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ABSTRACT Kinematic model predictive control (MPC) is well known for its simplicity and computational

efficiency for path tracking of autonomous vehicles, however, it merely works well at low speed. In addition,

earlier studies have demonstrated that tracking accuracy is improved by the feedback of yaw rate, as it

improves the system transients. With this in mind, it is expected that the performance of path tracking can

be improved by a cascaded controller that utilizes kinematic MPC to determine desired yaw rate rather

than steering angle, and uses proportional-integral-derivative (PID) control to follow the reference yaw rate.

However, directly combining MPC with PID feedback control of yaw rate results in a controller with poor

tracking accuracy. The simulation results show that the cascaded MPC-PID controller has relatively stable

but larger error compared to classic kinematic and dynamic MPC. Based on the analysis of vehicle sideslip

angle, a novel path tracking control method is proposed, which is designed using a kinematic MPC to

handle the disturbances on road curvature, a PID feedback control of yaw rate to reject uncertainties and

modeling errors, and a vehicle sideslip angle compensator to correct the kinematic model prediction. The

proposed controller performances involving steady-state and transient response, robustness, and computing

efficiency were evaluated on Carsim/Matlab joint simulation environment. Furthermore, field experiments

were conducted to validate the robustness against sensor disturbances and time lag. The results demonstrate

that the developed vehicle sideslip compensator is sufficient to capture steer dynamics, and the developed

controller significantly improves the performance of path tracking and follows the desired path very well,

ranging from low speed to high speed even at the limits of handling.

INDEX TERMS Autonomous vehicles, path tracking, lateral control, model predictive control.

I. INTRODUCTION

In recent years, research on autonomous vehicles has

seen great achievement together with computer and sen-

sors technology advances. As one of major components

in autonomous vehicles, path tracking aims at following a

desired path or trajectory via controlling the vehicle in lateral

and longitudinal motion. In general, this reference path is

generated by path planning module. Due to the nonlinearity

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

of the vehicle dynamics, time lag, uncertainties, and road

curvature disturbances, ensuring tracking accuracy and vehi-

cle stability simultaneously is considered to be a great chal-

lenge [1], [2]. The ideal path tracking controller should take

into account future road information and be capable of reject-

ing disturbances and parameter uncertainties.

To date, extensive research on path tracking has

been carried out and usually involves in feedforward-

feedback or optimization control. Early tracking controllers

are mostly developed based on geometric vehicle model and

feedback control theory due to its simplicity and stability,
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namely, the deviation inputs of the feedback controller are

obtained by the geometrical relationship between vehicle

and road. For instance, in the studies [3]–[5], different

proportional-integral-derivative (PID) control architectures

are proposed to follow the given path. Pure pursuit method,

as a standard benchmark, has been widely used in several

DARPA Challenge vehicles [6]. These methods are simple

but merely work well in a narrow operating window, since

these controllers always calculate errors at one or several pre-

view points and are unable to capture complete steer dynam-

ics. To improve these methods, many adaptive approaches

that automatically tune look-ahead distance depending on

curvature and speed have been proposed [7]–[9].

More recently, with the advances of computer perfor-

mance, model predictive control (MPC) has been shown

to be an attractive control algorithm for path tracking

problem [9]–[12]. It has the advantage of handling the con-

straints on the state variables and control inputs and achieving

multi-objective optimization, such as driver comfort, time

consumption, tracking accuracy. For instance, Wang et al.

proposed an improved MPC controller based on fuzzy adap-

tive control to improve both tracking accuracy and ride com-

fort which can adjust the weights of cost function adaptively

based on lateral position error and heading error [13]. Aiming

at the tracking error representation, Sun et al. believed that

path tracking accuracy and vehicle stability can hardly be

accomplished by one fixed control frame in various condi-

tions. Then, the authors presented a novel MPC controller

with switched tracking error which mainly involves different

treatments regarding sideslip angle in computing the heading

deviation [14].

Inspired by more precise modeling, actuator dynamics is

incorporated to capture the transient response of the vehicle

into collision avoidance constraints [15]. Cai et al. presented

a MPC controller using a 4-DOF vehicle model to reflect

the characteristics of vehicle dynamics to avoid rollover

accidents of automobiles [16]. In addition, considering the

noise in the localization and planning stage, a model-based

linear quadratic gaussian control with adaptive Q-matrix was

proposed to tracking controller design [17]. Although MPC

method with prediction has the ability to forecast future

dynamic behaviors and significantly improves path tracking,

it requires solving optimization problem repeatedly at each

control step. This may lead to heavy computational burden

and potential risks in real-time implementation. Moreover,

many vehicle parameters play an important role in vehicle

dynamic, however, these parameters probably change over

time, such as vehicle mass and cornering stiffness [18].

