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ABSTRACT Aiming at the problems of low detection accuracy and inaccurate positioning accuracy of 

light-weight network in traffic sign recognition task, an improved light-weight traffic sign recognition 

algorithm based on YOLOv4-Tiny was proposed. By improving the K-means clustering algorithm, the 

anchor with appropriate size is generated for the traffic sign data set to improve the detection recall rate and 

target positioning accuracy. The strategy of large-scale feature map optimization is proposed, which 

enriches the feature level of the network by using the low-level information, strengthens the representation 

of the feature information of the small target, and improves the detection accuracy of the long-range small 

target. In view of the problem of missed detection of high overlapping targets in the post-processing stage 

of the model, the paper proposes an improved NMS algorithm to screen the prediction box, avoid deleting 

the prediction results of different targets, and further improve the detection accuracy and recall rate of the 

target. Experimental results show that, compared with the original YOLOv4-Tiny algorithm, the improved 

algorithm in traffic sign recognition task based on TT100K dataset, mAP and recall are improved by 5.73% 

and 7.29% respectively, and FPS value is maintained at about 87 f/s, which meets the accuracy and real-

time requirements of traffic sign recognition task. 

INDEX TERMS traffic sign recognition, YOLOv4-Tiny, clustering algorithm, large scale, improved NMS 

algorithm 

I. INTRODUCTION 

The identification of traffic signs is an important research 

content in the field of automobile autonomous driving system 

and driver-assisted driving system. Traffic signs contain a lot 

of useful information, which can prompt drivers to make a 

correct response to road condition information in real time, 

greatly reduce the occurrence of traffic accidents and 

improves the safety of driving [1]. Therefore, the study of fast 

and accurate traffic sign recognition system under the real 

scene has important practical value and a wide range of 

application scenarios. 

A. Literature Review 

Traffic sign recognition is often carried out in a complex 

outdoor environment, which is vulnerable to the interference 

of natural environment and human factors, such as bad 

weather, different light and shade, sign blocking and damage, 

etc., thus causing recognition difficulties [2]. Based on this, in 

the research of traffic sign recognition, a large number of 

complex algorithms have been proposed [3] Traditional 

algorithms mainly rely on artificial feature extraction, such as 

local binary pattern (LBP) [4], Gabor [5], histogram of 

oriented gradient (HOG) [6], etc., and use support vector 

machine (SVM) [7], AdaBoost [8] and other classifiers to 

complete traffic sign recognition. However, in the face of 

complex outdoor environment, artificial feature extraction 

can not meet the actual needs.  

In recent years, deep learning model has gradually become 

the main algorithm in the field of target detection, and 

convolutional neural network has achieved remarkable 

results in the field of target detection [9-10]. The target 

detection model based on deep learning can be divided into 

two types: a two-stage detection algorithm based on region 

proposal, such as region convolutional neural networks (R-

CNN) [11], Fast R-CNN [12], Faster R-CNN [13], etc. This 

two-stage detection algorithm needs to generate the target 

candidate box first, and then classify and regress the target 

candidate box. The other is single-stage detection 
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algorithms such as you only look once (YOLO) [14-17], 

single shot multibox detector (SSD) [18], which can directly 

extract features from the network to predict object 

classification and location. In contrast, the two-stage 

detection method has high precision but slow speed, and the 

single-stage detection algorithm is fast but less accurate. 

At present, many scholars apply target detection 

algorithm to traffic sign detection. Zuo [19] et al use Faster 

R-CNN to detect traffic signs. You [20] et al tailor-made the 

network to reduce the computational complexity based on 

SSD algorithm and applied it to traffic sign detection. Yang 

[21] and yuan [22] et al extract the region of interest from the 

input image by adding an attention module to the 

convolutional neural network to refine the feature 

extraction of traffic signs under complex background. 

Zhang [23] effectively use fine-grained features at the bottom 

to achieve accurate target positioning through image 

enhancement and the introduction of spatial pyramid 

pooling (SPP) module in YOLOv3. 

B. Main Work 

Although the existing deep learning methods have 

achieved some results in the task of traffic sign detection, 

they still have limitations in the face of complex natural 

environment. For example, the traffic sign algorithm model 

for real-time detection has low recall and detection 

accuracy. The influence of shooting angle makes the traffic 

signs overlap, resulting in missing detection of some targets. 

