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ABSTRACT 

VisuShrink, ModineighShrink and NeighShrink are efficient image denoising algorithms based on the discrete wavelet 
transform (DWT). These methods have disadvantage of using a suboptimal universal threshold and identical neigh- 
bouring window size in all wavelet subbands. In this paper, an improved method is proposed, that determines a thresh-
old as well as neighbouring window size for every subband using its lengths. Our experimental results illustrate that the 
proposed approach is better than the existing ones, i.e., NeighShrink, ModineighShrink and VisuShrink in terms of peak 
signal-to-noise ratio (PSNR) i.e. visual quality of the image. 
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1. Introduction 

An image is often corrupted by noise during its acquisi- 
tion and transmission. Image denoising is used to remove 
the additive Gaussian noise while retaining important 
maximum possible image features. Wavelet analysis has 
been demonstrated to be one of the powerful methods for 
performing image noise reduction [1,2]. The procedure 
for noise reduction is applied on the wavelet coefficients 
obtained after applying the wavelet transform to the im- 
age at different scales. The motivation for using the wa- 
velet transform is that it is good for energy compaction 
since the small and large coefficients are more likely due 
to noise and important image features, respectively [3]. 
The small coefficients can be thresholded without af- 
fecting the significant features of the image. In its most 
basic form, each coefficient is thresholded by comparing 
against a value, called threshold. If the coefficient is 
smaller than the threshold, it is set to zero; otherwise it is 
kept either as it is or modified. The inverse wavelet trans- 
form on the resultant image leads to reconstruction of the 
image with essential characteristics [4].  

Since the pioneer work of Donoho & Johnstone, there 
have been many works on finding suitable thresholds; 
however, very few have been designed for images [4-6]. 
There exist various methods for wavelet thresholding 
which rely on the choice of a threshold value such as 
VisuShrink [5,7], SureShrink [4,8] and BayesShrink [9]. 
The VisuShrink [5] has a limitation of not dealing with 
minimizing the mean squared error, i.e. it removes too  

many coefficients. However, it is known to give the re- 
covered images that are overly smoothed. The Sure- 
Shrink threshold depends upon Stein’s Unbiased Risk 
Estimator (SURE) [7]. It minimizes the mean squared 
error that takes the combination of the universal thresh- 
old and the SURE threshold. In this method, the em- 
ployed thresholding is adaptive, i.e., if the unknown 
function contains abrupt changes or boundaries in the 
image, the reconstructed image also does. The Bayes- 
Shrink [9] is a data-driven adaptive image denoising 
method. Hall et al. and Cai studied local block thresh-
olding rules for wavelet function estimation [10-12]. 
These methods threshold the empirical wavelet coeffi- 
cients in groups rather than individually, making simul- 
taneous decisions to retain or to discard all the coeffi- 
cients within non-overlapping blocks. The proposed me- 
thod overcomes the limitations of the above mentioned 
methods. It determines the threshold and neighbouring 
window size for every subband using its lengths.  

The rest of the paper is organized as follows. Section 2 
describes the related work. Section 3 discusses the pro- 
posed work. The experimental results are given in Sec-
tion 4. The results are discussed by taking three test im-
ages and various noise levels. Finally, the concluding 
remarks are given in Section 5. 

2. Related Work 

The VisuShrink method, introduced by Donoho [5], uses 
a threshold value T that is proportional to the standard 
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deviation of the noise. It follows the hard thresholding 
rule. The threshold in VisuShrink is also referred to as 
universal threshold and it is defined as: 

T 2 log M  

where σ is the noise variance present in the signal and M 
represents the signal size or number of samples.  

An estimate of the noise level σ is defined based on 
the median absolute deviation that is given by:  

  2
2

ijmedian Y 0.06745  

  

where  subband. ij 1

A threshold chosen based on Stein’s Unbiased Risk 
Estimator (SURE) [4,8] is called as SureShrink. It is a 
combination of the universal threshold and the SURE 
threshold. This method specifies a threshold value tj for 
each resolution level j in the wavelet transform which is 
referred to as level dependent thresholding. The goal of 
SureShrink is to minimize the mean squared error that is 
defined as: 

Y HH

    
M 2

2
i, j 1

1
MSE z i, j s i, j

M 

  , 

where z(x, y) is the estimate of the image and s(x, y) is 
the original image without noise and M × M is the image 
size. The SureShrink suppresses the noise by threshold- 
ing the empirical wavelet coefficients. The SureShrink 
threshold t* is defined as: 

 t min t, 2 log M   

where t denotes the value that minimizes Stein’s Unbi-
ased Risk Estimator, σ is the noise variance, and M is the 
size of the image. SureShrink follows the soft threshold-
ing rule. The thresholding employed in this case is adap-
tive, i.e., a threshold level is assigned to each dyadic 
resolution level by the principle of minimizing the 
Stein’s Unbiased Risk Estimator for threshold estimates.  

