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Abstract

Given a set D of m unit disks and a set P of n points in the plane,
the discrete unit disk cover problem is to select a minimum cardinality
subset D′ ⊆ D to cover P. This problem is NP-hard [14] and the best
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previous practical solution is a 38-approximation algorithm by Carmi
et al. [5]. We first consider the line-separable discrete unit disk cover
problem (the set of disk centers can be separated from the set of points
by a line) for which we present an O(n(log n+m))-time algorithm that
finds an exact solution. Combining our line-separable algorithm with
techniques from the algorithm of Carmi et al. [5] results in an O(m2n4)
time 22-approximate solution to the discrete unit disk cover problem.

1 Introduction

Recent interest in specific geometric set cover problems is partly motivated
by applications in wireless networking. In particular, when wireless clients
and servers are modeled as points in the plane and the range of wireless
transmission is assumed to be constant (say one unit), the resulting region
of wireless communication is a disk of unit radius centered on the point rep-
resenting the corresponding wireless transmitting device. Under this model,
sender a successfully transmits a wireless message to receiver b if and only if
point b is covered by the unit disk centered at point a. This model applies
more generally to a variety of facility location problems for which the Eu-
clidean distance between clients and facilities cannot exceed a given radius,
and clients and candidate facility locations are represented by discrete sets
of points. Examples include:

• selecting locations for wireless servers (e.g., gateways) from a set of
candidate locations to cover a set of wireless clients,

• positioning a fleet of water bombers at airports such that every active
forest fire is within a given maximum distance of a water bomber,

• selecting a set of weather radar antennae to cover a set of cities, and

• selecting locations for anti-ballistic defenses from a set of candidate
locations to cover strategic sites.

These problems can be modeled by the discrete unit disk cover problem
(DUDC).

Definition 1. Given a set P of n points and a set O of m points in the
plane (candidate clients and facilities, respectively), the discrete unit disk
cover problem is to find a set O′ ⊆ O (facilities) of minimum cardinality
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such that Disk(O′) covers P, where Disk(A) denotes the set of unit disks
centered on points in set A.

In this work, we consider the line-separable discrete unit disk cover (LS-
DUDC), where P and O are separated by a line l. We may arbitrarily set l
to be horizontal, and further have the set O lie in the region above the line
l. For clarification, we relabel O as U in the LSDUDC setting, denoting that
the points of U are restricted to the upper half-plane defined by l.

• Input: A set P of n points in the plane (clients), and a set U of
m points in the plane (candidate facilities), where P and U may be
separated by a line.

• Output: Find a set U ′ ⊆ U (facilities) of minimum cardinality such
that Disk(U ′) covers P .

The DUDC problem is NP-hard [14], and the general set cover problem
(i.e. the covering shapes are unrestricted) is not approximable within a
factor c log n, for any constant c [20]. In a recent result, Carmi et al. [5]
describe a polynomial-time 38-approximate solution, improving on earlier
108-approximate [4] and 72-approximate solutions [19].

1.1 Our Results

We present an O(n(log n+m))-time algorithm that returns an exact solution
to the LSDUDC problem, as well as a thorough proof of correctness of the
technique. By combining the LSDUDC algorithm with techniques from the
algorithm of Carmi et al. [5], we present a 22-approximation algorithm to the
DUDC problem, improving on the best previous practical polynomial-time
approximation factor of 38.

1.2 Related Work

Line-Separable Discrete Unit Disk Cover. A solution to the LSDUDC
problem was independently discovered and published by Ambühl et al. [3,
Lemma 1], where they propose a dynamic programming algorithm with a
time bound of O(m2n) but whose correctness is not straightforward nor is it
formally argued. This paper presents a faster algorithm together with a proof
of correctness. We then observe that our new algorithm can be combined with
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a suitably modified version of the algorithm of Carmi et al. [5] to achieve an
improved approximation factor for the general DUDC problem.

