attained the best performance among the three
architectures in all three variations of regularizers, suggesting that
the model architecture played a more decisive role for better per-
formance. Another observation is that M2, which has two bypassed
ladder-like loop submodels on each side of the membrane, has better
performance than M1 which is the original TMHMM architecture;
it is reasonable to believe that the better performance is probably
due to the bypass introduced. However, the best performance is
achieved by model M3, which has the bypassed ladder-like loop
submodels on both sides of the membrane, but has an extra, simple
submodel for loops (longer that 100) only on the non-cytoplasmic
side. This observation further validates the hypothesis made in

TMHMM that differentiation of short and long loops only applies to
the non-cytoplasmic side.

Discrimination between non-membrane and
membrane proteins
In addition to predicting the transmembrane protein topology,
TMMOD can also be used for identifying/discriminating helical
membrane proteins from other proteins. In general, this can be done
by using Forward algorithm to calculate the model likelihood for a
given sequence (Durbin et al., 1998). For comparison reasons, we
adopted the three more refined measures proposed in Krogh et al.
(2001). The first measure, abbreviated as ‘pred. no. tmh’, is simply
the number of helices in the most likely structure found by the model.
The other two measures are the expected number of residues in trans-
membrane (‘exp. no. aa’) and the expected number of transmembrane
helices (‘exp. no. tmh’), which are computed from the posterior prob-
abilities. The probability that a given sequence is a membrane protein
is higher when the expected number of residues in any of the pre-
dicted helices is high. Since the shortest transmembrane helices are
∼18 residues long, a cut-off value should be set at ∼18. If the expec-
ted number of transmembrane helices in a protein is ≥1, the protein
is likely to be a helical transmembrane protein.

In a discrimination experiment designed to identify the 160 mem-
brane proteins from the 645 water-soluble proteins, the measures
described above were calculated using the 10-fold cross-validation
models. This means, the measures for the 16 sequences in a given
subset are calculated using a model that was trained on the remain-
ing nine subsets (144 sequences). For the non-membrane proteins,
the averages over the 10 cross-validation models were calculated.
Even though all the three measures give discrimination with high
accuracy, we have used the ‘exp. no. aa’ as our standard measure.
Figure 3 shows the fraction of false positives and negatives at different
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Fig. 3. Discrimination between transmembrane proteins and soluble pro-
teins. A decision is made based on the expected number of residues in
transmembrane helices (‘exp. no. aa’). The fraction of false negative (con-
tinuous line) and false positive predictions (broken line) as a function of the
cut-off value of ‘exp. no. aa’.

Table 2. False positives by TMMOD and TMHMM

Model PDB entries Description Expected
number aa
in membrane

SD

TMHMM 1RDZ (A) Fructose 1,6-bisphosphatase 24.3 3.6
1KVD (A) Smk toxin 24.7 0.5
1NOX Nadh oxidase 21.0 1.1
1CIY CryIA (a) insecticidal toxin 20.6 1.6
1ENO Enoyl acyl carrier protein 18.9 5.7

reductase
TMMOD 1KVD (A) Smk toxin 27.9 0.2

1CIY_ CryIA (a) insecticidal toxin 29.9 0.1

The PDB entries all have a known 3D structure. The PDB identifiers with the chain in
parenthesis are listed in Column 2. Column 4 contains the expected number of residues
in helices (‘exp. no. aa’) averaged over the ten cross-validation models, and the last
column is the standard deviation.

cut-off values of this measure. At a cut-off value of 18, TMMOD has
two false positives (∼0.3%) whereas TMHMM reported five false
positives (∼0.6%) (Table 2). As it was the case with TMHMM, the
chlorophyll a–b binding protein ab96 (Swiss-Prot entry CB21_PEA)
is the only membrane protein that is classified as a non-membrane
protein (i.e. as false negative).

Signal peptides and porins
The signal peptides that target a protein for export contain a hydro-
phobic region and can easily be mistaken as a transmembrane region.
TMMOD was tested on a set of signal peptides by measuring how
many of the signal peptides were predicted to be membrane pro-
teins by using the measure as described above. As shown in Table 3,
TMMOD performed much better than TMHMM at identifying signal
peptides as non-membrane proteins. A substantial improvement over
TMHMM at discriminating signal peptides from TM is also reported
in Phobius, an integrated hidden Markov model that can model both
transmembrane topology and signal peptide (Kall et al., 2004). We
also tested TMMOD on the six porins from Krogh et al. (2001), all
of which were correctly predicted as not containing transmembrane
helices.

Table 3. The number of signal peptides mistakenly predicted as transmem-
brane proteins

Class No. of signal
peptides

No. predicted as
tm by TMHMM

No. predicted as
tm by TMMOD

Eukaryotes 1011 209 (21%) 87 (9%)
Gram-negatives 266 60 (23%) 33 (12%)
Gram-positives 141 85 (60%) 60 (43%)

The first column is the organism type, and the second column is the total number of
signal peptides in that class. The last two columns are the number of false positives for
TMHMM and TMMOD respectively.

