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An improved K-Nearest-Neighbor indoor

localization method based on Spearman distance
Yaqin Xie, Yan Wang, Member, IEEE, Arumugam Nallanathan, Senior Member, IEEE, and Lina Wang

Abstract—Indoor localization based on existing Wi-Fi
Received Signal Strength Indicator (RSSI) is attractive
since it can reuse the existing Wi-Fi infrastructure. How-
ever, it suffers from dramatic performance degradation
due to multipath signal attenuation and environmental
changes. To improve the localization accuracy under the
above-mentioned circumstances, an improved Spearman-
distance-based K-Nearest-Neighbor (KNN) scheme is pro-
posed. Simulation results demonstrate that our improved
method outperforms the original KNN method under the
indoor environment with severe multipath fading and
temporal dynamics.

I. INTRODUCTION

The proliferation of wireless communication and mobile
computing has driven the demand of location-based services
(LBSs). For outdoor open environment, the Global Naviga-
tion Satellite Systems (GNSS), such as Global Positioning
System (GPS), GLONASS, BeiDou Navigation System and
Galileo Positioning system can provide high location accuracy.
However, the GNSS signals from satellites cannot be always
hearable in many indoor areas, which limits their applications.
In recent decade, Wi-Fi infrastructures are widely deployed
in many indoor environments such as airports, supermarkets
and shopping malls etc. Furthermore, most of the current
off-the-shelf smart equipments, such as smartphones, laptops
and Ipad are integrated with Wi-Fi modules which makes it
possible for location based on Wi-Fi signal strengths in indoor
environment.

However, performing received signal strength (RSS) based
indoor localization is particularly challenging due to the fol-
lowing three reasons: Firstly, it is difficult to obtain an accurate
received signal strength indicator (RSSI) values. According
to the measurement in [1], the variance of RSSIs collected
from an immobile receiver in one minute is up to 5dB.
Secondly, RSSI is easily varied by the multipath and NLOS
effect which is unavoidable in an indoor environment where a
ceiling, a floor, furniture, walls and the movement of people are
present. Thirdly, manufacturing variations among different Wi-
Fi devices might also affect the RSSI measurement accuracy.
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Therefore, different Wi-Fi devices might yield different RSSI
values at the same location, especially for those equipments
made by different manufacturers. However, as RSSI finger-
prints can be easily obtained from most off-the-shelf wireless
network infrastructures, it is also an attractive approach for
location determinations.

The current RSS-based localization methods can be divided
into ranged-based localization methods and RSS fingerprint
location techniques. The former converts the RSSI values to
distances according to the propagation loss model[2–3] before
performing localization by lateration methods. The latter can
usually be divided into two phases: training and locating.
Although the procedure of training is time-consuming, labor-
intensive, and vulnerable to environmental dynamics, it is
inevitable for fingerprinting-based approaches. With the devel-
opment of Google maps, indoor google maps can provide more
and more indoor localization. Until July 2015, over 10,000
locations around the world are available.

In fact, the absolute RSSI values are unstable and quite
different when measured by different Wi-Fi terminals. To
mitigate these effects, the relative RSSI values, i.e. their
rankings, are used to replace the absolute ones for location
determinations[4–9]. This means that, even if the absolute
RSSI values of a set of Access Points (APs) in the covering
area might be quite different when measured by different Wi-
Fi measurement devices or over different time, their ranking
is more likely to remain the same or, at least, more similar.
This is based on the assumption that the RSSI values mono-
tonically decrease when the distance between the source and
APs increases[10]. To evaluate the similarity among different
rankings of the same set of APs, the Spearman rank correlation
coefficient[11] is utilized which is a nonparametric measure of
statistical dependence between two variables. This Spearman’s
coefficient assesses how well the relationship between two
variables can be described using a monotonic function and
is appropriate for both continuous and discrete variables,
including ordinal variables. Based on this reason, we propose
to utilize the Spearman rank correlation coefficient to evaluate
the similarity among different rankings of the same set of
APs. For the purpose of comparison, RSS-based lateration
algorithm proposed in [12] and the K-nearest neighbor (KNN)
method[13] are also provided in this letter.

To evaluate the effectiveness of our spearman-distance-based
method, we use a partition attenuation factor propagation
model as in [12] to simulate the real indoor environments.

The rest of the letter is organized as follows. In Section II,
we first provide some related background before introducing
our proposed method. Simulation results and discussion are
presented in Section III. Finally, we conclude our work in
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Section IV.

II. ALGORITHMIC DESCRIPTION

A. Background

There are two phases in RSSI fingerprint location ap-
proaches: the off line training phase and the runtime localiza-
tion procedure. During the off line training phase, various RSSI
values are collected at predefined points within the coverage
area. The collected RSS characteristics are location dependent
and stored in the correlation databases (CDBs). Obviously,
the more parameters per signal observed, the more unique the
fingerprint and thus the better the location accuracy.

