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Cuckoo search (CS) is a new robust swarm intelligencemethod that is based on the brood parasitism of some cuckoo species. In this
paper, an improved hybrid encoding cuckoo search algorithm (ICS) with greedy strategy is put forward for solving 0-1 knapsack
problems. First of all, for solving binary optimization problem with ICS, based on the idea of individual hybrid encoding, the
cuckoo search over a continuous space is transformed into the synchronous evolution search over discrete space. Subsequently, the
concept of con	dence interval (CI) is introduced; hence, the new position updating is designed and genetic mutation with a small
probability is introduced. �e former enables the population to move towards the global best solution rapidly in every generation,
and the latter can e
ectively prevent the ICS from trapping into the local optimum. Furthermore, the greedy transform method is
used to repair the infeasible solution and optimize the feasible solution. Experiments with a large number of KP instances show the
e
ectiveness of the proposed algorithm and its ability to achieve good quality solutions.

1. Introduction

�e combinatorial optimization plays a very important role
in operational research, discrete mathematics, and computer
science. �e knapsack problem is one of the classical combi-
natorial optimization problems that are di�cult to solve and
it has been extensively studied since the pioneering work of
Dantzig [1]. Generally speaking, if the classi	cation of these
methods that are used to solve such problems is based on
the nature of the algorithm, they can be simply divided into
two categories [2]: exact methods and heuristic methods.
Exact methods, like enumeration method [3, 4], branch and
bound [5], and dynamic programming [6], can give the exact
solutions; nevertheless, in the worst case, it is required to take
a long time to get a satisfactory solution; sometimes the time
increases exponentially with the increment of the size of the
instance.

Recently, nature-inspired metaheuristic algorithms per-
form powerfully and e�ciently in solving the diverse opti-
mization problems, including combinatorial problem. Meta-
heuristic algorithms include genetic algorithm [7], particle
swarmoptimization [8], ant colony optimization [9], arti	cial

bee colony algorithm [10], di
erential evolution algorithm
[11], harmony search algorithm [12, 13], and krill herd
algorithm [14–16].

As is mentioned above, metaheuristic methods have been
proven to be an e
ective means to cope with the combina-
torial optimization problems including 0-1 knapsack prob-
lem. Unlike deterministic search approaches which have the
drawbacks of being trapped into local minima unavoidably,
the main advantage of metaheuristic methods can deliver
satisfactory solutions in a reasonable time. Because of this,
it is crucial to present some new nature-inspired methods to
deal with the 0-1 knapsack problem and especially to tackle
some intractable and complex large-scale instances which are
closer to practical applications.

Cuckoo search (CS), a population-driven nature-inspired
metaheuristic algorithms originally proposed by Yang and
Deb in 2009 and 2010 [17, 18], which showed some promising
e�ciency for global optimization and is becoming a new
research hotspot in evolutionary computation. CS is inspired
by the brood parasitism of some cuckoo species by laying
their eggs in the nests of other host birds. Each egg (nest or
cuckoo) represents a solution, and a cuckoo egg represents
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a new solution. �e aim is to use the new and potentially
better solutions (cuckoos) to replace a not-so-good solution
in the nests [19]. Like othermetaheuristic algorithms, CS uses
no gradient information during the search so that it has the
ability to solve nonconvex, nonlinear, nondi
erentiable, and
multimodal problems. Furthermore, there is essentially only
a single parameter �� in CS and thus it is potentially more
generic to adapt to a wider class of optimization problems
[19]. In addition, Yang and Deb showed that the CS outper-
forms particle swarm optimization or genetic algorithms in
some real-world optimization problems [18, 20]. In virtue of
its simplicity, robustness, and so on, books and articles on the
subject have proliferated recently. �e CS has received more
and more attention and application and it falls into a large
number of areas [20–25]. More details can be found in [26].