The BayesShrink [9] minimizes the Bayesian risk, and 
hence its name, BayesShrink. It uses soft thresholding 
and is subband-dependent, which means that the thresh- 
olding is done at each band of resolution in the wavelet 
decomposition. Like the SureShrink procedure, it is 
smoothness-adaptive. The Bayes threshold, tB, is defined 
as:  

2
B st    

where σ2 is the noise variance and σs is the signal vari-
ance without noise. The noise variance σ2 is estimated 
from the subband HH1.  

The aim of local thresholding rules is to increase the 
estimation accuracy by utilizing information about neigh- 
boring wavelet coefficients. The block thresholding in- 
creases the estimation precision by utilizing the informa- 

tion about the neighbor wavelet coefficients. Recently, 
there has been a fair amount of research to select the 
threshold for image denoising from the noisy image us- 
ing wavelet [13-16].  

The choice of a threshold is an important point of in- 
terest. It plays a major role in noise removal of images 
because denoising most frequently produces smoothed 
images, reducing their sharpness. Generally, the choice 
should be taken to preserve the edges of the denoised 
image. Our proposed image denoising method is based 
on thresholding that not only removes noise but also 
preserves the edges. It is discussed in next section. 

3. Proposed Work 

Before discussing our proposed work, we will review the 
wavelet transform in brief.  

Let x = {x(i, j), i, j = 1, 2, ···, M} denote M × M origi- 
nal image to be recovered and M is some integer power 
of 2. During transmission, the image x is corrupted by 
independent and identically distributed (i.i.d) zero mean, 
white Gaussian Noise, i.e. n(i, j) ~ M (0, σ2). At the re-
ceiver end, the noisy observations g(i, j)= x(i, j) + σ n(i, j) 
are obtained. The goal is to estimate x from the noisy 
observation g(i, j) such that the mean squared error (MSE) 
is minimum [3]. Let W and W-1 denote the two dimen-
sional discrete wavelet transform (DWT) and its inverse 
(IDWT), respectively. Then Y = W * g represents the 
matrix of wavelet coefficients of g having four subbands 
(LL, LH, HL and HH) [17-19]. The subbands HH, HL, 
LH are called details and the subband LL is called ap- 
proximation. Performing DWT on LL, we again get four 
subbands. We can perform DWT of approximation sub- 
band obtained in previous wavelet transform multiple 
times so that the final approximation band contains only 
single value. Denote the maximum number of levels 
(decompositions) by J. The size of the subband at scale k 
is M/2k × M/2k. Figure 1 shows two level decomposi- 
tion of an image. The wavelet thresholding denoising 
method processes each coefficient Y(i, j) from the detail 
subbands with a threshold function to obtain  X i, j . 
The denoised estimate  of the image x is inverse 
wavelet transform of 

x̂
X , i.e., 1x̂ W X . 

We now discuss the parameter estimation, 

3.1. Parameters Estimation 

(i) In our proposed method, we calculate threshold 
value TNEW using the following:  

NEW
ˆT 2lo g M             (1) 

where kM̂ M 2 , here k = 1, 2, ···, J. J represents sub- 
band. 

(ii) Let Wij be the wavelet coefficients of interest in the 
neighborhood window ij . Calculate : 2

ijS
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Figure 1. 2D-DWT with 2-Level decomposition. 
 

2
ij ijS W  2   within the window ij  

(iii) Shrink the wavelet coefficients by using:  

ij ij ij W *   

(iv) The shrinkage factor is given as: 

 2 2
ij NEW ij1 T S     

here “+” means that the positive value should be kept as 
it is and the negative value should be replaced by zero. 

After apply this thresholding function and using Neigh- 
Shrink, it was observed that the reconstructed image had 
mat like aberrations when the noise content was high. 
We could remove these aberrations using Wiener filter. 