Actually, it should be noted that it is very difficult to accu-

rately characterize the nonlinearities by existing several semi-

empirical tire model [19]. Therefore, pure MPC method

may be unsatisfactory in real applications when taking into

account computational efficiency and prediction accuracy at

the same time.

To reject the aforementioned uncertainties and distur-

bances, many classical control theories are also explored,

such as fuzzy control [20], sliding mode control [2]. These

types of classical control deal with worst–case disturbances,

which often lead to too conservative performance [21].

In addition, these feedback control methods rely on system

instantaneous states and usually are incapable of predict-

ing future behaviors. Consequently, this drawback results

in the lack of flexibility of road curvature disturbances.

Recently, due to advances in hardware, sensors and artificial

intelligence, large amounts of data can be collected. Data-

driven methods attract increasing attention in the field of

autonomous driving. For instance, NVIDIA trained a con-

volutional neural network to map raw pixels from a single

front-facing camera directly to steering commands, which is

well-known as end-to-end approach [22]. Nitin et al. inves-

tigated the path tracking of racecar via iterative learning

control in consideration of the nonlinear vehicle dynamics

and unmodelled road conditions during racing task [23].

Shida et al. proposed a data-driven method, model-free

adaptive control for the lateral motion of an autonomous

vehicle [24]. The major drawback of these approaches is

the huge amount of training data set representing various

driving situations, which makes data-driven methods have

not yet applied to the real world as successfully as MPC

techniques.

In summary, the path tracking controller need to have the

ability to handle the road curvature disturbances with predic-

tion, reject uncertainties using feedback control, and become

high efficient in computation. With this in mind, in this paper,

a new path tracking control architecture is proposed, which is

designed using aMPC controller based on vehicle kinematics

to handle the disturbances on road curvature, a PID feed-

back control of yaw rate to reject uncertainties and modeling

errors, and a vehicle sideslip angle compensator to correct the

above prediction process.

Although it is well known that kinematic vehicle model is

unsuitable for high-speed path tracking as they are inaccurate

in regions of tire force saturation [25], the proposed controller

based on kinematic model follows the desired path very well,

ranging from low speed to high speed even at the limits

of handling. This is mainly caused by the involvements of

these aforementioned two elements, i.e., the feedback control

of yaw rate and vehicle sideslip compensation. It has been

demonstrated in earlier studies that the tracking accuracy is

improved by additional feedback of the yaw rate which can

be measured by a gyro, as it improves the system transients,

by changing the eigenvalues displacement of the steering

dynamics [2], [4], [26]. Consequently, the main contributions

of this paper are as follows.

1) To handle the challenges of path tracking at high speed

and sharp curves, a novel tracking control architecture is

developed, consisting of three main components: kinematic

model predictive control, feedback control of yaw rate, and

vehicle sideslip compensation.

2) A vehicle sideslip angle compensator is utilized to cor-

rect the prediction process using kinematic model, which is

designed based on the relationship between sideslip and yaw
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FIGURE 1. Kinematic bicycle model where αf and αr denote the front and
rear wheel slip angles, respectively. r is yaw rate.

rate, and formulized as an expression involving yaw rate and

current vehicle speed.

The remainder of this paper is organized as follows:

Section II presents the vehicle lateral kinematic and dynamic

model; and Section III introduces the lateral control design

for path tracking; Section IV evaluates the proposed control

method and compares it with classic kinematic and dynamic

MPC; and the field test is presented in Section V. Section VI

concludes this paper.

II. MODELING

In this section, kinematic bicycle modeling and dynamic

modeling are carried out respectively. The kinematic model

is the basis of the proposed control design and used to pre-

dictive control, however, the dynamic model is explored to

understand steer dynamics and contribute to vehicle sideslip

compensator design.

A. KINEMATIC BICYCLE MODEL

The kinematic bicycle model is given by the following set of

equations in an inertial frame according to the axes system

with SAE standards [19] (see Figure 1), under the assump-

tions: 1) The vehicle is assumed to have planar motion, and

the vertical, pitch and roll motions are ignored; 2) The slip

angles at both wheels are zero.

Ẋ = v cos(ψ + β) (1a)

Ẏ = v sin(ψ + β) (1b)

ψ̇ =
v cos(β)

lf + lr

(

tan
(

δf
)

− tan (δr )
)

(1c)

β = tan−1

(

lf tan (δr )+ lr tan
(

δf
)

lf + lr

)

(1d)

where X denotes global X axis coordinate, Y global axis

coordinate, v the speed of the vehicle, ψ the heading angle

of the vehicle, β vehicle sideslip angle, lf and lr represent the

distance from the center of the mass of the vehicle to the front

and rear axles, respectively. δf and δr are the steering angles

for the front and rear wheels. we assume δr = 0, as in most

vehicles the rear wheels cannot be steered.

FIGURE 2. Absolute lateral tire force as a function of slip angle, with
different vertical tire load FN .

