EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

An improved intermolecular potential for nitrogen

Citation for published version (APA):
Avoird, van der, A., Wormer, P. E. S., & Jansen, A. P. J. (1986). An improved intermolecular potential for
nitrogen. Journal of Chemical Physics, 84(3), 1629-1635. https://doi.org/10.1063/1.450457

DOI:
10.1063/1.450457

Document status and date:
Published: 01/01/1986

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 24. Aug. 2022


https://doi.org/10.1063/1.450457
https://doi.org/10.1063/1.450457
https://research.tue.nl/en/publications/5f22a6df-b5c5-45e1-b64b-a7d8661d7033

An improved intermolecular potential for nitrogen

A. van der Avoird, P. E. S. Wormer, and A. P. J. Jansen
Institute of Theoretical Chemistry, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen,
The Netherlands

(Received 23 July 1985; accepted 17 October 1985)

Using new ab initio calculations for the multipole and short range interactions and the results for
the dispersion interactions recently calculated in our institute, we have constructed a new
intermolecular potential for nitrogen. Its distance and angular dependence is expressed
analytically in a spherical expansion. The long range dispersion interactions have been damped
for charge penetration and exchange effects via the parameter-free damping functions of Tang
and Toennies, generalized to the case of an anisotropic potential, and we have introduced two
scaling constants in the short range repulsion in order to obtain a second virial coefficient that lies
within the experimental error in the entire temperature range. The use of the new potential in

lattice dynamics calculations yields good results for several properties of solid nitrogen.

I. INTRODUCTION

Although the knowledge of intermolecular potentials is
crucial for understanding the properties of molecular mat-
ter, it is practically impossible to obtain this knowledge in
sufficient detail from the measured properties alone. The
reason for this difficulty is that the potential does not only
depend on the distance between the molecules, as in the case
of (rare gas) atoms, but also on their orientations in a rather
intricate way. More specifically, the different long range
(multipole, induced-multipole, and London dispersion) in-
teractions, and short range (charge penetration and ex-
change) effects, which determine the potential surface in the
physically important region of the van der Waals minimum,
exhibit a qualitatively different orientational dependence.
Therefore, it is very useful that detailed quantitative infor-
mation about these interactions can presently be obtained, at
least for small molecules, from ab initio quantum chemical
calculations.

A few years ago, the complete angularly dependent in-
termolecular potential for nitrogen has been obtained from
such calculations by Berns and van der Avoird.! Their po-
tential, which was represented in two analytic forms, (a site—
site model and an expansion in spherical harmonics), has
subsequently been used in the evaluation of several bulk
properties: the second virial coefficient,>™ rotational relaxa-
tion rate, Rayleigh linewidth, viscosity, self-diffusion coeffi-
cient and thermal conductivity,’ various liquid state proper-
ties via perturbation theory and molecular dynamics
simulations®’ and the lattice constants, sublimation energy,
phase transition pressures, and temperatures>*'° and
phonon dispersion relations®*! of solid nitrogen. Several of
these properties are satisfactorily given by the Berns—van der
Avoird (BvdA) potential.>*!! In particular, the phonon
frequencies in the various phases of solid nitrogen, which are
generally believed to depend very sensitively on the distance
and angular dependence of the potential, are very accurately
described, provided that one employs a lattice dynamics
scheme which correctly deals with the strongly anharmonic
large amplitude motions of the molecules.®*'® From other
properties it appeared, however, that the ab initio potential
could still be improved significantly (with respect to the ex-
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perimental errors in these properties) by introducing se-
miempirical scaling* and damping® functions with param-
eters fitted to the measured data.

