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Abstract. The design of immunization strategies is an extremely important issue for disease or computer
virus control and prevention. In this paper, we propose an improved local immunization strategy based
on node’s clustering which was seldom considered in the existing immunization strategies. The main aim
of the proposed strategy is to iteratively immunize the node which has a high connectivity and a low
clustering coefficient. To validate the effectiveness of our strategy, we compare it with two typical local
immunization strategies on both real and artificial networks with a high degree of clustering. Simulations
on these networks demonstrate that the performance of our strategy is superior to that of two typical
strategies. The proposed strategy can be regarded as a compromise between computational complexity
and immune effect, which can be widely applied in scale-free networks of high clustering, such as social
network, technological networks and so on. In addition, this study provides useful hints for designing
optimal immunization strategy for specific network.

1 Introduction

A series of studies indicate that many real-world complex
networks in nature and society share two generic proper-
ties: they are scale-free and exhibit a high degree of clus-
tering [1]. These real-world networks include metabolic
networks, the World-Wide-Web (WWW), the protein in-
teraction networks, and even some social networks [2].
Pastor-Satorras and Vespignani [3] found the absence of
epidemic threshold in scale-free networks, where virus can
spread even when its spreading rate is very small. It im-
plies that the methods by decreasing spreading rate can-
not succeed in eradicating the epidemic in heterogeneous
populations [4,5], but the immunization strategies by vac-
cinating the nodes can be effective in suppressing the epi-
demic and have been paid much more attention in recent
years.

The best known strategy for heterogeneous networks
is believed to be targeted immunization [6–10], such as
high degree targeted (HD), high degree adaptive (HDA),
high betweenness (HB) targeted strategies and so on. The
basic idea of targeted strategies is first to rank the impor-
tance of nodes and then remove the nodes from highest
importance to lowest until the network becomes discon-
nected. From the viewpoint of the spreading, Schneider
et al. [11] introduced a novel inverse targeting strategy
where the importance of nodes is represented by their
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contribution to the disease spreading. This strategy is
much more efficient than the HDA strategy and is also
as efficient as the HB targeted strategy. Using explosive
percolation (EP) paradigm, Clusella et al. [12] proposed
explosive immunization (EI) for immunization and tar-
geted destruction of networks. Since in many cases the
number of immunization doses is limited or very expen-
sive, the equal-graph-partitioning (EGP) strategy [13] was
proposed to fragment a given network with a minimum
number of node removals. Indeed, finding the optimal set
of influencers is important in both the immunization of
networks and the destruction of networks by targeted at-
tacks. Morone and Makse [14] investigated the influence
maximization in complex networks through optimal per-
colation and presented collective influence (CI) algorithm
to identify a new class of strategic influencers which out-
rank the hubs in the network. They compared the results
obtained by CI and belief propagation-guided decimation
(BPD) [15] algorithm on a single random scale-free net-
work and found “evidence of the best performance of CI”.
Recently a systematic comparative study on the CI and
the BPD algorithm was performed by Mugisha and Zhou
(the author of BPD) and a slightly adjusted version of the
BPD algorithm was applied to the network optimal at-
tack problem [16]. The results of comparison demonstrate
that the improved BPD has much better performance
than the CI for different types of random networks and
real-world networks. Building on the statistical mechanics
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perspective, Braunstein et al. [17] proposed a very effi-
cient three-stage min-sum (MS) algorithm for solving the
dismantling problem. Most of the above strategies require
global information about network topology and exhibit
clear advantage compared to existing heuristic strategies
(such as HDA and HD). However, the global information is
always difficult to gather and calculate for large scale net-
works. That is one reason why local immunization strat-
egy is widely used in practice. For instance, acquaintance
immunization [18] requires no knowledge of the node de-
grees or any other global information and is effective for
any broad-scale distributed network. As for acquaintance
immunization, the higher-connected nodes are immunized
in the scale-free networks. Gallos et al. [19] introduced a
purely local immunization strategy which is practically as
efficient as the targeted immunization strategy of high-
est degree nodes. Their strategy consists of selecting a
random node and then asking for a neighbor who has
more links than himself or more than a given threshold
kcut and this neighbor is immunized. However, the per-
formance of this new strategy mainly depends on the se-
lection of given threshold kcut which requires extensive
calculations.