Therefore, in order to solve the above problems, this paper 

proposes several improvement strategies based on the 

lightweight version YOLOv4-Tiny algorithm of YOLOv4, 

so as to improve the detection accuracy and the robustness 

of the model on the premise of meeting the real-time 

performance. The main works are as follows: 

(1) The K-means clustering algorithm is improved to 

generate anchor boxes. By introducing generalized IOU 

(GIoU) [24] instead of intersection over union (IOU) in the 

distance calculation formula in the K-means clustering 

algorithm, GIoU can consider the area of non-overlapping 

areas, that is, when the two boxes do not completely 

intersect, GIoU introduces non-overlapping area items, 

which can better reflect shape information, thus improving 

the recall rate of the algorithm model and accelerating the 

convergence of the model. 

(2) A large-scale feature map optimization strategy is 

proposed, and the size of the two-scale output feature map 

of YOLOv4-Tiny is changed from the original 19 × 19 and 

38 × 38 to 38 × 38 and 76 × 76, so as to improve the 

detection accuracy of small targets. 

(3) An improved algorithm based on soft non-maximum 

suppression (NMS) [25] is proposed. Aiming at the problem 

of missing detection caused by overlapping traffic signs in 

the traffic sign data set, the missing detection rate is 

reduced and the generalization of the model is improved by 

improving the score reset function. 

II.  ALGORITHM MODEL 

YOLOv4-Tiny is a simplified version of YOLOv4. 

Compared with YOLOv4, YOLOv4-Tiny has a faster 

detection speed, but the accuracy has declined. 

Fig. 1 shows the network structure diagram of YOLOv4- 
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FIGURE 1.  YOLOv4-Tiny network structure 

Tiny. Compared with YOLOv4, the backbone network of 

YOLOv4-Tiny is greatly simplified. Feature pyramid 

network is used for 32 times down-sampling and 16 times 

down-sampling to get two kinds of different sizes of feature 

map for target detection, which improves the detection 

speed. 

There are several basic components in the YOLOv4-Tiny 

network structure. The CBL module consists of Conv 

convolution, BN normalization and Leaky-Relu activation 

function. The implementation method of down-sampling 

CBL module is that the stride length of convolution kernel 

is set as 2 to achieve the purpose of down-sampling. CSP 

module uses CSPNet network structure for reference and is 

composed of CBL module and Concat tensor splicing 

module to better integrate feature information. 

Assuming the input image size is 608×608×3, the details 

of the backbone network parameters of YOLOv4-Tiny are 

shown in Table I. 
TABLE I 

YOLOV4-TINY BACKBONE NETWORK PARAMETERS 

Network 

layer 
Kernel Size  Stride Feature map 

Input —— —— 608×608×3 

CBL1 3×3 2 304×304×32 
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CBL2 3×3 2 152×152×64 

CSP1 3×3/1×1 1 152×152×64 

MaxPool1 2×2 2 76×76×128 

CSP2 3×3/1×1 1 76×76×128 

MaxPool2 2×2 2 38×38×256 

CSP3 3×3/1×1 1 38×38×256 

MaxPool3 2×2 2 19×19×512 

III.  IMPROVED NETWORK MODEL OF YOLOV4-TINY 

A. Improved K-means Clustering Algorithm 

In order to improve the recall rate of the algorithm model, the 

anchor box mechanism is introduced [13]. The anchor box is 

an initial candidate box with a fixed size and aspect ratio. 

The design of the anchor box will directly affect the 

convergence difficulty of the loss function in model training, 

thus affecting the detection accuracy and speed of the model. 

The size and aspect ratio of anchor boxes are affected by 

the size of all real boxes in the data set. Therefore, for 

different data sets, it is necessary to select the appropriate 

anchor boxes in order to make the model training stable and 

accelerate the convergence. 

In the process of clustering iteration, the K-means 

clustering algorithm [26] uses distance as the similarity index 

to find K classes in the given dataset, and the center of each 

class is obtained according to the mean value of all data 

points in the class. The standard K-means uses Euclidean 

distance to calculate the distance between two samples. The 

distance of the original YOLOv4-Tiny algorithm is based on 

the IOU when clustering and selecting the candidate box on 

the MS COCO data set [27]. In this section, GIoU is used as 

the distance basis because the IOU can't distinguish the 

different alignment between two objects.  