Also from the computational point of view, we think
that the BvdA potential is now amenable to improvement.
The long range interaction coefficients of Mulder et al.!?
which were incorporated in the BvdA potential, have been
recalculated by Visser ez al.!? using a better theoretical pro-
cedure (the time-dependent coupled Hartree-Fock method,
whereas Mulder et al. have used the uncoupled Hartree—
Fock method with virtual orbitals obtained from the Ve
potential). Visser’s result for the isotropic coefficient C4 in
theexpansion — =, C, R ~"for the dispersion energy agrees
much better with the accurate semiempirical value for this
coefficient’® than Mulder’s result; also the higher coeffi-
cients Cg and C,, and especially their anistropy, i.e., their
angular dependence, are rather different. With present day
computer facilities, one can also improve the ab initio calcu-
lations of Berns and van der Avoird® which have produced
the short range terms in their potential. One can use a better
basis set for the N, monomer wave functions and calculate
many more points on the potential surface in order to con-
struct abettera  stic representation. {The best analytic fit
in Ref. 1 still had a mean deviation of 7% from the ab initio
values for the exchange repulsion, which led to significant
errors in the van der Waals well depth for specific orienta-
tions.) Such improved calculations are described in Sec. II of
the present paper. We have constructed a new N,—N, poten-
tial by combining the short range results with the long range
interactions of Visser et al.,"* while using the damping func-
tions of Tang and Toennies,'* generalized to the molecular
case, in order to correct the dispersion interactions for
charge penetration and exchange effects. In Sec. III this po-
tential is gauged by a calculation of the second virial coeffi-
cient and several solid state properties. In Sec. IV we sum-
marize our findings.

Il. CALCULATION OF THE POTENTIAL

The intermolecular potential between two (rigid) linear
molecules can be expanded as follows:
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V(R, #s, Pg) = (4m)>/2 ; IR, o (R, e, )
L,, , L
(1)

with the complete orthogonal set of angular functions given
by

Y R (LA Ly L )
LAJ-B,L( ’rA’rB)—MA,A{ZB,M MA MB M

XY, o) Y aayPe) YR ) (2)
The vector R = (R, R ) = (R, 6, ®) points from the center
of mass of molecule A to that of molecule B, the unit vectors
Fo = (B4, ¢4 ) and Py = (65, ¢p ) describe the orientations
of the respective molecular axes. All these vectors are ex-
pressed relative to an arbitrary (space fixed) coordinate sys-
tem. The functions ¥,,, (?) are spherical harmonics and the
symbol in large brackets is a 3-j coefficient. Since the angular
basis is constructed such that it is invariant with respect to
rotations of the space fixed coordinate frame, one may use,
when calculating the potential, a special frame with
= (0, 0) and #y = (@5, 0) and vary only the “internal”
angles (84,05, da) of the AB dimer. The expansion coeffi-
cients can then be written as

vLA,LB,L ( R )
2

= 7'/? d(cos 8,)
C

d(cos 8y) dd,

05 =0 6s =0
XA, 1,1(Bas 0, 64 )V(R, 64,0, 64). 3

As proposed already in Ref. 1, the actual calculation of these
coefficients can be performed by calculating, for a given val-
ue of R, the potential (R, 8,, 05, ¢, ) in a grid of points
(8,4, B3, #4 ) such that the integrations in Eq. (3) can be
carried out by numerical quadrature. The symmetry of the
N,-N, dimer, which leads to the relation v™***“(R)
=™ “F(R) with coefficients that are nonzero only for
evenL ,, Ly, and L, allows a considerable reduction of the
number of (8., 65, #. ) quadrature points for which the
potential has to be calculated. If this procedure is repeated
for several values of R, the expansion coefficients

v*# =L (R) can be fitted by analytical functions.

TABLE 1. Long range interaction coefficients.

van der Avoird, Wormer, and Jansen: intermolecular potential for nitrogen

There are several advantages in using this expansion. It
yields an analytic expression for the potential which shows
explicitly its dependence on the molecular orientations, with
respect to a general coordinate frame. In contrast with site—
site models, this expression is in principle an exact represen-
tation of the potential surface. In practice, one can represent
the potential to any accuracy by truncating the summation
(1) at values of L ,, L 5 and L which are sufficiently large.
Of course, the number of quadrature points required to carry
out the integrations in Eq. (3) accurately, is related to these
values. Finally, we note that the expansion (1) for the poten-
tial is convenient in scattering calculations and calculations
of the second virial coefficient, in calculations of the bound
states of N,-N, dimers'®!” and in lattice dynamics calcula-
tions which include large amplitude motions of the mole-
cules ®*0