In this paper, the path tracking control aims at minimizing

the lateral and heading deviation of the autonomous vehicle

with respect to a given reference path at arbitrary safe speed

ranging from low speed to extremely high speed at the limits

of handling. Figure 1 illustrates the schematic diagram of

path tracking model which demonstrates the geometric rela-

tionships between autonomous vehicle and the desired lane.

ea denotes the heading deviation that is the orientation error

between the heading of vehicle and the tangential direction of

the road centerline. ey denotes the lateral deviation that is the

distance of the c.g. of the vehicle from the center line of the

lane.

Generally, the kinematic bicycle model described above

is suitable for control law design at low speed. However,

at high-speed scenarios, this prediction model will become

increasingly unreliable, due to the rise of tire sideslip angles.

Therefore, it is necessary to investigate the vehicle dynamics

and tire side-slip characteristics for improving the controller

performance.

B. TIRE and VEHICLE DYNAMIC MODEL

It is well known that tire force plays a key role in the

analysis of vehicle motion, as in addition to aerodynamic

forces and gravity, all the forces that affect vehicle motion

are produced by the tires. To some extent, due to the com-

plexity of tire model, obtaining vehicle models of sufficient

accuracy is not available in real time. Moreover, it is very

difficult to precisely formulate the nonlinearities by a unified

tire force model. Most of the existing tire models are pre-

dominantly ‘‘semi-empirical’’ in nature, such as Burckhardt

model, Magic formula, and Dugoff model [19]. These semi-

empirical tire models involve severe nonlinearities as shown

in Figure 2, resulting in many difficulties in stability analysis

and real-time controller design [20]. Nevertheless, the typical

tire model shown in Figure 2 also indicates that in normal

driving situations where the slip angles are small, the relation

between lateral force and slip angle is nearly linear. Under
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such assumption, the tire model can be characterized by a

simplified linear model that the lateral tire forces are approx-

imately linear with respect to the tire slips and given as

Fyf = Cf αf (2)

Fyr = Crαr (3)

where Fyf and Fyr are the lateral tire force of the front and

rear wheels, respectively, αf and αr denote the front and rear

wheel slip angles, respectively, Cf and Cr denote the front

and rear wheel cornering stiffness, respectively. The tire slip

angles αf and αr can be expressed as

αf = β +
lf ψ̇

v
− δf (4)

αr = β −
lr ψ̇

v
(5)

With the aforementioned linear tire model and certain

assumptions: 1) Ignoring the weight transfers and road

bank angle, the left and right tire sideslip angles on the

same axle are identical; 2) The roll and pitch dynamics are

neglected, the vehicle lateral dynamicmodel can be expressed

as [2], [27]

ẍ = ψ̇ ẏ+ ax (6a)

ÿ = −ψ̇ ẋ +
2

m

(

Fyf cos
(

δf
)

+ Fyr
)

(6b)

ψ̈ =
2

Iz

(

lf Fyf − lrFyr
)

(6c)

Ẋ = ẋ cos(ψ) − ẏ sin(ψ) (6d)

Ẏ = ẋ sin(ψ) + ẏ cos(ψ) (6e)

where ax is longitudinal acceleration,m denotes vehiclemass,

Iz is yaw moment of inertia.

It can be seen from the comparison between kinematic

and dynamic model that although the kinematic model also

involves vehicle sideslip angle β, it assumes that all tire slip

angles are deemed to be zero which will lead to significant

model mismatch as tire slip angles increase, such as at high

speed scenarios. This drawback of kinematicmodelmotivates

the proposed vehicle sideslip compensator which is one of our

main contributions.

Themain vehicle parameters are summarized in Table 1 and

the tire cornering stiffness is determined by the tire model

depicted in Figure 2 that the lateral tire forces are calculated

as a function of vertical load, lateral tire slip angle. The source

data in Figure 2 is from Carsim software by setting the type

of tires as ‘‘225/60 R18’’.

III. CONTROLLER DESIGN

As mentioned above, the objective of path tracking control

is to keep the vehicle as close as possible to the given

path under the desired speed. In this paper, we decouple

the problems of path tracking into lateral control design and

longitudinal control design, which is similar tomany previous

work [28], [29]. Additionally, we only focus on the lateral

control under the assumptions that the given path and desired

TABLE 1. Vehicle parameters.

FIGURE 3. Lateral control scheme where rdesired , rreal denote the
desired and real yaw rate, respectively. er is the error between the
desired and real yaw rate.

speed are obtained from existing modules. Therefore, the

steering angles of front wheels δf is the only output of the

proposed controller.

In this section, a novel lateral control scheme is proposed,

which is the main contribution of our work. The proposed

control scheme is illustrated in Figure 3. It is designed as a

hybrid MPC-PID cascade control loop. The external control

loop produces the yaw rate reference signal using a kine-

matic MPC controller with vehicle sideslip compensation.