 
(a)                                               (b)        

FIGURE 2.  Schematic diagram of the difference between GIoU and IoU 

As shown in Figure 2, the aspect ratios of the two red 

boxes are different. The aspect ratio of the left red box is 2 

and the aspect ratio of the right red box is 1.78, but the IOU 

of the red box and the blue box in Fig. 2(a) and 2(b) are 

both 0.333. Therefore, only using IOU can not distinguish 

the difference in the aspect ratio of the two red boxes. GIoU 

considers the area of the non-overlapping areas, when the 

two boxes do not completely intersect, GIoU introduces the 

non-overlapping area item, which can better reflect the 

shape information. If GIoU is used as the measurement 

factor of distance, the GIoU values in Figures 2(a) and 2(b) 

are 0.0833 and 0.1759 respectively. 

The calculation formula is shown in equation (1). 

                     ( ) 1 [( , ), ( , )]i i i c cD x GIoU w h w h   (1) 

Where ( )iD x  is the distance between the width and height 

( , )i iw h  of each sample point 
ix  and the width and height 

( , )c cw h  of the clustering center. 

 \
=

C A B
GIoU IoU

C



 (2) 

=
A B

IoU
A B




 (3) 

IoU  is the intersection ratio of sample box size and 

cluster box size, A  represents the size of the sample box, 

B  denotes the size of the cluster box, C  is the minimum 

size of the rectangular box that simultaneously surrounds 

the two boxes A  and B , and  \C A B  represents the 

difference between the area of the rectangular box C  and 

the union area of the two boxes A  and B . 

Based on TT1000K [28] traffic sign data set, this paper 

uses K-Mean-GIoU algorithm to do anchor box clustering 

on traffic sign data set, and gets six anchor boxes, which are 

(5,5), (7,8), (9,10), (12,14), (18,20), (29,31). 

B. Large Scale Feature Map Optimization Strategy 

The output layer of the original YOLOv4-Tiny network 

is a two-scale feature map with 32 times and 16 times down 

sampling. Generally speaking, receptive field [29] refers to 

the area acting on the input image, so the deeper the 

network layer is, the larger the receptive field is. The 

receptive field of deep feature map with low resolution is 

larger, which is used to detect large targets. The receptive 

field of shallow feature map with high resolution is smaller 

and rich in spatial information, so it is more suitable for 

detecting small targets. Corresponding to the proposed 

algorithm in this paper, the feature map with a resolution of 

19 * 19 is responsible for detecting large targets, and the 

feature map with a resolution of 38 * 38 is responsible for 

detecting small targets. Since there are more small targets 

in the traffic sign data set, this section makes corresponding 

improvements. 

The pooling layer MaxPool3 is deleted, the 32 times 

down sampling is modified to 16 times down sampling, and 

the original network path after network layer CSP3 is re-

routed to network layer CSP2. After 8 times down sampling, 

the two scale output feature graph sizes of YOLOv4-Tiny 

detection network are changed from the original 19 × 19 

and 38 × 38 to 38 × 38 and 76 × 76, so as to improve the 

detection accuracy of small targets. The improved network 

structure is shown in Figure 3. 
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C. Improved NMS Algorithm to Screen Prediction Boxes 

The idea of non-maximum suppression algorithm [30] is that 

in the post-processing stage of model detection, for a target 

object, the one with the highest confidence score among all 

prediction boxes of the target is selected as the benchmark 

prediction box, and a threshold is set. For the prediction 

box that overlaps with the benchmark prediction box, the 

prediction box whose overlap degree is greater than the 

threshold value is deleted, the prediction box whose overlap 

degree is less than the threshold value is retained, and all 

the prediction boxes without overlap are retained. 

NMS algorithm has obvious disadvantages. Firstly, it 

needs to set a threshold manually, which is determined by 

experience. Secondly, when similar targets are dense and the 

detected objects are highly overlapped, the overlap degree 

between prediction boxes is high. NMS algorithm is easy to 

delete the prediction box belonging to another target, 

resulting in missed detection. As shown in Figure 4, the two 

targets of speed limit of 20 km/h of traffic signs and 

prohibition of trucks are highly overlapped, and only one 

target box is retained after NMS algorithm processing, which 

leads to missed detection.    
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FIGURE 3.  Traffic sign detection network structure diagram based on YOLOv4-Tiny improved large-scale feature map 

 

 
FIGURE 4.  Schematic diagram of missed targets in NMS algorithm detection 

Aiming at the existing problems of NMS algorithm, this 

paper proposes an improved algorithm based on soft-NMS [25] 

to complete the screening task of YOLOv4-Tiny prediction 

box. In the execution process of the original soft-NMS 

algorithm, the confidence score of the prediction box larger 

than the threshold value was reduced by the score reset 

function, rather than deleted directly. Based on this method, 

when the unprocessed prediction box overlaps most of the 

benchmark prediction box, the box will have a low 

confidence score. On the contrary, if there is only a small 

amount of overlap, the original confidence score will not be 

significantly affected. 