A similar problem to LSDUDC is studied in [4, 8], but their setting has
the centers of the disks within a specified unit disk and the points to be
covered are outside that disk.
Local Search for Geometric Hitting Problems. Using local search,
Mustafa and Ray [17, 18] have recently presented a (1 + ε)-approximation to
the DUDC problem for any ε ∈ (0, 1]. Their algorithm runs in O(m2(c/ε)2+1n)
time, where c ≤ 4γ [18]. The value of γ can be bounded from above by
2
√

2 [10, 15]. The fastest operation of this algorithm is obtained when ε =

1 for a 2-approximation, resulting in a running time of O(m2·(8√2)2+1n) =
O(m257n) in the worst case. The corresponding running time increases for
any ε < 1. Clearly, this algorithm is not practical for large values of m. It is
possible that a lower running time may be obtained through better bounding
of the constant factors or improvements to their algorithm, but a practical
implementation appears unlikely.
Minimum Geometric Disk Cover. In the minimum geometric disk cover
problem, the input consists of a set of points in the plane, and the problem
is to find a set of unit disks of minimum cardinality whose union covers the
points. Unlike our problem, disk centers are not constrained to be selected
from a given discrete set, but rather may be centered at arbitrary points in
the plane. Again, this problem is NP-hard [9, 21] and has a PTAS solution
[11, 12]. Of course the problem can be generalized further: see [6] for a
discussion of geometric set cover problems.
Discrete k-Center. Also related is the discrete Euclidean k-center problem:
given a set O of m points in the plane, a set P of n points in the plane, and
an integer k, find a set of k disks centered on points in O whose union covers
P such that the radius of the largest disk is minimized. Observe that set P
has a discrete unit disk cover consisting of k disks centered on points in O
if and only if P has a discrete k-center centered on points in O with radius
at most one. This problem is NP-hard if k is an input variable [2]. When

k is fixed, Hwang et al. [13] give a mO(
√

k)-time algorithm, and Agarwal and

Procopiuc [1] give an mO(k1−1/d)-time algorithm for points in Rd.
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2 Line Separated Discrete Unit Disk Cover

We begin by introducing notation and terminology for our discussion of the
line-separable unit disk cover problem (LSDUDC). Here, two sets of points
U = {u1, u2, . . . , um} and P = {p1, p2, . . . , pn} are given. A horizontal line l
is given such that each point in U is above l and each member of P is below
l. Further, for each pi ∈ P , there exists at least one uj ∈ U which maintains
the condition δ(pi, uj) ≤ 1, where δ(pi, uj) is the Euclidean distance between
points pi and uj.

If a point uj ∈ U (resp. pi ∈ P) is within a unit disk centered at a point
pi ∈ P (resp. uj ∈ U), then we use the term uj is covered by pi (resp. pi

is covered by uj). Let di be the circle of unit radius centered at the point
pi ∈ P (i.e. di = Disk(pi)). Also, let left(i) be the left and right(i) be the right
intersection points of di with the horizontal line l. Without loss of generality,
rename the points in P based on the intersection points {left(i) : pi ∈ P}
from left to right order. Let l+ be the region above the line l and l− be the
region below the line l. Let C(di) ⊆ U be the set of points covered by the
circle di centered at point pi ∈ P .

This formulation allows us to address the problem in the dual setting.
Rather than seeking a subset of disks Disk(U ′) ⊆ Disk(U) which covers all
of the points in P , we are seeking a minimum cardinality subset of points
U ′ ⊆ U such that each disk in Disk(P) is stabbed by at least one point in
U ′, as shown in Figure 1.

In Algorithm 1, we present an algorithm for covering all the points in P
using a minimum number of unit radius circles centered at points in U . We
show that this algorithm produces the optimum result. Note that covering
all the points in P by the minimum number of unit circles centered at points
in U implies each of the circles di corresponding to pi ∈ P contains at least
one point in U .

Lemma 1. In the arrangement of the circles centered at points in P, if the
circles di and dj intersect, then at least one intersection point is in l−. In
other words, at most one intersection point of di and dj is in l+.

Proof. Let pi and pj be the centers of the circles di and dj respectively. We
assume that di and dj are circles of unit radius. If two circles of the same
radius intersect, then both the intersection points lie on the line which is the
perpendicular bisector of the segment joining their centers pi and pj. If both
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Figure 1: Demonstration of the arrangement of circles centered at points
indicated by triangles.

the intersection points are in l+, then at least one of either pi or pj must be
in l+, which leads to a contradiction as points P lie in l−.