Compared to the PID control in Marino’s work [4], the MPC

control law has considerable advantage on rejecting the dis-

turbances on road curvature and velocity variation, with the

ability to predict future behaviors of vehicle. The inner PID

control loop is to track rapidly the yaw rate reference coming

from the external one. As mentioned in introduction, this

design based on yaw rate is inspired by the existing studies

that additional feedback of the yaw rate leads to a significant

reduction of tracking error in nearly all driving maneuvers,

as it improves the system transients [2], [4], [26].

A. CASCADED MPC-PID CONTROL

Model predictive control has been widely used in the field of

path tracking, in general, which can be roughly classified into

two methods: kinematic MPC and dynamic MPC, depending

on the vehicle model [30]. Each method has its own pros and

cons. kinematic MPC is simple, but only works well at low

speed. As speed increases, the kinematic model mismatch

will result in large tracking error. On the contrary, dynamic

MPC can overcome the impact of increasing speed, however,

it has the drawback of poor computational efficiency and

becomes singular at low vehicle speeds, no matter linear

dynamic model or nonlinear model.

To deal with the above dilemma, we explore a cascaded

kinematicMPC-PID controller in this section, with the expec-

tation that PID feedback control of yaw rate is capable

VOLUME 8, 2020 51403
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of rejecting uncertainties and modeling errors, meanwhile,

the controller retains superior computational efficiency. Con-

sidering the fact that the output of predicting model is yaw

rate rather than the steering angles of front wheels δf , the δf
needs to be eliminated from (1c), (1d). Substituting from (1c)

into (1d), the vehicle sideslip angle β can be rewritten as

β = sin−1

(

lr

v
ψ̇

)

(7)

Then, substituting from (7) into (1a), (1b), the kinematic

model used in MPC can be rewritten as

Ẋ = v cos

(

ψ + sin−1

(

lr

v
ψ̇

))

(8a)

Ẏ = v sin

(

ψ + sin−1

(

lr

v
ψ̇

))

(8b)

ψ̇ = r (8c)

where yaw rate r is the output of MPC controller and yaw

rate reference tracked by the PID inner loop via controlling

the steering angles of front wheels.

Based on the kinematic model (8), the desired yaw rate

is obtained by a typical MPC module. We used the publicly

available solver IPOPT [31] to solve the following optimiza-

tion problem. At each time, the following constrained finite

horizon optimal control problem is solved:

min
u

∑Hp

i=1

(

zi − zref ,i
)T
Q
(

zi − zref ,i
)

+
∑Hc−1

i=0

[

(ui − ui−1)
T M (ui − ui−1)+ uTi Rui

]

s.t. z0 = z(t), u−1 = u (t − ts)

zi+1 = f (zi, ui) , i = 0, . . . ,Hp − 1

rmin,i ≤ ui ≤ rmax,i, ∀i

1rmin,i ≤ ui − ui−1 ≤ 1rmax,i, ∀i (9)

where, as in standard MPC notation, Q,M and R are weight-

ing matrices of appropriate dimensions. The reference sig-

nal zref represents the desired output, where z = [ψ,Y ]′.

Hp, Hc denote the prediction horizon and control horizon,

respectively. Time ts is the sampling time of the path tracking

controller. f (zi, ui) denotes the state update with the kine-

matic model derived in (8) through forward Euler. In partic-

ular, if f (zi, ui) update with the kinematic model (1) or the

dynamic model (6), we will achieve classic kinematic MPC

and dynamic MPC controllers, respectively [30]. The vari-

ables rmin,i, rmax,i, 1rmin,i, 1rmax,i denote lower and upper

bounds of the yaw rate and the constraints on increment

of yaw rate, respectively. ut,i =
[

ut , . . . , ut+Hc−1

]

is the

optimization vector at time t . Especially, u−1 represents the

control action at the previous sampling step and the first value

ut,0 of the optimization vector is used as the optimal control

action:

rdesired = ut,0 (10)

where rdesired is the MPC controller output, namely, the yaw

rate reference tracked by PID controller of the inner loop.

FIGURE 4. Simulation system architecture.

Once theMPC control loop is designed, the remaining step

is to design the PID inner loop controller. The goal of the

PID controller is to minimize the yaw rate error er between

the measured yaw rate rreal and desired yaw rate rdesired .

The relationship between the error er and output δf can be

formulated in the following standard PID control law,

er = rdesired − rreal (11)

δf = Kper (t) + Ki

∫ t

0

er (t)dt + Kd
der (t)

dt
(12)

with proportional, integral and differential gain Kp, Ki, Kd .

It should be noted that yaw rate would not change with

steering angles δf at a standstill, which can also be derived

by equation (1c). Therefore, this cascaded MPC-PID control

method is not appropriate for stop-and-go scenarios and auto-

matic parking, if Ki is not set to zero.