The fractional reset function can be expressed in two 

forms. One is linear weighting, as shown in equation (4), 

which can be expressed as  ( , )x if IoU M b . The other is 

Gaussian weighting, as shown in equation (5), which is 

expressed as  ( , )g if IoU M b . 

   
   

( , )
1 ,

1 ,  ,

i i

i i i

x i

IoU M b N

IoU M b IoU M
f I U M

N
o b

b

    
 (4) 

 
2( , )

( ) ,,
iIo M

ig i

U b

f IoU DM b e b


    (5) 

In the experiments, Gaussian weighting is mostly used. 

Based on the Gaussian weighting function, a new fractional 

reset function is proposed in this paper, as shown in 

equation (6), which can be expressed as  ( , )t if IoU M b . 

 
2( , )

*arctan( )

( , ) ,  
iIoU M b

A

t i if IoU M b e b D


    (6) 

Where A is an artificially set coefficient. According to 

the conclusion of experiments conducted by the author of 

Soft-NMS, when 0.5  , Soft-NMS has better 

performance.  
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In order to ensure that when the overlap degree 

( , )iIoU M b between the prediction box 
ib and the 

benchmark prediction box M is small, its original 

confidence score will not be greatly affected, the 

experiment shows that the effect is better when A=2. At this 

time, the image comparison of the exponential part function 

of the score reset function is shown in Figure 5. 

 
FIGURE 5.  Image comparison of score reset function 
 

As can be seen from Figure 5, when ( , )iIoU M b  is small, 

the attenuation range of y value is small, When ( , )iIoU M b  

is large, the decrease range of  ( , )t if IoU M b  is larger than 

that of  ( , )g if IoU M b , that is, the attenuation range of 

fractional reset function is larger, which indicates that when 

the overlap ( , )iIoU M b  between prediction box ib  and 

benchmark prediction box M is larger, the confidence 

fractional attenuation of prediction box ib  is more serious. 

For prediction box with high overlap, it is beneficial for the 

confidence score of the prediction box ib  to decay below 

the score threshold, so as to speed up the screening process 

of prediction box. 

IV. MODEL PERFORMANCE EVALUATION 

A. Data Set and Laboratory Environment 

There are 9176 pictures in TT100K data set in China, with 

221 kinds of annotation categories. The resolution of the 

images is 2048 × 2048. Because of the high resolution of the 

original image, the original image is cropped in this 

experiment, and the scale of the cropped image is 608 × 608. 

Due to the serious imbalance of data amount among various 

categories in the data set, only 45 categories of traffic signs 

with a large amount of data are selected for recognition in 

this experiment, and the training set and test set are divided 

according to the ratio of 8:2, in which the number of pictures 

in the training set is 7262, and the number of pictures in the 

test set is 1914. Figure 6 shows the traffic sign category in 

the TT100K data set, in which "*" is used to represent other 

numbers of signs of the same type. For example, the speed 

limit sign "pl *" includes pl25, pl30, pl35, etc. 

 
 
Figure 6.  Traffic sign categories 

 

The experimental training environment configuration is as 

follows: Intel Xeon W-2135 CPU, NVIDIA GeForce RTX 

2080TI graphics card, 32G memory, Windows10 operating 

system, Darknet deep learning framework, CUDA Tollkit 

version is 10.2. 

B. Experimental Scheme and Result Analysis 

This paper focuses on the realization of the light weight 

traffic sign recognition algorithm model, which provides 

the possibility for practical application. Taking YOLOV4-

Tiny as the benchmark, different innovative strategies are 

combined to perform training and performance statistics on 

the TT100K data set, so as to improve the detection 

accuracy of the model as much as possible under the 

premise of ensuring real-time performance. 