Using NeighShrink we loose some details of the image 
and sometimes the reconstructed image becomes unac- 
ceptably blurred. The reason of this blurring may be the 
suppression of too many details of wavelet coefficients. 
This problem can be avoided using the following shrin- 
kage factor is: 

  2 2
ij NEW ij1 3 4 T S     

3.2. Denoising Algorithm 

The proposed procedure is given below: 
 Perform multiscale decomposition on the image cor-

rupted by Gaussian noise. The 2-D wavelet transform 
W on the noisy image Y is performed up to Jth level to 
generate several subbands. 

 Estimate the robust median using the following: 

  2
2

ijmedian Y 0.06745              (2) 

 For each level, compute TNEW as a threshold using 
(1). 

 For each subband (except the low pass residual), ap- 
ply NeighShrink method to obtain the noiseless 
wavelet coefficients. 

 Perform the inverse wavelet transform on the modi- 
fied coefficients to obtain the denoised estimate im- 
age x̂ . 

4. Results and Discussions 

We have evaluated the performance of our proposed 
method using the quality measure PSNR which is calcu-
lated as: 

   2

10PSNR in db 10*log 255 MSE , 

where MSE is the mean squared error between the origi-
nal image and reconstructed image.  

Here, we have compared the performance of our sche- 
me with different de-noising schemes that include Visu- 
shrink, NeighShrink and ModineighShrink. We have taken 
different window sizes of 2 × 2, 3 × 3, 5 × 5, and 7 × 7. 
The noise levels have been taken as 10, 20, 30, 50, 75, 
and 100. The images considered in our experiments are 
standard images that include Lena, Barbara, and Goldhill 
each of size 512 ×  512 (refer Figure 2). The wavelet 
transform used is Daubechies least asymmetric com- 
pactly supported wavelet with eight vanishing moments 
[20]. We have performed wavelet transform four times in 
order to obtain four scales of decomposition.  

We have drawn graphs for PSNR vs noise level for the 
VisuShrink, NeighShrink, ModNeiSh and proposed me- 
thods for Lena image and they are shown in Figures 
4(a)-(d), for window sizes 2 × 2, 3 × 3, 5 × 5 and 7 × 7, 
respectively. It is evident from these figures that our pro-
posed method performs better than the VisuShrink, 
NeighShrink, ModNeiSh methods for all window sizes 
considered in this paper. The only case when our method 
performs no better then these methods is for window size 
of 7 × 7 and noise level up to 20. In fact, for higher val-
ues of noise, the performance of all methods converges 
as is evident from the Figures 4(a)-(d). The reason is 
that all the methods, remove almost same number of co-
efficients. For other two images, i.e., Barbara and Gold- 
hill, similar graphs were obtained. We have shown in 
Figures 3(a)-(n) images of Lena using noise level 10 and 
different window sizes. Similar results were obtained for 
other images also. We however have given the numerical 
results for all images in Tables 1-4. 

5. Conclusion 

Our proposed scheme performs better for all noise levels 
and for all window sizes under consideration for PSNR 
 

   
(a)               (b)               (c) 

Figure 2. Original test images with 512 × 512 pixels: (a) 
Lena; (b) Barbara; (c) Goldhill. 
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(a)                          (b)                       (c)                          (d) 

 
(e)                          (f)                       (g)                          (h) 

 
(i)                          (j)                       (k)                          (l) 

 
(m)                          (n) 

Figure 3. Comparative performance of various methods on Lena with noise level 10 (a) Original; (b) Noisy image with noise 
level 10; (c) Denoise using VisuShrink (3 × 3); (d) Denoise using VisuShrink (5 × 5); (e) Denoise using VisuShrink (7 × 7); (f) 
Denoise using NeighShrink (3 × 3); (g) Denoise using NeighShrink (5 × 5); (h) Denoise using NeighShrink (7 × 7); (i) Denoise 
using ModNeiSh (3 × 3); (j) Denoise using ModNeiSh (5 × 5); (k) Denoise using ModNeiSh (7 × 7); (l) Denoise using Proposed 
(3 × 3); (m) Denoise using Proposed (5 × 5); (n) Denoise using Proposed (7 × 7). 
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(c)                                                            (d) 

Figure 4. PSNR gain vs noise level of Proposed, VisuShrink, NeighShrink, ModineighShrink (ModNeiSh) methods for Lena 
image for window size. (a) 2 × 2; (b) 3 × 3; (c) 5 × 5; (d) 7 × 7. 
 

Table 1. Denoising results (PSNR in db) for Lena, Barbra and Goldhill using window size of 2 × 2. 