B. STEADY-STATE RESPONSE with MPC-PID CONTROL

In order to test the above MPC-PID control law, we imple-

mented the MPC controller in C++ and evaluated it on

Carsim/Matlab joint simulation environment. An overview of

the simulation system architecture is outlined in Figure 4. The

simulation system is composed of two personal computers.

One is used for the path tracking controller based on Ubuntu

OS and Robot Operating System with an intel i5-4590 pro-

cessor. The other one aims at providing a simulator involv-

ing path and autonomous vehicle based on Carsim/Matlab.

Carsim, as a high-fidelity vehicle simulator, utilizes detailed

nonlinear tire models and vehicle models to simulate the

dynamic behaviors of different types of vehicle and is widely

used in automotive industry [20]. The TCP/IP networking

protocol is used to communicate between the above two

computers. Table 2 lists the main controller parameters which

are the same for all controllers presented in this paper.

Figure 5 shows the steady-state responses of three types

of controllers for following a circular path with a radius

of 100m as a function of vehicle speed. These controllers

51404 VOLUME 8, 2020
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TABLE 2. Main controller parameters.

FIGURE 5. Steady-state response for following a circular path with a
radius of 100m. Each simulation test indicated by dots on the
corresponding curve was implemented at constant vehicle speed, ranging
from 10 to 100 in intervals of 10 km/h.

are classic kinematic MPC, dynamic MPC and MPC-PID

control law, based on kinematic model (1), dynamic model

(6) and the modified kinematic model (8), respectively. It is

apparent that reaching a certain point, the lateral tracking

errors grow with the vehicle speed under the classic kine-

matic MPC control, on the contrary, if the speed is decreased

to a certain point, the tracking errors will be increased for

dynamic MPC. The point of intersection of the above two

curves is close to 35 km/h. This confirms the expected

results from the consensus in existing literature that kine-

matic model is unsuitable for high-speed path tracking, and

the dynamic MPC control becomes singular at low vehicle

speeds [25], [30]. Moreover, it is of interest to note that

directly combining MPC with PID feedback control of yaw

FIGURE 6. The performance of PID control for tracking the desired yaw
rate.

rate results in a controller with poor tracking accuracy. The

cascaded MPC-PID control law never obtains the lowest

tracking error no matter how fast the vehicle moves, com-

pared to the other two MPC control methods. However,

the cascaded MPC-PID controller still makes a difference in

path tracking that the tracking error is relatively stable and

is limited into a range of 0.4 m without excessive deviation

from the desired path, which demonstrates the contribution

of the feedback of yaw rate and also implies some systematic

bias.

To further find out the reason for the poor accuracy of

MPC-PID controller, the performance of PID control for

tracking the desired yaw rate is illustrated in Figure 6 which

is extracted from one of the above steady-state tests under

the control of MPC-PID controller. The results show that the

inner PID control loop follows the desired yaw rate very well

when the vehicle speed is held at 50 km/h. Therefore, there

must be some significant model mismatch in the external

MPC control loop and the desired yaw rate generated via the

kinematic model (8) needs to be corrected. With this in mind,

a compensation for vehicle sideslip is proposed to alleviate

the above model mismatch and improve tracking accuracy

under MPC-PID control law.

VOLUME 8, 2020 51405
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C. COMPENSATION FOR VEHICLE SIDESLIP

The classic kinematic model (1) and the derived kinematic

model (8) both involve the vehicle sideslip angle β, however,

it should be noted that obtaining the vehicle sideslip angle β

in both model are under the assumptions that the slip angles

at both wheels are zero. As it is shown in (4), (5), there

exists direct correlation among β and the tire slip angles

αf , αr . Therefore, in high-speed scenarios, these assumptions

will lead to severe mismatch between predicting model and

vehicle dynamics inevitably. In this section, a more accurate

form of vehicle sideslip angle β is derived from steady-state

cornering conditions with linear tire model. First, at steady-

state conditions (road curvature rate k̇ = 0, v̇ = 0), the rear

tire forces can be given by the following simplified equation

as described by Kapania et al. [1].

Fyr =
mlf

lf + lr
v2k (13)

Then, substituting from (13) and linear tire model (3) into (5),

yields the vehicle sideslip angle:

β =
mlf

(lf + lr )Cr
v2k +

lr ψ̇

v
(14)

Since road curvature k = 1
R

=
ψ̇
v
, the proposed sideslip

compensator can be obtained by rewritten (14) as

β =
mlf

(lf + lr )Cr
vψ̇ +

lr ψ̇

v
(15)

where yaw rate ψ̇ is the output of the proposed MPC control

loop. Therefore, at each prediction stage of solving the MPC

problem, the predicted sideslip angle β will update with ψ̇ .

Then substituting from (15) into (1a), (1b), yields the kine-

matic model:

Ẋ = v cos(ψ + β) (16a)

Ẏ = v sin(ψ + β) (16b)

β = K1vψ̇ + K2
ψ̇

v
(16c)

ψ̇ = r (16d)

where K1 =
mlf

(lf +lr )Cr
,K2 = lr . In practice, parameters

K1, K2 can be empirically tuned through simulation or field

test, and their effects are further explored in Section IV.