The different interactions that contribute to the N,~N,
potential can be distinguished by the distance dependence of
the corresponding terms in the expansion coefficients

yiate LRy, By definition, the long range terms vary as
R~ ", while the short range effects decay exponentially with
increasing R. The important long range interactions are the
electrostatic multipole-multipole interactions, which for
linear molecules in a 3 state are given by'®

Vit R) =8y, sy 1 O R T (@
with
Ccinle— (1) (Lo + 2Lg)! ]1/2Q 0
(2L, + 2L, + 1)! LAY Ly
(5)

in terms of the molecular muitipole moments Q,, and O,
(starting with the quadrupoles L , =2, Ly =2), and the
London dispersion interactions

La Ly L
Uginp

R)=- Y cfA'LB'LR— (6)

n==6,8,.
The dispersion coefficients C - >~ have been calculated by
Visser et al.’® by means of the time-dependent coupled Har-
tree—Fock method. Via an angular momentum recoupling
scheme proposed earlier'>?® the dispersion interactions

Electrostatic® Dispersion
Eq.(4) Eq. (12)
C'-m Ly C:Av Ly L CSLA- Ly L CIL;' Ly L

La+latl)

L,,Ly, L (k3mol~"nm (k¥ mol~! nm®)

(k) mol~! nm®)

(kJ mol~! nm'9)

0,0, 0 4.119x1073 3.795x10™¢ 3.491x107°
2,0, 2 2.165%x10~* 9.780%x 107* 1.380x 1073
2,2, 0 5.454x107° 1.45810™¢ 3.150%x 1077
2,2, 2 e 6.518%107¢ —2.179%107¢ — 8,662 1077
2,2, 4 1.624 1073 5.247x107° 1.133x10°% 5.778x10°¢
4,2, 6 6.771x107°
4,4, 8 5.411%x107¢
62 8 8.024x1077
6, 4,10 1.046 1077
6,6,12 2.996x107°
* Molecular multipole moments: @, = — 0.944¢ a2, O, = — 7.089¢ a}, Qs = - 18.806e af.
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could be directly calculated in the form of the spherical ex-
pansion (1). The multipole induced—multipole interactions
appear to be negligible with respect to the dispersion interac-
tions.'>!3 All the relevant long range coefficients are collect-
ed in Table I.

The most important short range interactions are the ef-
fects of charge penetration and exchange on the first order
multipole-multipole interactions and on the second order
dispersion interactions. Meath, Allnatt e al.?"-?2 have calcu-
lated the charge penetration effects on the first order multi-

pole interactions and they have proposed an empirical scal--

ing relation which yields the exchange interactions. The first
order charge penetration and exchange effects are both con-
tained in the following expression:

por _ CAUSURIH [AyyR)
AURIAYS)

~ (WS |H* |95) — (Yo|H®¥5), (7)