Generally, many optimal immunization strate-
gies [18–21] on the heterogeneous networks retain the
advantage of being purely local and their basic idea is
to immunize the nodes with a higher influence. Thus,
analyzing the topological characteristics of networks
and identifying the most influential nodes in spreading
dynamics is of utmost importance to prevent and con-
trol epidemics. Centola [22] investigated the spread of
health behavior through artificially structured online
communities and found that the behavior spreads farther
and faster across clustered-lattice networks than across
corresponding random networks. It was clear that his ex-
perimental results revealed the importance of clustering.
From the analysis of the growth of Facebook, Ugander
et al. [23] found that the probability of contagion is tightly
controlled by the number of connected components in an
individual’s contact neighborhood, rather than by the
actual size of the neighborhood. On the basis of empirical
observation, Chen et al. [24] proposed a local ranking
method, named ClusterRank, to identify influential nodes
in directed networks by taking into account not only
the number of neighbors and the neighbors’ influences
but also the clustering coefficient. In order to identify
important people who are linked by strong social ties
within an individual’s network neighborhood, Backstrom
and Kleinberg [25] developed a new measure of tie
strength that they term “dispersion” characterizing the
extent to which two people’s mutual friends are not
themselves well-connected. This measure of dispersion
involves not only the number of mutual friends of two
people, but also the network structure on these mutual
friends [25]. Moreover, considering both the number and
sizes of communities that are directly linked by a node,
Zhao and others [26] introduced a new centrality index
to identify influential spreaders in a network with the
community structure. Above studies [22–26] motivate
us that the node with a high connectivity and a low

clustering coefficient (that is, the node has a widespread
and dispersive social circle) plays an important role in
the network.

In the case of disease spreading, immunizing or isolat-
ing the influential individuals can decrease the impact of
disease outbreaks. Though the clustering coefficient [27]
is not a most efficient measure for finding the most in-
fluential nodes, it is beneficial to assess the importance
of nodes in scale-free networks of high clustering. Most
previous studies of immunization just identified the nodes
of high connectivity due to the hierarchical infection [7],
while the nodal clustering coefficient was seldom consid-
ered. Motivated by the importance of clustering [22–26] we
propose an improved local immunization strategy which
takes into account the nodal degree and clustering coeffi-
cient. Our strategy consists of randomly selecting initial
individual and then picking out his acquaintance (friend)
who has many friends and a dispersive friend distribution,
and the selected acquaintance is immunized. This process
is iterated through choosing the immunized acquaintance
as the initial input in turn until the number of immunized
individuals is reached.

The rest of the paper is arranged as follows. We an-
alyze the importance of clustering coefficient and present
an improved immunization strategy in Section 2. In Sec-
tion 3, the Monte Carlo simulations are performed on both
real and artificial networks, and the advantages of the pro-
posed strategy are pointed out by comparing with two
typical strategies. The conclusions are given in Section 4.

2 Clustering coefficient and immunization
strategies

The clustering coefficient was introduced by Watts and
Strogatz [27] in the context of social networks analysis.
Let G = (V, E) be an undirected, simple (no self-loops, no
multiple edges) graph (network) with a set of nodes V and
a set of edges E. The total number of nodes is n = |V |,
and the total number of edges is m = |E|. Suppose that
a node i has ki neighbors, and at most ki(ki − 1)/2 edges
can exist among these neighbors when every neighbor of
node i is connected to every other neighbor of i. The clus-
tering coefficient ci of node i denotes the fraction of these
allowable edges that actually exist. The clustering coef-
ficient C(G) of a graph G is the average over the clus-
tering coefficients of its nodes. For social networks such
as friendship networks, the clustering coefficient has intu-
itive meanings. The ci reflects the extent to which friends
of i are also friends of each other, and the C(G) mea-
sures the cliquishness of a typical friendship circle. When
the degrees of nodes are the same, the node with a lower
clustering coefficient has a more dispersive social circle. In
Figure 1, we give two pairs of artificial examples of such
nodes (ka = kb = 2, ca = 0, cb = 1 in Fig. 1a, ki = kj = 6,
ci = 1/15, cj = 4/15 in Fig. 1b).