As far as we know, the emphasis ofmuch of previous stud-
ies on CS was placed on solving the optimization problems
over discrete or continuous space and only a few scholars
were concerned about binary problems. In 2011, Layeb [25]
developed a variant of cuckoo search in combination with
quantum-based approach to solve knapsack problems e�-
ciently. Subsequently, Gherboudj et al. [24] utilized purely
binary cuckoo search to tackle knapsack problems. In sum-
mary, the studies on binary-coded CS have just begun and its
performance needs to further improve so as to further expand
its 	eld of application.

Given the above consideration, an improved CS algo-
rithm (ICS) based on the CS framework in combination
with a novel greedy strategy is brought forward to solve 0-
1 knapsack problem. Compared with the original CS, the
outstanding characteristics of Lévy �ights such as stability,
power law asymptotics used in the original CS is still retained
in ICS. Meanwhile, the operation which a fraction of worse
nests are abandoned with a probability �� and new solutions
are built randomly is eliminated and a novel operator which
the search range is adjusted with adaptive step size and
the genetic mutation is embedded is introduced. We assess
the performance of our proposed algorithm in terms of
the quality of solutions, convergence rate, and robustness
by testing twenty di
erent scale knapsack instances. �e
simulation results not only demonstrated that the proposed
algorithm is workable and robust but also held the character-
istic of the superior approximation capabilities even in high-
dimensional space.

�e remainder of this paper is structured as follows.
Section 2 describes the mathematical model for the 0-1
knapsack problems.�en the improvement strategies and the
original intention of these improvements are given in detail
in Section 3, and the greedy transform method is described.
Subsequently, Section 4 presents the results of comparative
experiments. Finally, some conclusions and comments are
made for further research in Section 5.

2. Knapsack Problems

Knapsack problem (KP) is a typical optimization problem
and it has high theoretical and practical value.Many practical
applications can be formulated as a KP, such as cutting stock

problems, portfolio optimization, and scheduling problems,
cryptography [27].�is problem has been proven to be a NP-
hard problem; hence it cannot be solved in a polynomial time
unless P = NP [1]. �e classical 0-1 knapsack problem can be
de	ned as follows.

Let � = {�1, �2, . . . , ��} be a set of � items and �� and ��
represent the weight and pro	t of item �, respectively. Here,��,��, and � are all positive integers.�e problem is to choose
a subset of the items tomake their total weight not to exceed a
given capacity�, while the total pro	t is maximized.Without
loss of generality, it may be assumed that the weight of each
item is smaller than the capacity � so that each item 	ts into
the knapsack.We can use the binary decision variable 	�, with	� = 1 if item 
 is selected, and 	� = 0 otherwise. �e problem
can be formulated as follows:

max � = �∑
�=1
��	�

s.t. �∑
�=1
��	� ≤ �.

(1)

3. The Improved Cuckoo Search
Algorithm (ICS)

Although the original CS algorithm possesses some excellent
features of simplicity in structure and escaping from local
optima easily compared to several traditional optimization
approaches, the phenomenon of slow convergence rate and
low accuracy still exists. �at is to say, the basic algorithm
does not adequately exploit the potential of CS algorithm.
�erefore, in this paper, in order to improve the convergence
rate and precision of CS, we designed a series of appropriate
strategies and then a more e�cient algorithm (ICS) is
proposed.

ICS introduced the following 	ve improving strategies:

(1) using adaptive step size to adjust search range,

(2) using con	dence interval to enhance the local search,

(3) using genetic mutation operation with a low proba-
bility to prevent the ICS from being trapped into the
local optimum,

(4) using hybrid encoding to represent each individual in
the population,

(5) using greedy transform method to repair the infeasi-
ble solution and optimize the feasible solution.

More detailed descriptions of these strategieswill be given
in subsections, respectively.

3.1. Hybrid Encoding. �e standard CS algorithm operates
in continuous space. Consequently, we cannot use it directly
for solving optimization in binary space. Additionally, the
operation of the original CS algorithm is closed to the set
of real number, but it does not have the closure property
in the binary set {0, 1}. Since the wide application of binary
optimization problems in real-world engineering, the main
objective of the ICS algorithm is to deal with the binary
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optimization problems. One of the most signi	cant features
of the ICS is that it adopts the hybrid coding scheme [28] and
each cuckoo individual is represented by two-tuples.