Image Name Noise Levels VisuShrink NeiSh MoNeiSh Proposed 

10 30.36 31.05 31.37 31.67 

20 25.82 26.32 26.62 27.03 

30 23.87 24.11 24.30 24.64 

50 22.76 22.84 22.92 23.06 

75 22.44 22.44 22.44 22.44 

Lena 

100 22.23 22.23 22.23 22.23 

10 27.39 28.25 28.67 28.97 

20 22.53 22.82 23.07 23.31 

30 21.39 21.59 21.70 21.89 

50 20.55 20.60 20.64 20.73 

75 20.33 20.33 20.33 20.35 

Barbara 

100 20.20 20.20 20.20 20.20 

10 28.08 28.58 28.86 29.13 

20 24.80 25.08 25.26 25.56 

30 23.66 23.82 23.93 24.14 

50 22.90 22.95 22.98 23.06 

75 22.64 22.64 22.64 22.65 

Goldhill 

100 22.42 22.43 22.42 22.42 
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Table 2. Denoising results (PSNR in db) for Lena, Barbra and Goldhill using window size of 3 × 3. 

Image Name Noise Levels VisuShrink NeiSh MoNeiSh Proposed 

10 31.96 32.58 32.85 33.06 

20 27.08 27.67 28.00 28.39 

30 27.08 27.67 28.00 28.39 

50 22.99 23.13 23.26 23.47 

75 22.46 22.47 22.48 22.55 

Lena 

100 22.23 22.23 22.23 22.24 

10 29.49 30.33 30.72 30.96 

20  23.76  24.32  24.71  25.00 

30 21.90 22.12 22.26 22.47 

50 20.73 20.80 20.86 21.02 

75 20.33 20.34 20.36 20.44 

Barbara 

100 20.20 20.20 20.20 20.20 

10  29.42  29.94  30.27  30.51 

20 25.69 26.08 26.33 26.62 

30 24.11 24.33 24.50 24.77 

50 23.01 23.09 23.17 23.33 

75 22.64 22.64 22.64 22.65 

Goldhill 

100 22.42 22.43 22.42 22.42 

 
Table 3. Denoising results (PSNR in db) for Lena, Barbra and Goldhill using window size of 5 × 5. 

Image Name Noise Levels VisuShrink NeiSh MoNeiSh Proposed 

10 33.62 33.88 34.01 34.04 

20 28.96 29.55 29.85 30.12 

30 26.29 26.78 27.06 27.42 

50 23.61 23.85 24.09 24.44 

75 22.60 22.68 22.73 22.87 

Lena 

100 22.25 22.26 22.28 22.29 

10 31.89 32.24 32.39 32.43 

20 26.08 26.78 27.15 27.40 

30 23.14 23.59 23.93 24.22 

50 21.19 21.37 21.55 21.79 

75 20.41 20.43 20.48 20.62 

Barbara 

100 20.22 20.23 20.24 20.27 

10 31.51 31.87 32.06 32.12 

20  27.11 27.51 27.78 28.03 

30 25.15 25.48 25.73 26.04 

50 23.43 23.58 23.70 23.95 

75 22.75 22.80 22.85 22.87 

Goldhill 

100 22.42 22.42 22.42 22.42 
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Table 4. Denoising results (PSNR in db) for Lena, Barbra and Goldhill using window size of 7 × 7. 

Image Name Noise Levels VisuShrink NeiSh MoNeiSh Proposed 

10 32.81 32.16 31.54 31.21 

20 29.65 29.97 30.12 30.18 

30 27.16 27.64 27.90 28.15 

50 24.17 24.45 24.72 25.20 

75 22.80 22.99 23.18 23.42 

Lena 

100 22.24 22.24 22.24 22.24 

10 32.17 31.56 31.08 30.83 

20 27.55  27.96  28.17  28.26 

30 24.45 25.00 25.36 25.61 

50 21.73 21.96 22.10 22.32 

75 20.64 20.75 20.87 21.09 

Barbara 

100 20.26 20.28 20.29 20.36 

10 32.00  31.33  30.84  30.61 

20  28.08 28.39 28.59 28.70 

30 25.97 26.31 26.53 26.74 

50 24.02 24.26 24.43 24.60 

75 22.80 22.90 23.02 23.25 

Goldhill 

100 22.44 22.44 22.44 22.44 

Here, NeiSh and MoNeiSh represent NeighShrink and ModiNeighShrink methods respectively. 

 
value and visual quality of the denoised image than Vis-
ushrink, NeighShrink and Modified NeighShrink for all 
window sizes and almost all noise levels. 
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