where H, H* , and H® are the Hamiltonians of the dimer and
of monomers A and B, respectively, ¢ and ¥¢ are the mon-
omer ground state wave functions and 4 is the intermolecu-
lar antisymmetrizer. We have calculated this quantity, with
monomer bond lengths? fixed at r, = ry = 2.0744 g, us-
ing Hartree-Fock wave functions ¥4 and ¢§ obtained in a
(11s, 6p, 2d) Gaussian-type orbital basis, contracted to
[ 6s, 4p, 2d]. This basis is smaller than the basis used in the
calculations!® of the dispersion coefficients. We believe,
however, that it is sufficiently large, since it only needs to
describe the ground states 2 and ¥ accurately, whereas the
dispersion coefficients involve the complete (effective)
monomer spectrum. The sensitivity of the exchange repul-
sion with respect to basis set extension has been tested in a
similar study on the O,~O, potential.>* The calculations
were made in a 10X 10 points Gauss—Legendre grid for 8 ,
and &g and a 10 points Gauss—Chebyshev grid for ¢, , in
order to obtain the spherical expansion coefficients by nu-
merical integration, see Eq. (3), with the appropriate
weights.?® Using the full symmetry we needed only 75 angu-
lar points, however, which was sufficient to obtain the coeffi-
cients through L , = Lz = 8 and L = 14. If all these coeffi-
cients were included, the spherical expansion would have
converged to 0.01% root mean square deviation (rmsd)
from the ab initio results. By truncating the expansion as in
Table IT we keep the rmsd less than 0.5%. Each point took
25 to 30 min of CPU time on the NAS 9040 university com-
puter at Nijmegen, using the ATMOL program package.?®
Wehave carried out this procedure for R = 5.5, 6.5, and
7.5 a,. The total first order interaction given by Eq. (7) com-
prises the long range multipole-multipole interactions.
Since these interactions are known already from Eqs. (4)
and (5) and they vary with the distance as R >, R ~7, etc.,
we found it convenient to subtract them from the total first
order interaction. The remaining part is due to the overlap
between the molecular charge clouds, which leads to electro-
static interactions deviating from the multipole expansion
and to exchange effects, both depending exponentially on R.
Thus, we can easily represent this part, for all values of L ,,

TABLE II. Short range interaction parameters* occurring in Egs. (8), (13),
and (14).

FLA. Lg L aLA,LB,L B L, Lg L
LA’LayL (kJ mOI_l) (nm_l) (nm—Z)
0,0, 0 4.263 86 10° 26.4733 12.9778
2,0, 2 1.975 71X 10° 25.7967 13.8556
2,2, 0 2.807 20X 10° 15.1933 25.4000
2,2, 2 —1.038 25 10° 19.2333 21.1333
2,2, 4 1.840 21 x 10° 28.1500 11.8556
4,0, 4 4.242 74 10* 27.2733 11.3444
4,2, 2 2.47313x 10! 2.7533 38.9556
4,2, 4 —1.10124x10° 17.6700 22.3000
4,2, 6 1.001 49 10° 32.5267 6.7000
4,4, 0 2.808 1210~ — 60.3767 116.0667
4,4, 2 —1.708 781077 — 78.0400 140.6444
4,4, 4 1.547 77X 107! — 11.4900 56.1667
4,4, 6 — 1.614 99 10? 16.2467 24.3444
4,4, 8 1.559 78 x 10° 40.1500 —1.3333
6,0, 6 1.979 22 x 10* 36.2700 - 0.2556
6,2, 4 7.70923x 107! 1.2700 38.8222
6,2 6 —4.832 77X 107 26.9800 10.0000
6,2 8 1.138 52 10° 44.0067 —7.0333
6,4, 10 4.784 23X 10° 54.5467 —17.5778
6,6,12 3.972 50x 10° 71.7233 —~ 35,7889

*The ab initio values in this table have to be scaled by Eq. (17) with X = 1.50
and Z = 1.0509. For R > 144, the terms with negative 8 should be set to
zero.

L g, and L by the following form:

Vorinmy (R)=F """ exp (—a™">"R — g™ "*R?)
®)

With the parameters F ™ Il gt L and B4t given
in Table I1, this completes the analytic representation of the
first order interaction potential. The error in this representa-
tion is less than 0.5%, for arbitrary molecular orientations,
within the distance range 5.5 ¢,<R<7.5 a, and somewhat
greater for smaller and larger values of R (cf. similar studies
on the 0,~0, dimer).?* Fitting the results for the three dis-
tances by simple exponential functions with two parameters
instead of three would have led to a substantially greater loss
of accuracy.