Table 4. The number of predicted transmembrane proteins in complete
genomes

Organism Number Exp. no. aa Pred. tmh
of genes ≥18 (%) ≥1 (%)

Treponema pallidum 1031 20.37 (23.4) 20.5 (23.7)
Borrelia burgdorferi 850 25.5 (28.7) 27.8 (28.7)
Chlamydia pneumoniae 1052 25.9 (27.9) 26.1 (27.8)
Chlamydia trachomatis 894 21.7 (23.3) 22.4 (24.5)
Aquifex aeolicus 1522 18.9 (20.3) 19.9 (20.7)
Synechococcus sp 3169 23.98 (25.8) 24.1 (25.8)
Thermotaga maritima 1846 21.99 (22.9) 22.6 (24.1)
Methanococcus jannaschii 1715 18.1 (18.5) 18.4 (18.9)
Methanobacterium 1869 19.8 (21.8) 20.4 (21.8)

thermoautotrophicum
Archaeoglobus fulgidus 2407 19.1 (20.3) 19.3 (20.4)
Pyrococcus abyssi 1765 21.4 (22.6) 22.2 (22.9)
Pyrococcus horikoshii 2064 23.21 (27.5) 24.4 (25.9)

For each organism, the number of annotated genes, the percentages of membrane proteins
predicted using the two measures described in text.

Genome-wide analysis of membrane proteins
For genome annotation purpose, it is desirable to have an accurate
estimate of the number of membrane proteins as well as an accur-
ate estimate of the frequency for proteins of different topologies to
be expected in a given genome. The outstanding performance of
TMMOD on both discriminating membrane proteins from soluble
proteins and predicting the transmembrane topology has motivated
us to apply it to estimate the number of membrane proteins in a
collection of organisms with fully sequenced genomes. A similar
work of using TMHMM is reported in Krogh et al. (2001). Due to
space limitation, we only report estimates for the genomes that do
not develop signal peptides. The complete results for 21 genomes
are available at the TMMOD webserver.

A model (M3) was trained using all the 160 sequences in the second
training set as described above. For each genome, transmembrane
proteins were predicted based on the ‘pred. no. tmh’ and ‘exp. no.
aa’ measures described earlier. For these predicted transmembrane
proteins, their topology was also predicted.

Table 4 summarizes the predictions by TMMOD on 12 complete
genomes, including the number of genes that are predicted to encode
integral membrane proteins. In general, the number of predicted
integral membrane proteins comprises between ∼20 and ∼30% of
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the total number genes for a genome. For almost all organisms in
Table 4, TMHMM, whose results are listed in parentheses, has pre-
dicted more proteins as integral membrane proteins than TMMOD
does. This finding, together with the results from the previous dis-
crimination experiments where TMHMM was shown to have had
more false positives, leads us to speculate that TMHMM may suffer
from problems of over-prediction. As for the occurrence frequencies
of different topologies, we found that multispanning proteins with
both N- and C-termini inside cytoplasm are strongly preferred in all
organisms with the exception of C.elegans. This is in agreement with
the predictions from TMHMM.

DISCUSSION
We presented here an improved hidden Markov model TMMOD
for transmembrane topology prediction. In the cross-validation
experiments on membrane proteins with known topology, TMMOD
outperforms not only a similar method, TMHMM, on which our
model is prototyped, but also the previously best method (PHDhtm)
which utilizes presumably more information from multiple align-
ments. TMMOD also surpassed TMHMM in identifying integral
membrane proteins from other proteins, particularly, signal
peptides.

By running TMMOD on a group of 21 complete genomes, we
estimate that integral membrane proteins account for ∼20–30% of
all genes in all genomes, and that Nin–Cin topology of transmembrane
proteins, namely with both the N- and C-termini inside cytoplasm, is
preferred in all organisms except C.elegans. This result is in general
agreement with what is reported in Krogh et al. (2001).

By experimenting with different variations of model architecture
and training regularizers, we concluded that the model architecture is
a more decisive factor for better performance. It is of further interest
to refine the model architecture, particularly in such a way that
long range correlations across different regions of integral membrane
proteins can be better captured.

It is worth noting that substantial improvements in accuracy over
TMHMM are also reported in some recent works (Arai et al., 2004;
Kall et al., 2004). These methods achieved better performance either
via a ‘consensus’ of various individual methods (Arai et al., 2004)
or by a more integrated way (Kall et al., 2004). Although it is dif-
ficult to directly compare TMMOD to these methods due to the use
of different datasets, these methods can benefit from TMMOD by
either weighing in TMMOD for the ‘consensus’ or incorporating
TMMOD’s loop treatments into the architecture.
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