The test results of different algorithm models based on 

TT100K data set are shown in Table II.   
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TABLE II 

TEST RESULTS AFTER DIFFERENT IMPROVEMENT STRATEGY COMBINATIONS 

improvement strategy 
Different YOLOv4-Tiny algorithm models 

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 

Improved clustering Anchor  √ √ √ √ 
Large-scale optimization strategy   √ √ √ 

Original Soft-NMS    √  
Improved Soft-NMS     √ 

evaluation indicator 

mAP/% 46.34 47.16 51.02 51.39 52.07 

Recall/% 57.23 59.61 62.01 62.32 64.52 

FPS/ f/s 87.9 88.2 87.6 86.4 87.1 

As shown in Table II, on the TT100K data set, the mean 

average precision (mAP) value of the original YOLOv4-

Tiny (experiment 1) was 46.34%, and the mAP value of the 

cluster anchor box (experiment 2) was 47.16%. The 

improvement effect was obvious, and the recall rate was 

increased by 2.38 percentage points. Because there are 

more small-scale targets in the traffic sign data set, the 

combination of the large-scale optimization feature map 

strategy and the improved clustering anchor strategy 

proposed in this paper achieves good detection effect, as 

shown in experiment 3, the mAP value reaches 51.02%, 

which is 4.68% higher than that in experiment 1, and the 

recall rate reaches 62.01%, which is 4.78% higher than that 

of experiment 1. This is because the proportion of small 

targets in the traffic sign data set is higher. After 

introducing this optimization strategy, the shallow feature 

semantic information extracted from the feature extraction, 

especially the learning and training of small targets is more 

in-depth, so as to improve the detection performance of the 

algorithm model.  

Considering the partial occlusion or overlap of traffic 

sign targets in the data set, soft-NMS algorithm is 

introduced in experiment 4, and the mAP value reaches 

51.39%. Compared with experiment 3, the accuracy of the 

model is further improved. It can be seen that soft-NMS 

algorithm has a positive impact on the accuracy of model 

improvement, so on this basis, experiment 5 adopts the 

improved soft-NMS strategy, the mAP value reaches 

52.07%, 0.68% higher than experiment 4, 5.73% higher 

than the original YOLOV4-Tiny (experiment 1), the recall 

rate reaches 64.52%, 2.2% higher than Experiment 4, 

7.29% higher than experiment 1, and the improvement 

range is obvious. Moreover, the FPS value of the algorithm 

models is maintained at about 87f/s, which is basically 

unaffected. 

For comparison, the test results of experiment 1 and 

experiment 5 on the TT100K data set are counted, as shown 

in Table III, where class represents the categories in the data 

set, AP1 represents the average precision (AP) value of each 

category in experiment 1, and AP2 represents the AP value 

of each category in experiment 5. 

 

TABLE III 

STATISTICS OF AP VALUE OF  45 CATEGORIES IN TT100K DATASET 

class AP1\% AP2\% class AP1\% AP2\% 

i2 67.08  69.27  pl120 42.43  51.06  

i4 84.88  82.37  pl20 28.63  26.00  

i5 89.32  88.93  pl30 31.13  33.25  

il100 40.37  72.45  pl40 41.63  46.27  

il60 68.89  78.64  pl5 59.27  63.24  

il80 44.47  60.13  pl50 36.54  41.56  

io 62.79  78.06  pl60 40.07  41.77  

ip 82.12  80.27  pl70 40.31  33.04  

p10 48.67  52.47  pl80 41.67  47.45  

p11 34.79  68.63  pm20 30.76  36.81  

p12 25.76  36.32  pm30 17.08  13.44  

p19 25.68  14.66  pm55 51.69  33.92  

p23 53.21  44.30  pn 52.72  83.90  

p26 47.06  63.03  pne 89.94  90.01  

p27 33.18  46.01  po 36.93  55.62  

p3 35.02  61.80  pr40 73.63  79.75  

p5 73.72  72.73  w13 21.05  28.81  

p6 9.71  11.93  w32 28.40  22.82  

pg 87.12  66.11  w55 34.98  29.65  

ph4 21.66  23.39  w57 54.39  60.08  

ph4.5 59.73  68.04  w59 54.10  64.74  

ph5 19.04  19.01  wo 32.69  24.16  

pl100 57.10  66.36     

According to the analysis of table III, the model test 

results of experiment 5 using the improved strategy in this 

paper perform better than the model test results of 

experiment 1 using the original YOLOv4-Tiny. The 

average precision of more than 65% of the 45 categories 

(black/red and bold representation) in TT100K dataset has 

been improved to varying degrees, and the AP values of 8 

categories (red and bold representation) are improved by 

more than 15%, which are il100, il80, io, p11, p26, p3, pn 
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and po. In experiment 1 and experiment 5, the PR curves of 

these 8 types are shown in Figure 7. 