Note that the sideslip compensator will become singular at a

standstill because of the denominator involving the velocityv.

To avoid this situation, the velocity v will be replaced by a

threshold when the vehicle starts at a standstill. Replacing

kinematic model (8) with kinematic model (16) under the

framework of cascaded MPC-PID control, we obtain the

proposed controller.

IV. CONTROLLER PERFORMANCE

To better understand the performance of the proposed con-

trol law, in this section we analyze system steady-state and

transient responses, the effect of the parameters K1, K2, the

robustness against measurement error and parameters uncer-

tainties, and computing efficiency.

FIGURE 7. Steady-state response with sideslip compensation.

A. STEADY-STATE RESPONSE

Figure 7 demonstrates the steady-state response of the

designed MPC-PID control law with sideslip compensation

(K-MPC-PID-C). The simulation setting is consistent with

that in Figure 5. The results show the excellent performance

of the proposed controller that outperforms all the other

controllers in this steady-state test. First, at low speed both

classic kinematic MPC and our controller follow the desired

path well, however, as vehicle speed increases the classic

kinematic MPC becomes inacceptable, but the tracking error

of the proposed control law is immune to increasing. Second,

the proposed control law is superior to both dynamic MPC

and MPC-PID without compensation throughout the whole

range of vehicle speed. Third, at both low speed and high

speed, even at the limits of handling, the maximum of lateral

errors under sideslip compensation are less than 0.1 m.

B. TRANSIENT RESPONSE

Figure 8 shows the transient state responses for tracking a

sinusoidal path with an amplitude of 4m and a wavelength

of 50 m, mimicking the lane-change maneuver. The results

indicate that all controllers have the similar tracking perfor-

mance as the steady-state tests and the designed controller

still follows the sinusoidal path well throughout the whole

range of vehicle speed, despite approaching the limits of

handling with the maximum lateral acceleration of 8.4 m/s2.

This figure also illustrates that although the classic kinematic

MPC achieves the best tracking accuracy when speed is

lower than 30 km/h, the maximum tracking errors of the

proposed controller also have not exceed a limit of 0.1 m.

Then, as speed increases, the designed controller becomes

the only available control law in this test with maximum error

of 0.16m. In addition, one can observe that the dynamicMPC

is not capable of following the desired path at high lateral

acceleration conditions as the steady-state test in Figure 7,

despite the fact that the vehicle reaches to a similarly high
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FIGURE 8. Transient state responses as a function of vehicle speed for following a sinusoidal trajectory Y = 2 sin
(

2π

l
(x +

l
4

)
)

− 2, l = 50. Each

simulation test indicated by dots on the corresponding curve was implemented at constant vehicle speed, ranging from 10 to 60 in intervals of 5 km/h.

level of speed (beyond 40 km/h). The reason for this is that

the tire dynamics become so difficult to model at the limits

of handling where the mismatch of linear dynamic model

is unable to be neglected anymore. It is apparent that this

drawback makes it difficult to combine the kinematic MPC

and dynamic MPC, that is, the controller cannot trigger a

switch from kinematic MPC to dynamic MPC just accord-

ing to the increase of vehicle speed, because their tracking

performances depend on not only vehicle speed, but also

road curvature and the resulting lateral acceleration. The

above weakness of classic MPC for path tracking highlights

the contribution of the proposed control law that with the

derived sideslip compensation, the cascaded MPC-PID con-

trol achieves exact tracking accuracy from low speed to high

speed with different road curvature.

C. EFFECT of the PARAMETERS K1, K2
ParametersK1,K2 derived from the sideslip compensator (15)

and (16c) have their own theoretical definition, but in practice

we may be unable to obtain the precise value of those related

parameters such as vehicle mass and tire cornering stiffness.

Therefore, for a better sense of the effect of the parameters

K1, K2 in sideslip compensator, Figure 9 shows the changing

trend of the lateral tracking error for the designed controller

at varying group of the parameters K1, K2 by steady-state

test. The results reveal a tradeoff in tuning K1 and K2. When

K1 is set to zero, the larger K2 is capable of providing the

better tracking accuracy at low speed, but the worse tracking

accuracy at high speed. Then, when K2 is set to a proper

constant, K1 has the ability to improve the tracking accuracy

at high speed while ensure the tracking performance at low

speed. It can be see that the maximum of lateral error takes

place at the speed of around 80 km/h with the coupling effect

of K1 and K2, rather than the top speed of 100 km/h at the

limits of handling. Consequently, this coupling effect could

be used to tune the two parameters K1 and K2 for the best

tracking performance in accordance with the highest design

speed. In addition, the designed sideslip compensator could

be also incorporated into those advanced online estimations

on tire cornering stiffness [32] and vehicle mass [33] for

further improvement in path tracking.