De�nition 1 (auxiliary search space). An auxiliary search
space ��, which denotes a subspace of � dimensional real
space ��, where, �� ⊂ ��. An auxiliary search space ��
corresponds to a solution space � = {0, 1}�. Additionally, �
and �� are two parallel search space. Here the search in ��
is called active search; meanwhile, the search in � is called
passive search.

De�nition 2 (hybrid encoding representation). Each cuckoo
individual in the population is represented by the two tuples⟨xi, bi⟩ (
 = 1, 2, . . . , �), where xi works in the auxiliary search
space and bi performs in the solution space accordingly
and � is the dimensionality of solution. Further, Sigmoid
function [26] is adopted to transform a real-coded vector

xi = (	1, 	2, . . . , 	�)� ∈ [−3.0, 3.0]� to binary vector bi =(�1, �2, . . . , ��)� ∈ {0, 1}�. �e procedure works as follows:

�� = {1 if sig (	�) ≥ 0.50 else, (2)

sig(	) = 1/(1 + �−�) is sigmoid function.

3.2. Greedy TransformMethod. Many optimization problems
are constrained. Accordingly, constraint handling is crucial
for the e�cient design ofmetaheuristics. Constraint handling
strategies, whichmainly act on the representation of solutions
or the objective function, can be classi	ed as reject strategies,
penalizing strategies, repairing strategies, decoding strate-
gies, and preserving strategies [29]. Repairing strategy, most
of them are greedy heuristics, can be applied for the knapsack
problem [29]. However, the traditional greedy strategy has
some disadvantages of solving the knapsack problem [30].
Truong invented a new repair operator which depends on
both the greedy strategy and random selection [31]. Although
this method can correct the infeasible solution, random
selection reduced the e�ciency because it was not greedy
enough to improve the convergence speed and accuracy.
In this paper, a novel greedy transform method (GTM) is
introduced to solve this problem [32]. It can e
ectively repair
the infeasible solution and optimize the feasible solution.

�is GTM consists of two stages. �e 	rst stage (called
RS) examines each variable in descending order of ��/�� and
con	rms the variable value of one as long as feasibility is not
violated.�e second stage (called OS) changes the remaining
variable from zero to one until the feasibility is violated. �e
purpose of theOS stage is to repair an abnormal chromosome
coding to turn into a normal chromosome, while the RS stage
is to achieve the best chromosome coding. �en according
to the mathematical model in Section 2, pseudo code of the
GTM is described in Algorithm 1.

3.3. New Position Updating with Adaptive Step and Genetic
Mutation. An outstanding characteristic of PSO is that the
individual tends to mimic its successful companion. Each

individual follows the simple act that is to emulate the
successful experience of the adjacent individual, and the
accumulation behavior is to search for the best area for a
high-dimensional space [33]. Compared with the PSO, there
are some di
erences and similarities. Firstly, for the PSO, the
particle velocity consists of three parts: the previous speed
entry, cognitive component, and social composition.�e role
of social composition of the particles is pulled the direction
of the global optimum. For the CS algorithm, new cuckoo
individual is generated by a probability �� in a completely
random manner, which can be seen as the social component
of the CS. However, it does not well re�ect the impact
of the entire population on the individual. Secondly, PSO
demonstrate adaptive behavior, because the population state
is changed in pace with the individual optimum and the
global optimum which have been traced. However, cuckoo
individual does not fully show the adaptive behavior in theCS
algorithm.�irdly, in PSO, position update formula performs
mutation in an embedded memory manner, which is similar
to that is used in CS. From the above analyses, we can
come to a conclusion that the CS algorithm also has some
minor disadvantages. Inspired by the idea of particle swarm
optimization, a novel position updating operator is proposed
and utilized to strengthen the ability of local search. �e ICS
and the CS are di
erent in two aspects as follows.

(1) �e position updating with adaptive step in ICS
replaces the random walk completely in CS in the
stage of local search.

(2) �e probability �� of alien eggs found by host birds
is excluded from the CS, and genetic mutation prob-
ability (�	) is included in the ICS.