The effects of charge penetration and exchange on the
second order dispersion and induction interactions are con-
siderably smaller than the first order overlap effects, and it is
much harder to obtain them from ab initio calculations. In
the present study we follow the common practice of includ-
ing these effects by introduction of a damping function.
Among the various types of damping functions available (see
Refs. 15 and 27, and references therein), we have chosen the
form proposed by Tang and Toennies,’® mainly because
these authors have chosen the damping proportional to the
first order overlap effects (penetration plus exchange) and
have not introduced any additional fitting parameters. For
the isotropic interactions between atoms, where the first or-
der overlap repulsion can be fitted to the form 4 exp( — aR ),
Tang and Toennies damp the individual terms in the disper-
sion series — 2, C,R ~" as follows:

VasR)= — > fL(R)C,R ~" ©

J. Chem. Phys., Vol. 84, No. 3, 1 February 1986
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by means of damping functions:

fiR)=1- LZ R expt —ar) (10)
which behave as
A if R—o, (an

£ (R)=0+OR"+1) if R—0.

The latter condition can be easily verified by noting that the
expression between square brackets in Eq. (10) is the trun-
cated Taylor expansion of exp(aR).

We must generalize this idea in two ways. First, we are
dealing with the anisotropic interactions between molecules
which depend not only on the distance R but also on the
molecular orientations. We have chosen to damp each
(L o» Lg,L)term in the dispersion interaction, Eq. (6), de-
pending on the parameters @™ “® “ and 8 “~ *** that deter-
mine the range of the corresponding term in the first order
overlap repulsion, see Eq. (8). Thus, the effect of damping on
Eq. (6) is given by

v H(R) =

- 3 fAHRICTYEIR
n==a6,8,..
(12)

Secondly, the form of our damping functions must be slight-

ly more complicated than Eq. (10), because our form of the
first order overlap repulsion, Eq. {(8), contains a quadratic
exponent. We write

TR =1~ [ > afe iR ]
k=0

Xexp( —a* IR — gttt R2) (13)

with
k a2i —- kB k—i

“= 2, @D
The latter expression, where we have omitted the labels
L ., Ly, L for typographical reasons, has been chosen such
that our damping functions satisfy the same relations (11) as
those of Tang and Toennies.

Summarizing, we can now write the full N,-N, poten-
tial as the expansion (1) with the coefficients

VAP ER ) = vgh PP HR ) + vgna R ) + vgh " MR,
(15)

where the individual contributions are given by Egs. (4) and
{5), (8), and (12}—(14), respectively, with the numerical values
of the parameters in Tables I and II. We reiterate that the
effects of charge penetration and exchange on the first, elec-
trostatic, term are contained in the second, overlap, term,
while such effects on the dispersion interactions are included
in the third term directly, via the damping functions in Egs.
(12)-{(14).

(14)

Itl. BULK PROPERTIES
A. Second virial coefficient

Using the potential presented in the previous section we
have calculated the second virial coeflicient B (T') over the
wide temperature range 75 K< 7T<700 K in which it has been

measured.?® Since our potential has the form of a spherical
expansion (1), we can directly use the formulas for two lin-
ear molecules presented by Pack,?® including the first quan-
tum corrections due to the relative translational (R) and
rotational (4) motions, including the coriolis term in the

latter:
B(T)=B.(T)+BR(T)+BY(T). (16)

The derivatives required in the quantum corrections have
been calculated analytically. The integrations over the four-
dimensional configuration space have been made by using
the same type of quadrature as described in Sec. II for the
angles 6,, 6, and ¢, with 12X 12X 12 points and a 90
points trapezoidal rule for the distance R in the range from
4.4 to 45a, In the inner region, R <4.4a, the function
exp( — V /kT) being effectively zero yields a constant contri-
bution to the classical term and zero to the quantum correc-
tions; in the outer region, R > 45a,, all contributions were
assumed to be negligible. We have checked that the result for
B (T)is sufficiently stable against changes in the integration
parameters and in the region boundaries.