Claim 1. In the arrangement of the circles centered at points in P, if the
circles di and dj intersect in l+ and left(i) < left(j) then right(i) < right(j).
For example, see the circles d1 and d2 in Figure 1.

Proof. The claim follows from Lemma 1.

Claim 2. In the arrangement of the circles centered at points in P, if the
circles di and dj intersect and if both the intersection points are in l− such
that left(i) < left(j) < right(i), then dj ∩ l+ ⊂ di ∩ l+.

Proof. The result follows from the fact that there are at most two points of
intersection between two distinct circles, and left(i) < left(j) < right(i). For
a demonstration, see the circles d2 and d3 in Figure 1.

Theorem 1. Algorithm 1 returns an optimal solution to the line-separable
unit disk cover problem.

Proof. Let U ′ = {u′1, u′2, . . . , u′m′} denote the set of points in the solution
returned by Algorithm 1. Therefore, d1 ∩ U ′ 6= ∅. Consider the value of k
in Algorithm 1; if k + 1 is the minimum index such that the region ∩k+1

i=1 di
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Algorithm 1 LSDUDC(P ,U)

Input: Set U of points in l+, and set P of points in l−.
Output: Set U ′ of points covering all the points in P .
j ← 1, U ′ ← ∅
Sort P according to left(i).
Compute the sets C(di) of points for each i = 1, 2, . . . , n.
while (j 6= n + 1) do

Find the maximum index k such that ∩k
i=jC(di) 6= ∅, but ∩k+1

i=j C(di) =
∅.
Let s be the rightmost point in ∩k

i=jC(di).
j ← k + 1, U ′ = U ′ ∪ {s}.

end while
return U ′

does not contain any point from U , then the algorithm chooses a point s ∈
∩k

i=1C(di) such that s is the rightmost point in ∩k
i=1C(di). The same process

is repeated from dk+1 onwards. We show that there exists an optimal solution
containing point s.

In the optimal solution, the covering of p1, p2, . . . , pk+1 requires two points
from U . Therefore, if there exists a point s′ ∈ l+ which can cover both p1

and pk+1, then there exists at least one point pa ∈ {p2, p3, . . . , pk} such that
pa is not covered by s′. To cover the point pa, we need one more point, say
s′′ ∈ U . Let us now analyze the possible positions of s′′ by partitioning the
region da ∩ l+ (recall that da is the circle centered at point pa) into three
disjoint subregions as follows (see Figure 2):

RG1: (da ∩ l+) \ (dk+1 ∩ l+) (dark-shaded region)

RG2: d1 ∩ da ∩ dk+1 ∩ l+ (dotted region)

RG3: (da ∩ l+) \ (d1 ∩ l+) (light-shaded region)

If s′′ ∈ RG1, then we may choose s instead of s′′ for covering da, which
in turn, covers d1, d2, . . . , dk. The circle dk+1 may be covered by some other
point in U (which may be different from s′), which in turn may cover some
other circle dj, where j > k + 1. Thus, the choice of s ∈ U ′ is correct.

If s′′ ∈ RG2, then d1, da and dk+1 can be covered by a single point s′′ ∈ U .
This implies that the purpose of choosing s′ for covering d1 and dk+1 jointly
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Figure 2: Illustration in support of Theorem 1.

can be served by s′′. But, since ∩k+1
i=1 C(di) is empty, there exists some other

member da′ , a′ ≤ k which is not covered by s′′. This situation happens for
all choices of s′′ ∈ RG2 to cover d1 and dk+1 jointly.

Algorithm 1 selects s ∈ U ′ for covering d1, d2, . . . , dk, and it also is free
to choose some other point in U (possibly different from s′′) which can cover
dk+1 and some other circle dj, where j > k + 1.

Finally, if s′′ ∈ RG3, then s′′ ∈ dk+1 since s′ ∈ (d1 ∩ dk+1 ∩ l+) \ (da ∩ l+)
(see Figure 2). As in the earlier case, the choice of s ∈ U ′ (instead of s′) for
covering d1, d2, . . . , dk is fine. dk+1, along with some other circles dj, j > k+1,
possibly covered by some other point (may be s′′) in l+.

2.1 Analysis of the LSDUDC Algorithm

Theorem 2. Algorithm 1 has a worst-case running time of O(n(log n+m)).