�e concept of “con	dence interval” is introduced 	rstly,
and the schematic is given as well.

De�nition 3 (con	dence interval). Let 	best� (�) be the �th
component of xbest ingeneration �, and xbest = (	best1 , 	best2 ,

. . . , 	best� ) is the global best cuckoo individual in generation�. Let 	worst� (�) be the �th component of xworst ingeneration

�, and xworst = (	worst1 , 	worst2 , . . . , 	worst� ) is the global worst
cuckoo individual in generation � accordingly. �e step� =|	best� − 	worst� | is the adaptive step of the �th component of

individual xi = (	�1, 	�2, . . . , 	��)�, and then the con	dence
interval (CI) of every component 	�� (� = 1, 2, . . . , �) of
xi (
 = 1, 2, . . . , �) is de	ned as CI�� ∈ [−step�, step�]. Figure 1
gives the schematic representation of con	dence interval.

Two major components of any metaheuristic algorithms
are intensi	cation and diversi	cation or exploitation and
exploration [19], and their interaction can have a marginal
e
ect on the e�ciency of a metaheuristic algorithm. �e
con	dence interval is essentially a region near the global best
cuckoo. It is signi	cant that the search step size is adjusted
gradually in the evolutionary process, which can e
ectively
balance the contradictions between exploration and exploita-
tion. In the early stage of search, cuckoo individuals randomly
distributed in the entire response space, so most adaptive
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Input: X = (	1, 	2, . . . , 	�) ∈ {0, 1}�
Step 1: sort
	e items are sorted according to the value-to-weight ratio ��/�� (
 = 1, 2, 3, . . . , �) in
descending order, then a queue {�1, �2, . . . , ��} of length n is formed. It means that:
p
1/w
1 ≥ p
2/w
2 , for �1 < �2
Step 2: repair stage
 = 1; Tempc = �
1 ;
While (Tempc ≤ C)

if (	
� = 1) then�
� = 1; 
 = 
 + 1; Tempc=Tempc+�
� ;
end if

end while
Step 3: optimize stage
For � = 
 to �

Tempc = Tempc + �
� ;
if (Tempc ≤ C) then�
� = 1;
Else�
� = 0;
end if

end for
Output: Y = (�1, �2, . . . , ��), computation is terminated.

Algorithm 1: Greedy transform method.

Con�dence interval

stepj stepj

TS

xworst
j xbest

j

Figure 1: �e schematic representation of con	dence interval.

steps are large and most con	dence intervals are wide, which
is very bene	cial to making a lot of exploration. As the
iterations continue, most adaptive steps gradually become
small and most con	dence intervals become wide accord-
ingly. �us the exploitation capabilities will be gradually
strengthened.

�e purpose of mutation is to introduce new genes so as
to increase the diversity of the population. Mutation can also
play a balanced exploration-exploitation contradictory role.
Geneticmutation operationwith a small probability is carried
out, for it can e
ectively prevent the premature convergence
of the ICS. New position updating formula of ICS is shown in
Algorithm 2.

Here, “best” and “worst” are the indexes of the global best
cuckoo and the worst cuckoo, respectively. And �, �1 and rand
(⋅) are all uniformly generated random numbers in [0, 1].

Based on the above-mentioned analyses, the pseudo code
of the ICS for 0-1 knapsack problems is described as shown
in Algorithm 3.

�e time complexity of our proposed algorithm is approx-
imately  (max! ∗ � ∗ 2�) +  (�log �) and it is still

For 
 = 1 to n
step

i
= |xbest

i
− xworst

i
|

x
i

� = xbest
i

± r ∗ step
i

if (�1 ≤ �	)
x
i

� = a
i
+ rand() ∗ (b

i
− a

i
)

end if
end for

Algorithm 2: New position updating formula of ICS.

linear. �e time complexity of new proposed algorithm does
not increase in magnitude compared with the original CS
algorithm.