In agreement with previous calculations,”™ which have
used the BvdA potential’ and some modifications of it, we
find that the contributions from the anisotropic terms in the
potential are very important. The quantum corrections are
only significant at lower temperatures, where they have
about the same size as the experimental uncertainty. The
Coriolis term is always small. Our new potential as it
emerges directly from the ab initio calculations described in
Sec. Il yields a virial coefficient B (T") that is considerably too
high over the entire temperature range. Apparently the van
der Waals well is too shallow. This holds even when we com-
pletely refrain from damping the dispersion attractions. In
principle, this discrepancy can be explained by the disper-
sion attraction being too weak or by the overlap repulsion
being too strong. (A change of the quadrupole moment by
any reasonable amount made very little difference to the sec-
ond virial coefficient.) We believe, however, that the long
range dispersion efficients Cq, Cy, and C,, are fairly accurate,
since the ab initio value for C, agrees well with the accurate
semiempirical value'* and since the dispersion attraction as a
whole is stronger already than it is in the BvdA potential. We
think, therefore, that the exchange repulsion is too strong by
about 20%, which actually amounts to a shift in the “repul-
sive wall” of about 0.1a, only. There may be two reasons for
our overestimate of the exchange repulsion.

(i) Formula (7), used to evaluate the exchange repul-
sion, does not take into account the so-called exchange-in-
duction effects, which may reduce the exchange repulsion by
an outward polarization of the molecular charge clouds. We
have estimated this effect by performing converged self-con-
sistent field calculations on the N,-N, dimer. The resulting
energy lowering was largely due to the basis set superposi-
tion error,'® however, and the net effect was considerably too
small to explain the observed discrepancy. (For instance, for
the structure with 8, = 0y =90°, 0, =0°and R = 4 A the
energy lowering amounts to 6% of the exchange repulsion,
4% of which is due to the basis set superposition error.)

(ii) By the use of Hartree-fock wave functions ¥4 and
¥8 in formula (7) we have neglected the effect of the intra-
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TABLE III. Second virial coefficient* (in cm® mol~").

T(K) Bo BY B, B B B
75 —280.2 4.70 2.58 0.12 —272.8 -275 +8
80 —247.0 3.82 2.09 0.10 —241.0 —243 +7
90 —196.8 2.68 1.44 0.07 —192.7 —197 +5
100 —161.0 1.98 1.05 0.05 — 1579 —160 +3
110 —134.1 1.53 0.80 0.04 —131.7 —132 2
125 — 1044 1.11 0.57 0.03 —102.7 —104 +2
150 - 71.77 0.72 0.36 0.02 — 70.68 —-715+2
200 —35.79 0.39 0.19 0.009 —35.20 —35241
250 — 16.58 0.25 0.12 0.006 —16.20 —162+1
300 —4.75 0.18 0.08 0.004 —4.48 —42405
400 8.86 0.11 0.05 0.003 9.02 9.0+ 0.5
500 16.30 0.08 0.04 0.002 16.41 16.9 £ 0.5
600 20.87 0.06 0.03 0.001 20.96 213405
700 23.90 0.05 0.02 0.001 23.97 2404 0.5
* Calculated values with the potential parameters from Tables I and II.
TABLE IV. Properties of a-nitrogen (T=0K, p =0).
Experiment Calculated
Refs. 28-33 BvdA potential Present potential
Lattice
constant a 5.644 5.644" 5.699° 5.644° 5.614°
(A)
Cohesion )
energy 6.9 5.89 5.92 6.86 6.87
(kJ/mol)
Compressibility
Xr(lo— 10 N—l mZ) 4.6 5.07 4.69
Phonon
frequencies
(em™)
T'(0,0,0)
E, 323 32.8 31.0 32.6 33.8
Librations T, 36.3 434 41.0 37.7 389
T, 59.7 71.5 68.0 57.4 59.1
A, 46.8 50.6 47.2 49.0 51.0
Transl. T, 484 52.7 48.8 51.8 54.1
vibrations E, 54.0 60.2 55.6 56.8 59.4
T, 69.4 79.4 731 76.0 79.7
M ( T )
a a
M,, 27.8 28.8 27.6 27.3 28.0
M, 37.9 415 39.1 39.4 40.7
Mixed M, 46.8 53.3 50.2 46.9 48.7
12 54.9 63.7 59.1 58.1 60.7
12 62.5 720 66.5 66.3 69.6
R (1 T )
a a a
R 339 370 344 359 374
T:“‘s‘ R 4.7 384 35.8 36.9 8.4
vibrations R; 68.6 78.4 72.3 753 79.1
Librat R} 43.6 50.7 479 430 4.5
ibrations R% 472 53.6 50.8 4.5 459
rmsd transl. 6.5 2.1 4.2 6.8
rmsd libr. 7.5 5.0 1.7 1.5
rmsd all 6.7 34 3.1 5.0
*Fixed at experimental value.