Proof. We examine each significant step of the algorithm in turn to determine
the running time.

1. Sort the points in P = {p1, p2, . . . , pn} from left to right order.

2. Compute the sets C(di) of points for each i = 1, 2, . . . , n.

3. While(j 6= n+1), find the maximum index k(≤ n) such that ∩k
i=jC(di) 6=

∅, but ∩k+1
i=j C(di) = ∅ for k < n.
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The first step may be completed in O(n log n) time using a standard
sorting technique, and the second step may be done brute force in O(mn)
time. In the while loop, there is at most one iteration for each point in P ,
and the algorithm runs greedily and thus each point in P is used at most
twice. Checking for membership in the intersection of all disks seen so far
may be done in linear time in the number of points in U , for a total worst
case time of O(mn) for the while loop. Therefore, the total running time of
the Algorithm 1 is O(n(log n + m)).

3 Approximate Discrete Unit Disk Cover

We now show that Algorithm 1 for the line-separable discrete unit disk cover
(LSDUDC) problem leads to a 22-approximation algorithm for the discrete
unit disk cover (DUDC) problem. The approximation algorithm is based on
a suitable adaptation of the 38-approximation algorithm of Carmi et al. [5].
In that work, the DUDC problem is supported by a variant of the LSDUDC
problem: suppose we are given a set of disks D = L ∪ U . The disks in U
are centered above a line l, and the set L = D\U are centered below l. We
are also given a set of points P covered by U . The goal is to obtain the set
G ⊆ D of smallest cardinality such that every point in P is covered by a disk
in G.

Note that our line-separable algorithm does not immediately result in
a straightforward improvement to the approximation factor of the algo-
rithm of Carmi et al. Their proof of correctness uses the fact that their
2-approximation to the LSDUDC problem consists of disks forming the lower
boundary of U , which is defined as the semi-chain.

Definition 2 (Carmi et al. [5]). The semi-chain S is the ordered (from left to
right) set of all lower circular arcs below the line l of the disks in U . The set
of indices associated with S forms a consecutive set of indices i, i + 1, . . . , j
for i ≤ j. Carmi et al. call an interval from i to j an interval cell and denote
it by icell(i, j). Let B denote the region l− ∩ (∪m

i=1ui) (ui ∈ U), which
corresponds to the region below l contained by all of the circular arcs in S.

Our solution does not necessarily use disks that contribute to the semi-
chain S. Instead, we first solve the LSDUDC problem optimally using Algo-
rithm 1 on the set of disks U to obtain a disk set U ′. Let U ′ = {u′1, u′2, . . . , u′m′}
be the ordered set of unit disks from left to right based on the left intersection
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point of l with the disks in U ′. We then use the greedy minimum assisted
cover algorithm of Carmi et al. [5] over the sets U ′ and L to obtain an
improved solution E for covering points in P .

Definition 3 (Carmi et al. [5]). Consider a unit disk L̂ ∈ L which inter-
sects B. Given an interval cell icell(i, j), if the set {di, dj, L̂} covers all the
points covered by the disks in the interval cell, then this new set is called an
assisting set for the interval [i, j]. In the special case where j = i+1, {di, dj}
forms the assisting set of the interval [i, j]. The assisting set {di, dj, L̂} is

said to contain a left assisting pair, which is simply the set {di, L̂}. In spe-
cial cases where an assisting set is composed of only one or two disks, the
leftmost individual disk is considered a left assisting pair for these purposes.
Finally, an assisted cover is simply the family of these left assisting pairs
which together form a cover of the points in P.

Now we wish to compare the cardinality of E with that of the global
minimum disk cover G. Consider the upper and lower components of the
solutions E and G, i.e., EU = E ∩U , EL = E ∩L, GU = G ∩U , and GL = G ∩L.
Note that |G| ≤ |E| since G is the global minimum. Similarly, since E is
the minimum assisted cover based on U ′, it follows that |E| = |EU | + |EL| ≤
|ac(U ′,GL)| + |GL|, where ac(U ′,GL) is the smallest subset of U ′ that forms
an assisted cover with GL.