In Figure 7, the red curve marked with circle symbol is the 

PR curve of experiment 1 (the original YOLOv4-Tiny 

algorithm model) on each category, while the black curve 

marked with triangle symbol is the PR curve of experiment 5 

(the improved YOLOv4-Tiny algorithm model) on each 

category after the combination of optimization strategies 

proposed in this paper. The area under the PR curve and 

enclosed by the coordinate axis of each traffic sign category 

is the AP value of the corresponding category. The higher the 

curve is to the upper right, the larger the area enclosed by the 

curve and the coordinate axis is, the higher the corresponding 

AP value is and the better the performance is. As can be seen 

from the figure, the algorithm model of experiment 5 has 

achieved good detection performance in all the 8 traffic sign 

categories, and the AP value of each category has been 

significantly improved compared with experiment 1. 

    

    
Figure 7.  Comparison of PR curves of different categories 

 
TABLE IV 

COMPARISON OF OVERALL DETECTION PERFORMANCE 

algorithm mAP%/(IoU=0.5) FPS/s Model size/Mb 

YOLOv3-Tiny 44.15 60.4 34.3 

YOLOv4-Tiny 46.34 87.9 23.4 

Improved YOLOv4-Tiny        52.07 87.1 24.7 

 

TABLE V 

OTHER EVALUATION INDICATORS 

algorithm TP FP TN Recall Accuracy F1-Measure 

YOLOv3-Tiny  

YOLOv4-Tiny  

Improved YOLOv4-Tiny  

2578 1460 2543 50.34% 39.17% 56.29% 

2931 1785 2190 57.23% 42.44% 59.65% 

3304 1405 1817 64.52% 50.63% 67.22% 

The overall detection performance and some other 

evaluation indicators of the improved YOLOv4-Tiny 

algorithm, YOLOv3-Tiny and YOLOv4-Tiny are compared. 

The results are shown in table IV and table V.  

As can be seen from table IV, in terms of detection 

accuracy, the improved YOLOv4-Tiny algorithm improves 

7.92% and 5.73% respectively compared with YOLOv3-

Tiny algorithm and YOLOv4-Tiny algorithm. In terms of 

detection speed and model size, it has obvious advantages 

over YOLOv3-Tiny. 

It can be seen from table V that some evaluation indicators 

of the improved YOLOv4-Tiny algorithm are obviously 

better than the other two algorithm models. Among them, 

F1-measure is the weighted harmonic average of precision 

and recall. The two indicators of precision and recall are 

integrated to measure the quality of the algorithm model. The 

higher the F-measure value, the more effective the algorithm 

model will be.  

Figures. 8(a1), 8(b1) and 8(c1) show the detection effect 

of the YOLOv4-Tiny algorithm model in the real scene, and 

8(a2), 8(b2) and 8(c2) show the detection effect of the 

improved YOLOv4-Tiny algorithm model in the real scene. 

The detection results show that compared with the original 

YOLOv4-Tiny algorithm, the proposed method has better 

target location and recognition effect and higher detection 

accuracy. Moreover, the selected test images are real road 

scenes, which also proves the high robustness of this method.  
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Figure 8.  Detection renderings of the improved algorithm model in different scenes 
 

V.  CONCLUSION 

In this paper, based on the framework of YOLOv4-Tiny 

algorithm, aiming at the characteristics of traffic sign data set 

and the shortcomings of original YOLOv4-Tiny algorithm in 

traffic sign detection, three feasible improvement strategies 

are proposed: improved K-means clustering algorithm to 

generate anchor box suitable for traffic sign data set, large-

scale optimization feature map strategy, and improved soft-

NMS algorithm to filter prediction box aiming at the 

shortcomings of NMS algorithm in the post-processing stage 

of the model, so as to improve the detection accuracy on the 

premise of ensuring the real-time traffic sign recognition. 

The experiment shows that the mAP value and recall value of 

the improved YOLOv4-Tiny algorithm in TT100K data set 

are 5.73% and 7.29% higher than the original YOLOv4-Tiny 

algorithm model respectively, reaching 52.07% and 64.52%, 

which greatly improves the detection accuracy and recall rate, 

and provides a certain experimental basis for the practical 

application of the subsequent traffic sign recognition 

algorithm. 
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