®Calculated by minimization of the free energy.
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molecular electron correlation on the intermolecular ex-
change repulsion. Very recent calculations by Béhm and
Ahlrichs®® have shown that this effect may substantially
lower the repulsive part of the potential. It was not possible
to extract this part explicitly from their results, however,
because their “supermolecule” approach does not permit a
quantitative separation of the intramolecular correlation ef-
fects from the intermolecular correlation, which yields the
dispersion attraction. Neither could we subtract the results
of Visser et al.'® for the dispersion attraction, because the
attraction that is implicitly included in the results of B6hm et
al.*® is substantially underestimated, as is evident from their
van der Waals well being too shallow. Moreover, these auth-
ors have only considered a few specific orientations of the N,
molecules in their ab initio calculations. Therefore, we have
presently improved our N,—N, potential by introducing two
empirical scaling parameters which change the size and the
slope of the repulsive overlap term (8) and, via the relations
(13) and (14), also the slope of the damping functions. We
write

Fiatel _ ypiakel

ab initio
LaLpL LasLpL
a Zaab initio (17)
Lalpl __ 72pLas Lg.L
ﬂ ﬂ ab initio

adopting the same scaling constants X and Z for the isotropic
L, =Ly =L =0term and all anisotropic L, ,Lg,L terms
in the potential. The condition that the second virial coeffi-
cient should lie well within the experimental error bars over
the entire temperature range, see Table III, appeared to be
sufficient to determine both these scaling parameters. The
resulting values are X = 1.50 and Z = 1.0509. A scaling fac-
tor of 1.5 may seem large, but one must realize that a small
change in the exponent of the exchange repulsion causes a
large change in the preexponential factor.

TABLE V. Properties of y-nitrogen (T'= 0 K, p = 4 kbar).

van der Avoird, Wormer, and Jansen: Intermolecular potential for nitrogen

B. Solid state properties

In the condensed phases three- and more-body interac-
tions between the molecules may be nonnegligible, but such
interactions between neutral nondipolar molecules are rela-
tively weak. Probably they contribute less than 10% to the
cohesion energy. All practical lattice dynamics calculations
are based on (sometimes effective) pair potentials. The pair
potential for nitrogen which we have obtained in the preced-
ing sections has been employed to calculate several proper-
ties of solid nitrogen. We have concentrated on the ordered a
and y phases since most experimental data pertain to these
phases. In the computation of the solid state properties from
the pair potential we have used the recently developed lattice
dynamics method of Briels ef al.'® which is appropriate for
harmonic as well as strongly anharmonic large amplitude
motions of the molecules. The lattice free energy, which at
T =0 equals the sublimation energy, has been calculated
under inclusion of the lattice vibrations at the mean field
level. The lattice constants have been obtained by minimiz-
ing the free energy, at a given pressure and temperature. For
calculations at nonzero pressure this was done as described
in Ref. 10. From these results we have also calculated the
isothermal compressibility:

_ ___(81))
Xr= ap

where v is the molar volume. We have also checked whether
the new potential correctly predicts the a—y phase transition
taking place at p = 4 kbar, for 7= 0. This transition de-
pends on a very subtle balance between the attractive and
repulsive forces at different relative orientations of the N,
molecules and none of the available, mostly empirical, po-
tentials has given any transition at all. With the present po-
tential we correctly find the a phase to be slightly more sta-

(18)