An RSSI fingerprint can also be classified as either a target
or reference fingerprint. Undoubtedly, a target RSSI fingerprint
is associated with the object node that is to be localized, that
is, it contains signal parameters measured by the object node
or by the associated APs. The reference RSSI fingerprints are
values collected during the training phase and stored in the
CDB. The target fingerprint T used in the remainder of this
letter is written by a Nt × 2 matrix:

T =







ID1 RSSI1

...
...

IDNt
RSSINt






, (1)

where Nt is the number of APs within the range of the object
to be localized. IDi and RSSIi are the identity and the
measured RSSI from the ith AP, respectively.

The reference fingerprint R at pixel (i, j) can be expressed
as

Ri,j =







IDi,j,1 RSSIi,j,1

...
...

IDi,j,Ni,j
RSSIi,j,Ni,j






, (2)

where Ni,j is the number of APs whose predicted RSSI values
are above the minimum threshold at pixel (i, j). The rows
of Ri,j are classified in descending order of RSSI, that is,
RSSIi,j,k > RSSIi,j,k′ , if k <= k′.

B. Spearman Rank Correlation Coefficient

The Spearman rank correlation coefficient[14] is used to
calculate the correlation between the target fingerprint T and
the reference fingerprint Ri,j. However, the target fingerprints
might not have the same number of APs nor the same APs.
Therefore, some modification is needed before computing the
Spearman correlation coefficient.

On this basis, two Nt×2 matrices, VT and VR, are generated,
which are initialized to be

VT = VR =







ID1

...
IDNt

Nt

...
Nt






(3)

The position of APs in the RSSI ranking of T must be
inserted in the second column of the correspondent row in
VT, that is to say

VT(nk, 2) = k, (4)

���������	�
�	

 ������	

���������!	��������

�������	�
�		������	

���������

���������	�
�	��������	

�������

������	�
�	�������	��
	

�����	��������	�������

���

���

�����

�������	����

��������

�������	�  	�������


 �

Fig. 1. Flow chart of localization.

where VT(nk, 1) = T(k, 1), nk ∈ [1, Nt] and k =
1, 2, . . . , Nt.

Similarly, VR can be renewed to be

VR(nk, 2) = k, (5)

where VR(nk, 1) = Ri,j(k, 1), nk ∈ [1, Nt] and k =
1, 2, . . . , Ni,j .

The Spearman rank correlation coefficient between the target
fingerprint and the reference fingerprint at pixel (i, j) can be
expressed as

ρi,j =

∑Nt

n=1

[(

VT (n, 2) − R̄T

) (

VR (n, 2) − R̄R

)]

√

∑Nt

n=1

[

(

VT (n, 2) − R̄T

)2(
VR (n, 2) − R̄R

)2
]

,

(6)
where

R̄T =
1

Nt

∑Nt

n=1
VT (n, 2),

R̄R =
1

Nt

∑Nt

n=1
VR (n, 2),

Subsequently, the Spearman distance di,j can be given as

di,j = 1 − ρi,j . (7)

C. Spearman-distance-based methods

By exploiting the Spearman rank correlation of RSSI mea-
surements from different APs, we proposed an improved
Spearman-distance-based KNN[15] location method. In our
proposed approach, the localization procedure includes the
following three steps: Firstly, the offline RSSI fingerprint
database is built; Secondly, collecting the position fingerprint
of the object; Thirdly, calculating the Spearman distance
according to Equation (7) and then select all the locations with
minimum Spearman Distance; Finally, execute the original
KNN approach according to all the locations with minimum
Spearman Distance and obtain the final location estimation.
The detailed flow chart is shown as in Fig. 1.
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III. SIMULATIONS AND DISCUSSIONS

A. Simulation Methodology

In our simulation, RSSI values are generated from the
predefined 400 locations which are shown in Fig. 2 by the
small blue circles. This area is a 10m by 10m square field
with all these predefined points evenly spaced in this field. The
position of the object to be localized is randomly generated
inside this coverage area. That is to say, the x and y label
of the objects to be localized are Nx × rand and Ny × rand,
respectively, where Nx and Ny represent the maximize value
in axis x and y of the simulated area which are both equal to
10m in our simulation and “rand” is the Matlab function. Four
APs at the four corners of the square area are deployed as
shown in Fig. 2. In order to simulate the indoor environments,
the whole coverage area is divided into nine districts which
represent nine different rooms, which are separated by concrete
walls. The wireless signals from devices in different rooms
are decayed by various number of walls before reaching the
APs. To simulate the indoor signal propagation, a partition
attenuation factor (PAF)[2] is added into the shadow fading
propagation model. Therefore, the shadow fading propagation
model can be written as[6]

P (d) = P (d0) − 10γlog10

(

d

d0

)

− W × PAF + Xσ, (8)

where P (d) is the total path loss measured in decibel, P (d0)
is the path loss at the reference distance d0, γ is the path
loss exponent, PAF is used to denote a specific obstruction
such as walls in indoors. We use it here to simulate the
penetration loss when signals pass through the wall. W is the
number of walls between the object node and the APs. Xσ is a
normal random variable. For a better understanding, consider
the wireless device located in Room4 of Fig. 2, W is 1, 3, 3,
1, respectively, for AP1, AP2, AP3 and AP4.