D. ROBUSTNESS

In essence, the designed control law is a cascaded MPC-PID

control that the inner PID feedback control loop struggles

to track rapidly the desired yaw rate produced by the MPC
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FIGURE 9. The effect of the parameters K1, K2 in sideslip compensator.

loop. Therefore, the measurement of yaw rate plays a key role

in this approach compared to other path tracking methods.

For this reason, the robustness of the proposed controller

performancewith respect to themeasurement error of the yaw

rate sensor is tested in steady-state and transient scenarios

near the limits of handling. In addition, the robustness against

parameters uncertainties regarding the vehicle mass and tire

cornering stiffness are also validatedwith simulation, because

the derived kinematic model (16) with sideslip compensation

is related to both of them.

Controller robustness against measurement error of the

yaw rate sensor:

The measurement error of the yaw rate is modeled as

Gaussian distribution with a Matlab block called Random

Number and injected to the original yaw rate calculated by

the Carsim vehicle model. In field test presented in Section V,

the yaw rate is measured by the inertial navigation system

RT3002 which measures the yaw rate at the error level of

0.01 ◦/s, 1σ . Then, the disturbance of measurement error is

set to two orders of magnitude higher than that in the sensor

specification, i.e., 1 ◦/s.Moreover, in the transient test, we add

the case that measurement error mean or variance is 10 ◦/s

to explore where the tracking performance will get worse,

although the measurement accuracy of real sensors will not

be so inferior. As shown in Figure 10, the results of steady

and transient tests show that if the measurement error is

within the range that both the mean and variance are less than

1 ◦/s, the tracking performance of the proposed controller is

not significantly affected by the disturbance of measurement

error and controller achieves the equivalent tracking accuracy

compared to the cases of no noises. As the level of distur-

bance further increases, the actual tracking path has gradually

deviated from the desired path as shown in Figure 10 (b).

The tracking error is approximately 0.5m when mean of

measurement error is 10 ◦/s and variance is 1 ◦/s. However,

the 0.01◦/s angular rate accuracy with sensor RT3002 is far

better than the above error of 1 ◦/s and once control system

is successful to be deployed, the mean of measurement error

can be eliminated by control parameter tuning. Therefore,

the simulation results prove that the controller is capable of

following the path with the measurement error of yaw rate

sensors, which is further validated in field test presented in

next section.

Controller robustness against parameters uncertainties:

The robustness of the controller is evaluated over vehicle

parameters uncertainty with respect to vehicle mass and tire

cornering stiffness. Figure 11 shows the steady-state and

transient responses where payloads of four passengers with

different mass are set in Carsim to simulate the effect of

mass uncertainties. The steady-state tracking error increases

as payload increases, especially at high speed, however, all

tracking trajectory in transient responses nearly coincide with

each other even at the limits of handling where the result-

ing peak lateral acceleration is 8.6 m/s2. This interesting

observation is consistent with the mathematical derivation

of sideslip compensator (15) and (16c) that only gain K1

involves the term mass and the product of K1 and vehicle

speed is used to compensate the sideslip dynamics. Thus, The

robustness against vehicle mass decreases as speed increases.

Nevertheless, the designed controller is still able to meet the

demand of path tracking with acceptable errors despite the

variations of vehicle mass, as shown in Figure 11.

As for tire cornering stiffness, there are more compli-

cated responses than that of vehicle mass variations. First,

Figure 12 shows that when the cornering stiffness drops

25 percent or more, the vehicle will slide off the road at the

limits of handling because the tires are incapable of producing

adequate lateral forces. Second, it can be observed that the

controller has the ability to reject uncertainties that cornering

stiffness has increased by 25%, however, as it further climbs,

the tracking error is beyond 0.2 m indicating that the con-

troller fails to follow the desired path. Like the impact of vehi-

cle mass, the cornering stiffness variations impose stronger

disturbances at high speed than low speed with similarly high

level of resulting lateral acceleration.

E. COMPUTING EFFICIENCY

Figure 13 shows the comparison for computational cost of

three types of MPC controller for path tracking. we imple-

mented all these MPC controllers in C++with solver IPOPT

on Linux system with an intel i5-4590 processor. Moreover,

the same MPC parameter configurations are set to ensure a

fair comparison that both the prediction horizon and control

horizon are set to 10 steps, and sampling time are set to

0.1 s. It can be observed that the proposed controller reaches

a comparable level of computational efficiency compared

to classic kinematic MPC controller. The reason for this

is that the proposed controller is also based on kinematic

vehicle model. Thus, both kinematic MPC have almost the

same computing efficiency in solving the problem of path

tracking. In addition, it is obvious that the dynamicMPC con-

troller has the worst computational efficiency compared to

others.
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FIGURE 10. The robustness against the measurement error of the yaw rate sensor: a) steady-state, b) transient-state at the limits of handling (60 km/h).