Experiment Calculated
Refs. 28-33 BvdA potential Present potential
Lattice a 3.957 3.957* 3.961° 3.957* 4.010°
constants c 5.109 5.109 5.104° 5.109* 5.160°
(&)
Cohesion
energy 5.30 6.39 6.64
(kJ/mol)
Phonon
frequencies
fem~Y)
T'(0, 0, 0)
55.0 67.5 67.6 55.3 51.0
Librations B, 98.1 104.2 103.3 95.0 86.4
2 .o 125.1 1244 107.7 98.6
Transl. E, 65.0 65.0 65.2 67.8 62.5
vibrations B, e 115.8 114.9 111.9 101.6
rmsd 8.0 79 24 7.3
*Fixed at experimental values.

®Calculated at p = 4 kbar.
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ble than the y phase at zero pressure, but, if we increase the
pressure, the free energy curves of both phases run nearly
parallel and we do not find a crossing at any reasonable pres-
sure. The phonon frequencies for @ and ¥ nitrogen have been
calculated by means of the time-dependent Hartree or ran-
dom phase approximation, described in Refs. 8-10.

From the results, which are collected in Tables IV and
V, we can draw the following conclusions. The lattice con-
stants are close to the experimental ones®' with the  phase,
at p = 0, being slightly too dense and the y phase, at p = 4
kbar, being somewhat too open. The lattice cohesion energy,
or sublimation energy,>? at T=0 K is reproduced much
better by the new potential than by the BvdA potential. The
agreement is actually better than it could be expected since
we have neglected the three-body interactions. Also the iso-
thermal compressibility of a nitrogen at p =0and T=01is
in very good agreement with experiment,** much better than
the value (3.39X107'° N~'m?) calculated by Ling and
Rigby.*> The phonon frequencies calculated at the experi-
mental structure are even closer to the infrared,>* Raman,*’
and neutron scattering®® data than the frequencies obtained
from the BvdA potential which were already very good.
Especially the results for the pure librational modes are re-
markably good, which indicates that the anisotropy of the
new potential is of high quality. The agreement with experi-
ment becomes slightly worse, especially for the translational
phonons, when we relax the lattice structure to its theoreti-
cal optimum. The frequencies in the a phase become gener-
ally too high, those in the ¥ phase too low. This is in line with
the results for the lattice constants. The observation that the
lattice constants are too small for the zero pressure a phase
and too large for the ¥ phase at p = 4 kbar might indicate
that the repulsive part of the potential is slightly too steep,
for those orientations of the molecules which occur in the
closely packed a and y phases.

IV. CONCLUSION

In Secs. IT and III we have constructed a new intermole-
cular potential for nitrogen, which is based on new ab initio
calculations for the short range overlap terms and on the
recent ab initio results of Visser et al.'® for the long range
dispersion attractions, corrected for overlap effects via the
damping functions of Tang and Toennies.'> Although our
calculations and those of Visser et al. are intrinsically better
than those of Berns and van der Avoird’ and those of Mulder
et al.'* which have been used to construct the BvdA poten-
tial, the new potential which emerges directly from the ab
initio calculations yields results of lesser quality for several
experimental quantities. Among the various possibilities
which might explain this discrepancy, we think that the
overestimate of the short range exchange repulsion by the
neglect of intramolecular correlation effects is the main rea-
son. (By using a slightly smaller basis, but mainly by a more
approximate analytic representation of the short range inter-
actions Berns and van der Avoird fortuitously obtained a
weaker repulsion.) We have corrected the short range part
of the potential for this discrepancy by introducing two scal-

ing parameters which, when optimized, yield a very good
result for the second virial coefficient of nitrogen over a wide
temperature range. The new, scaled potential has been tested
by calculating several properties of solid nitrogen. We con-
clude that it is superior to the earlier potentials especially in
reproducing the sublimation energy and the isothermal com-
pressibility and in its orientational dependence, as manifest-
ed by the librational phonon frequencies. Further theoretical
studies directed to the explicit evaluation of the role of intra-
molecular correlation effects both on the long range disper-
sion attraction®”® and on the short range repulsion are in
progress.
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