Moveover, in order to simulate the indoor environment
accurately, it is important to take the correlation into account.
The spatial correlation of the shadow fading effect is obtained
as follows:

Firstly, a m × m covariance matrix K is generated which

satisfies Kij (dij) = σ2 exp
(

−
dij

Dc

)

, where Dc represents the
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TABLE I. DEFAULT PARAMETER SETS.

Parameters d0 P (d0) γ PAF Dc

Values 1m −37.3dBm 3.3 5dB 10m
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Fig. 3. Comparison of average location errors for different values of NP.

decorrelation distance which can range from several meters
to many tens of meters, dij is the distance between the ith

position and the jth one. Secondly, for the above obtained
covariance matrix K, execute cholesky factorization, we get
K = LL

T. Subsequently, generate a non-correlated normal
random variables ω = [ω1, . . . , ωm]T, then Xσ in Equation (8)
can be expressed as Xσ = Lω. That is to say, the correlation
of the shadow fading at location i and j is E [Xσ (i)Xσ (j)] =

Kij (dij) = σ2 exp
(

−dij

Dc

)

.

In this subsequent simulation, Non-line-of-sight (NLOS)
environment is assumed, and then the related parameter sets
are summarized as shown in Table I.

B. Impact of the number of the closest neighbor points

The effect of varying number of NP which means the
number of the closest neighbor points in the location space
can be examined by choosing different values from 2 to 5. The
average location errors (ALE) of the PR method, the KNN
method and the Proposed method are shown in Fig. 3. It is
obvious that the value of ALE for the PR method is a constant
because it is nothing to do with the value of NP. As shown
in Fig. 3, the curve corresponds to the KNN method shows
a steady decline in ALE before rising and reaches the lowest
point when NP equals to 4. For the proposed method, however,
there is a slow and steady decrease in ALE, ranging from 3.5m
to just below 3.2 m when NP increases from 2 to 5. Thus, for
fair comparison, we keep the value of NP at 4 in the following
subsections.

C. Impact of shadow fading

To see the impact of shadow fading factor, we set σ range
from 4dB to 8dB and repeat the same measurements for 1000
times. Figure 4 illustrates the ALE when the shadow fading
factor varies within the above given scope. For the purpose
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Fig. 4. Comparison of average location errors for different location methods.

of comparison, the original KNN method and the polynomial-
regression-based method (PR Method) [2] are also simulated.
Obviously, the positioning error significantly increases for the
original KNN method with the increase of shadow fading
factor. Such impressive results are natural since that a big
shadow fading forms more unreliable position fingerprint and
thus the influence of location error is increased to a certain
extent. The value of shadow fading, by contrast, doesn’t have
a significant influence on the another two methods. When
σ is small, the original KNN method and the PR method
show similar localization performance which are apparently
inferior to the proposed method. The effectiveness of our
proposed method improves significantly as the value of σ
increases which demonstrates the superiority of our method in
aweful indoor environments comparing with the another two
approaches.

D. Cumulative Error Distribution

Fig. 5–6 illustrate the cumulative distribution function(CDF)
of localization errors in the simulated indoor environment
when the shadow fading factor equals to 5dB and 7dB,
respectively. As can be seen from Fig. 5, the proposed scheme
achieves a localization error under 2.7m for 80% of the
testing samples, which is significantly smaller than those of
the original KNN method(4.5m) and the PR method(4.9m).
And when the shadow fading factor increases from 5dB to
7dB, the proposed scheme achieves a localization error under
4.6m for 80% of the testing samples, which is significantly
smaller than those of the original KNN method(8.2m) and the
PR method(5.8m).

On this basis, we can conclude that our approach exhibits a
preferable property in the indoor environment where the value
of RSSI is unstable and varied with time since the proposed
method takes the relative ranking of RSSIs into consideration
which is beneficial for improving the precision of location
fingerprint.

IV. CONCLUSIONS

A novel Spearman-distance-based indoor location system is
presented in this letter, which is based on the fingerprint of
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RSSI values obtained in advance from the APs. We collect
and proceed the RSSI values as ”fingerprints” to form the radio
map in the training procedure. The spearman rank correlation
coefficient is then calculated after obtaining the unknown
position fingerprint. Then we get the spearman distance based
on the spearman rank correlation coefficient and then com-
bine it with the original KNN approach. Experimental results
show that the proposed combination method achieves better
performance than the another two existing methods.
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