4. Experimental Results and Analysis

In order to test the optimization ability of ICS and investigate
e
ectiveness of the algorithms for di
erent instance, types, we
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Step 1: Sorting. According to value-to-weight ratio ��/�� (
 = 1, 2, 3, . . . , �) in descending order,
a queue {�1, �2, . . . , ��} of length n is formed.
Step 2: Initialization. Generate m cuckoo nests randomly {⟨x

1
, b

1
⟩,⟨x

2
, b

2
⟩,. . . , ⟨x

m
, b

m
⟩}.

Calculate the �tness for each individual, �(b
i
), 1 ≤ 
 ≤ �, determine ⟨xbest, bbest⟩.

Set the generation counter ' = 1. Set mutation parameter �	.
Step 3:While (the stopping criterion is not satis�ed)

for 
 = 1 to m
for� = 1 to n

x
i
(j) = x

i
(j) + * ⊕ Levy(4)

Apply new position updating formula of ICS (Algorithm 2)
Repair the illegal individuals and optimize the legal individuals (Algorithm 1)

end for
end for

Step 4: Keep best solutions; Rank the solutions and �nd the current best (bbest, �(bbest)).' = ' + 1
Step 5: end while

Algorithm 3: �e main procedure of ICS.

Table 1: Experimental result of three algorithms with small KP
instances.

Fun Size HS CS ICS

�1 10 295 295 295

�2 20 1024 1024 1024

�3 4 35 35 35

�4 4 23 23 23

�5 15 481.0694 481.0694 481.0694

�6 10 50 52 52

�7 7 107 107 107

�8 23 9761 9776 9777

�9 5 130 130 130

�10 20 1025 1025 1025

consider twenty 0-1 knapsack problems involving ten small-
scale instances, six medium-scale instances and four large-
scale instances. �e solution quality and performance are
compared with binary version HS and binary version CS, for
simplicity, denoted as HS and CS, respectively.

Test problems 1–10 are taken from [12]. Test problems 11
and 13 ofHe et al. [28] are used in our numerical experiments.
Test problem 15 is conducted from test problems 11 and 13.
Test problem 16 is generated by Kellerer et al. [34]. Test
problems 12 and 14 are generated by Gherboudj et al. [24].
Test problems 17–20 are taken from [12].

All the algorithms were implemented in Visual C++ 6.0.
�e test environment is set up on personal computer with
AMDAthlon(tm) II X2 250 Processor 3.01 GHz, 1.75 G RAM,
running on Windows XP. �ree groups of experiments were
performed to assess the e�ciency and performance of our
algorithm. In all experiments, we have set the parameters of
CS as follows: �� = 0.25, the number of cuckoo is 20. For
the HS algorithm, harmony memory size HMS = 5, harmony
memory consideration rate HMCR = 0.9, pitch adjusting rate
PAR = 0.3, and bandwidth �� = 	� − 	
. For the ICS
algorithm, the number of cuckoo is 20, the generic mutation
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Figure 2: Best pro	ts (100 items).

probability �	 = 0.15. �e experiments on each function
were repeated 30 times independently. �e quanti	cation of
the solutions is tabulated in Tables 1–3.

4.1. Comparison among	ree Algorithms on Small Dimension
Knapsack Problems. Table 1 shows the experimental results
of our ICS algorithm, the HS, and the CS on ten KP
tests with di
erent dimension. Observation of the presented
results in Table 1 indicates that the proposed ICS algorithm
performs better than HS algorithm and CS algorithm in �8.
�e optimal solution of the test problem 8 found by ICS
is 	∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
and �8 (	∗) = 9777. Additionally, CS and ICS have the
same results in �6 which is better than that obtained by the
HS algorithm and three algorithms have the same results
in the other instances. In a word, the solutions obtained
by three algorithms are similar and there is almost no
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Table 2: Experimental result of three algorithms with medium KP instances.