Now we will show that 2|GU | ≥ |ac(U ′,GL)|. Given a disk d in GU , there
are two cases: either d lies above the lower boundary of ac(U ′,GL), i.e., d is
contained in the union of all the disks in ac(U ′,GL), or d contains one or more
arc segments of the lower boundary of ac(U ′,GL). In the first case, Carmi et
al. show that at most two disks in ac(U ′,GL) suffice to cover d and, hence, for
every such disk in the global optimum solution G there are at most two disks
in ac(U ′,GL). In the second case, let V denote the subset of disks that have
lower boundary segments that are contained in d. The set of arc segments of
the disks in V consists, from left to right, of a partially-covered arc segment of
the lower boundary, zero or more fully-covered arc segments, and a partially-
covered arc segment. LetW denote the disks whose arcs are partially covered
together with d. W dominates V and hence there is at most one arc of the
lower boundary fully contained in d; otherwise replacing V with W results
in a cover of smaller cardinality, deriving a contradiction, since V ⊂ U ′, and
U ′ is the optimal LSDUDC solution. Recall that all disks in V and U are
centered above l, and all points in P are below l. Furthermore, observe
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that the partially-covered arc disks must contain points not contained in the
fully-covered disk; otherwise they can also be eliminated while reducing the
cardinality of the cover. As those disks contain other points, each of the disks
is partially covered by at least one other disk in G. We arbitrarily associate
each disk covered more than once to its leftmost disk in G. Thus, of the (at
most) three disks in V , at most two are associated to d. In sum, in either case
each disk in GU has at most two associated disks in ac(U ′,GL) from which it
follows that 2|GU | ≥ |ac(U ′,GL)|. Hence,

2|G| = 2(|GU |+ |GL|) ≥ 2|GU |+ |GL| ≥ |ac(U ′,GL)|+ |GL| ≥ |EU |+ |EL| = |E|,

which gives the approximation factor of two as desired. Carmi et al. [5] prove
that any disk can be used in up to eight applications of the assisted LSDUDC
algorithm, for which they have a 4-approximation. These operations, followed
by a 6-approximation for any remaining disks results in an 8 × 4 + 6 = 38-
approximation for the general DUDC problem. As we have shown that our
technique provides a 2-approximation for the assisted line separated discrete
unit disk cover problem, we now have an approximation ratio of 8×2+6 = 22
for general discrete unit disk cover.

3.1 Algorithm Analysis

There are essentially two main components to the algorithm for solving
DUDC by Carmi et al. [5]. First, they apply a grid of size 3/2 × 3/2 to
the input data. Algorithm 1 supplemented by their assisting disk technique
is run on all grid lines. Note that the number of relevant grid lines is O(n).
Our technique runs in O(n(log n + m)), and the assisting disk operation is
easily implementable in O(mn), so the running time of the first component
is dominated by our step.

The second major component to their technique is finding the 6-approximation
for the DUDC of all disk centers and points contained in each of the 3/2×3/2
squares of the grid. Their technique is based on the application of a subset of
nine properties depending on where the disk centers are located. First, they
determine whether a solution exists using one or two centers by brute force,
which is easily done in O(m2n) time. The determination of which properties
may be applied can be done in O(m) time, and there are only two expensive
steps that may be used in any of the procedures, each of which may only be
used a constant number of times. First is the assisted LSDUDC technique,
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whose running time is O(n(log n + m)), see Theorem 2. The second tech-
nique that may be required is to determine the optimal disk cover of a set
of points using centers contained in one of the 1/2× 1/2 squares, which can
be solved in O(m2n4) time using the technique presented in [16]. The center
of each disk can only be contained in one square, and so this operation is
never performed twice for any given disk. Therefore, the complete DUDC
algorithm achieves worst-case performance when all of the disk centers in
the plane are confined to a single 1/2 × 1/2 square, so that the O(m2n4)
operation is performed over the entire data set.

4 Conclusions

This paper presents a polynomial-time algorithm that returns an exact so-
lution to the LSDUDC problem, as well as a proof of correctness of the ap-
proach. This algorithm for the line-separable problem allows us to improve
the approximation algorithm of Carmi et al. [5], resulting in a 22-approximate
solution to the general DUDC problem, which runs in O(m2n4) time in the
worst case.

Theorem 3. Given sets P of m points and D of n disks in the plane, we
can compute a 22-approximation of the DUDC problem in O(m2n4) time in
the worst case.
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