FIGURE 11. Robustness against parameters uncertainties: vehicle mass uncertainties. a) steady-state, b) transient-state at the limits of handling
(60 km/h).

V. FIELD TEST

A. VEHICLE PLATFORM

The proposed cascaded MPC-PID with sideslip com-

pensator was implemented on an autonomous electric

vehicle—Dongfeng A60EV, as shown in Figure 14. A real-

time kinematic (RTK) positioning system and inertial mea-

surement unit RT3002 were used to obtain global vehicle

states. The controller was implemented in C++ under

Ubuntu and Robot Operating System with an intel i7-6700k

processor and operates at 50 Hz. The target vehicle longi-

tudinal speed was followed by a PID controller. Because of

space limitations of experimental field, only a circular path

with a radius of 14 m was used for experimental validation.

Although it does not cover all test cases to verify the proposed

approach, especially lacking of high speed scenarios, it is

adequate to validate the robustness against measurement error

of the yaw rate sensor and time lag, which are the main con-

cern about validation on the premise of the aforementioned

simulations.

B. EXPERIMENTAL RESULTS

Figure 15 presents the experimental results for following a

circular path on concrete road surface. The vehicle speed

varies from 10 km/h to 32 km/h in consideration of safety.

Note that although the vehicle speed is not very high in

this field test, the resulting maximum lateral acceleration

could be aggressive (5.84 m/s2), due to the small road

radius. It can be found that the proposed controller restricts

the lateral tracking error into a range of 0.08 m, which

denotes remarkable tracking accuracy and is identical with
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FIGURE 12. Robustness against parameters uncertainties: cornering stiffness uncertainties. a) steady-state test, Fy-R1 denotes the lateral forces of right
front tire. b) transient-state at the limits of handling (60 km/h).

FIGURE 13. Comparison of computing time with the same MPC
configurations that both the prediction horizon and control horizon are
set to 10 steps, and sampling time are set to 0.1 s.

the simulation results in Figure 7. Moreover, the plot of yaw

rate in Figure 15 shows that the desired yaw rate generated

FIGURE 14. Dongfeng A60EV used for field test.

by MPC loop is followed well by the real yaw rate and

both yaw rate change smoothly, which confirms the outstand-

ing prediction performance of MPC control with sideslip

compensation and the robustness under real inertial mea-

surement unit. In short, this experimental results indicate

that in the real world the proposed controller is capable

of providing comparably good tracking performance with

simulation.
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FIGURE 15. Experimental results for following a circular path with a radius of 14 m.

VI. CONCLUSION

This paper describes the design of a cascaded kinematic

MPC-PID controller with vehicle sideslip compensation for

path tracking of autonomous vehicles. A kinematic MPC

based on yaw rate is derived to tackle the disturbances of

the upcoming road curvature at various speeds. Subsequently,

in consideration of the kinematic model mismatch at high

speed, a novel vehicle sideslip compensator is proposed to

correct model prediction and is integrated into the kinematic

model. Note that the MPC control loop outputs desired yaw

rate rather than steering angle compared to classic MPC

controller for path tracking. Then, a PID control is designed

to follow the reference yaw rate, which takes full advantage of

the feedback of yaw rate to reject uncertainties and modeling

errors.

The proposed controller performances involving steady-

state and transient response, robustness, and computing effi-

ciency were evaluated on Carsim/Matlab joint simulation

environment. The simulation results demonstrate that the

proposed controller is successful to resolve the dilemma that

kinematic MPC only works well at low speed while dynamic

MPC has poor computational efficiency and gets worse at

low speed, with the improvement for path tracking that the

tracking errors are guaranteed less than 0.16 m, ranging from

low speed to high speed even at the limits of handling. In addi-

tion, due to the utilization of kinematic model, the proposed

control method reaches a comparable level of computational

efficiency compared to classic kinematic MPC. Furthermore,

simulation and field experiments conducted with the A60EV

autonomous vehicle validate the robustness against sensor

disturbances and time lag. Lastly, this research has also con-

firmed that

1) the developed vehicle sideslip compensator is sufficient

to capture steer dynamics and mitigate the effect of vehicle

sideslip angle in the proposed control architecture. This find-

ing may be incorporated into other control law based on the

feedback of yaw rate to improve path tracking.

2) As for classic MPC controller for path tracking, the con-

troller cannot trigger a switch from kinematic MPC to linear

dynamicMPC just according to the increase of vehicle speed,

because their tracking performances depend on not only vehi-

cle speed, but also road curvature and the resulting lateral

acceleration, consequently, which makes it difficult to com-

bine the kinematic MPC and dynamic MPC for improving
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tracking performance. The above weakness of classic MPC

for path tracking highlights the contribution of the proposed

control law.

Future work will focus on the implementation of the

proposed control method with embedded platform such as

NVIDIA Nano Kit.
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