Fun Dim Algorithm >best/�best >worst/�worst !best/!avg 'best/'avg Mean Std. dev SR

�11 50

HS 3103/1000 3103/1000 0.00/0.007 96/498 3103 0 100

CS 3103/1000 3097/1000 0.015/1.231 6/502 3102 20.09 95

ICS 3103/1000 3103/1000 0.00/0.064 2/22 3103 0 100

�12 80

HS 9201/1505 9199/1505 0.00/0.033 188/1445 9200 0.45 95

CS 9199/1505 9106/1505 2.924/3.776 757/980 9176 26.27 15

ICS 9201/1505 9199/1505 0.015/1.359 5/315 9200 1.03 50

�13 100

HS 26559/6717 26559/6717 0.00/0.460 150/16521 26559 0 100

CS 26559/6717 25882/6713 1.719/2.565 351/529 26447 178.58 20

ICS 26559/6717 26534/6706 0.062/0.999 12/182 26558 5.59 95

�14 120

HS 7393/1109 7393/1109 0.00/0.123 52/3787 7393 0 100

CS 7393/1109 7334/1109 1.328/1.399 151/159 7361 13.88 6

ICS 7393/1109 7393/1109 0.344/2.298 53/355 7393 0 100

�15 150

HS 30085/7718 30081/7718 0.578/2.429 16140/68532 30081 1.23 10

CS 30081/7718 29943/7717 0.656/3.142 182/872 30072 32.13 90

ICS 30085/7718 30081/7718 1.203/1.843 144/215 30082 1.642 20

�16 200

HS 88228/71893 88129/71893 0.921/1.718 19115/35429 88150 41.47 25

CS 88228/71893 88018/71881 4.200/4.225 868/872 88160 67.42 10

ICS 88228/71893 88221/71886 1.570/3.479 145/323 88225 2.97 30

Table 3: Experimental results of three algorithms with large KP instances.

Fun Dim Algorithm >best/�best >worst/�worst !best/'best Mean Std. dev

�17 300

HS 14328/1700 14307/1700 3.391/50277 14325 5.23

CS 14306/1696 13027/1698 3.422/239 14021 275.06

ICS 14318/1700 14279/1698 2.125/131 14303 10.61

�18 500

HS 16031/2000 15989/1999 1.828/17885 16015 11.21

CS 16009/2000 15353/2000 2.500/104 15755 174.70

ICS 16042/2000 15991/1999 2.156/79 16016 13.76

�19 800

HS 39759/5000 39656/5000 3.812/22659 39720 28.75

CS 38987/4999 38296/4998 3.218/83 38630 191.60

ICS 39775/4995 39432/4996 3.968/91 39578 85.06

�20 1000

HS 67635/10000 67630/10000 3.11/15208 67633 1.59

CS 66992/9997 66712/9998 0.109/1 66877 70.68

ICS 67123/10000 66975/10000 0.687/13 67042 41.25

signi	cant di
erence among all the three algorithms. Further,
ICS algorithm does not show its advantages thoroughly.
�erefore, in order to further test the performance of the
algorithm, we conducted the following experiments in the
next subsection.

4.2. Comparison among	ree Algorithms onMedium Dimen-
sion Knapsack Problems. Figures 2, 3, 4, and 5 show conver-
gence curves of the best pro	ts of the ICS over 30 runs on four
test problemswith 100, 120, 150, and 200 items. It indicates the
global search ability and the convergence ability of the ICS.
�ere are several observations and they are given as follows.

�e best pro	t of 100 items test problem is quickly
increasing and reaching the approximately optimal pro	t at
nearly one second. Although the algorithm shows a slow
evolution only for a moment in 120 items, the best pro	t
is still obtained a�er about 2.5 seconds. In the 150 items

test problem, the best pro	t is quickly increasing for more
than a second. For the large 200 items test problem, the
best pro	t is also increasing very rapidly over 2.5 seconds.
�e performance of the ICS can be further understood and
analyzed from Table 2.

We observed from Table 2 that the ICS has demonstrated
an overwhelming advantage over the other two algorithms on
solving 0-1 knapsack problems with medium scales. ICS and
HS obtained the same optimal solution in all test problems.
�e CS has the worst performance, and the best solutions
found by CS are worse than those obtained by the other two
algorithms for�12 and�15. Furthermore, theworst solutions
found by the ICS are all better than those obtained by CS.
�e ICS and the HS obtained the same worst solutions except�13 and �16. Unfortunately, the worst solution obtained by
ICS cannot exceed that of the HS. �e ICS uses little “time”
and little “average time” compared with CS for almost all



Computational Intelligence and Neuroscience 7

0 1 2 3 4 5
7280

7290

7300

7310

7320

7330

7340

7350

7360

7370

Time (s)

A
ve

rg
e 

p
ro

�
ts

Figure 3: Best pro	ts (120 items).

0 1 2 3 4 5
2.84

2.86

2.88

2.9

2.92

2.94

2.96

2.98

3

3.02

Time (s)

A
ve

rg
e 

p
ro

�
ts

×104

Figure 4: Best pro	ts (150 items).
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Figure 6: Comparison of average computation time of the ICS with
the HS and the CS.
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Figure 7: �e performance on function 17.

of the test problems. In addition, the “'best/'avg” of most
problems is much smaller than that of the CS and the HS,
which shows that the ICS has a fast convergence. “SR” is more
than 95% for almost all of problems except �15 and �16.
Further, “SR” for �15 and �16 is slightly higher than that of
other two algorithms, which indicates the high e�ciency of
the ICS on solving 0-1 knapsack problems. “Std.dev” is much
smaller than that of the CS and the di
erence is not very poor
between ICS andHS, which indicates the good stability of the
ICS and superior approximation ability.

Figure 6 shows a comparison of average computation
time with �11 to �16, estimated by seconds for the proposed
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Figure 9: �e performance on function 19.

algorithms, the HS and the CS. In terms of the average
computation time, Figure 6 shows that the HS algorithm is
the best one and the CS algorithm is the worst one.Moreover,
ICS converges to the optima faster thanCS onmost instances.

Although ICS has shown some advantages on solving 0-1
knapsack problem with medium-scale instances; however,
the optimal solution obtained by ICS is not very prominent
compared with other two algorithms. �erefore, in order to
further verify the e�ciency of our proposed algorithm, we
designed the large scale knapsack tests as follows.

4.3. Comparison among	reeAlgorithms on Solving 0-1 Knap-
sack Problems with Large Dimension. Similar to the results
of medium-scale knapsack instances, for the large scale
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Figure 10: �e performance on function 20.

knapsack problem, we observe that the ICS algorithm obtains
better solutions in shorter time and has more obvious
advantages over the CS algorithm from Table 3. Regrettably,
ICS is slightly inferior to HS in terms of the optimal solution
quality on function 17 and function 20. In a word, the ICS
has demonstrated better performance and it thus provides an
e�cient alternative on solving 0-1 knapsack problems.

Convergence curves shown in Figures 7, 8, 9, and 10
similarly establish the fact that ICS is more e
ective than
CS in all four large-scale KP instances. �rough careful
observation, it can be seen that HS gets outstanding pro	ts
in the initial stage of the evolution and the best value in the
	nal population. Compared with HS and ICS, CS obtained
the worst mean pro	ts at various stages. ICS and HS have
roughly the same convergence speed. In addition, it is obvious
to infer that CS and ICS get stuck at local optima quickly as
can be seen from Figure 10. However, HS converges to the
global optimum rapidly.

5. Conclusions

In this paper, the ICS algorithm has been proposed based
on the CS framework and a greedy transition method to
solve 0-1 knapsack problem e�ciently. An adaptive step is
carefully designed to balance the local search and the global
search. Genetic mutation operator helps the algorithm to
yield fast convergence and avoids local optima. �e simu-
lation results demonstrate that the proposed algorithm has
superior performance when compared with HS and CS. �e
proposed algorithm thus provides a new method for solving
0-1 knapsack problems.

Further studies will focus on the two issues. On one
hand, we would apply our proposed approach on other
combinatorial optimization problems, such as multidimen-
sional knapsack problem (MKP) and traveling salesman
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problem (TSP). On the other hand, we would examine new
meta-hybrid to solve 0-1 knapsack problems which are too
complicated.
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