In Figure 1a, the node a and the node b both have two
neighbors (friends), while the friends of node a are not
familiar with each other. The neighbors i and c of node b
are friends with each other, showing that the social circle
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Fig. 1. A description of connections among several nodes with
different clustering coefficients, where ca = 0, cb = 1, ci =
1/15, cj = 4/15 (the solid lines and dotted lines are used to
show the connections among nodes more clearly). (a) ka =
kb = 2, (b) ki = kj = 6.

of node b has a particularly close connection. In Figure 1b,
the node i and the node j both have six neighbors, but the
friends of node i are not very familiar with each other. The
extent to which friends of j are also friends of each other
is much bigger than that of node i, and in other words,
node i has a more dispersive social circle than node j. In
general, the node with a low clustering coefficient has a
dispersive neighbor distribution.

According to the above analysis, we can see that the
nodes with lower clustering coefficient have more disper-
sive social circle, and these nodes should be paid more
attention on the immunization. Thus, combining the topo-
logical properties of network with the covering strat-
egy [20,21] we propose a local strategy called Dispersion-
based immunization for scale-free networks with a high
degree of clustering. Our strategy can be described as
follows.

Dispersion-based immunization: select a random
node i as the source node. Then find one of its neighbors j
which has the lowest clustering coefficient among a cer-
tain number of the highly connected neighbors (who has a
great number of friends and a dispersive social circle) and
immunize it. This certain number is closely related to the
average degree of network and its optimal value 〈k〉/2 is
obtained through many tests. The nodal degree and clus-
tering coefficient are calculated on the basis of the original
network G = (V, E). When the node with lowest cluster-
ing coefficient has been immunized in the previous steps,
we can choose the next node with second lowest cluster-
ing coefficient as the new immunization target. Moreover,
when all the 〈k〉/2 highly connected neighbors have been

immunized, we can randomly choose another node from
the original network as the new source. According to this
way, we will stop until the percentage g of immunized
nodes is reached.

To make the immunization strategies comparable un-
der the same condition of using only local topological
knowledge, our strategy is compared to only two typical
local strategies, and they are briefly introduced as follows.

Degree-based immunization (proposed by Moreno and
co-workers [20,21]): select a random node i as the source
node. Then find one of its neighbors j and immunize it
which has the highest degree (who has the greatest number
of friends) among all the neighbors of node i. In case there
is more than one node with the highest degree, one of them
is selected at random and immunized. When the node with
highest degree has been immunized in the previous steps,
we can choose the next node with second highest degree
as the new immunization target. Moreover, when all the
neighbors have been immunized, we can randomly choose
another node from the original network as the new source.
According to this way, we will stop until the percentage g
of immunized nodes is reached.

ClusterRank-based immunization (proposed by Chen
et al. [24]): select a random node i as the source node.
Then find one of its neighbors j and immunize it which
has the highest ClusterRank score sj among all the scores
of i’s neighbors. In case there is more than one node with
the highest ClusterRank score, one of them is selected at
random and immunized. In the calculation of ClusterRank
score, the degree and clustering coefficient are calculated
on the basis of the original network G = (V, E). When
the node with highest ClusterRank score has been immu-
nized in the previous steps, we can choose the next node
with second highest score as the new immunization target.
Moreover, when all the neighbors have been immunized,
we can randomly choose another node from the original
network as the new source. According to this way, we will
stop until the percentage g of immunized nodes is reached.

Mathematically, the ClusterRank score si of node i is
given by [24]:

si = f(ci) ·
∑

j∈Γi

kj (1)

where Γi is the set of neighbors of node i and kj is the
degree of node j (j ∈ Γi). This index is used to quantify
the influence of a node by taking into account not only
its direct influence (measured by its clustering coefficient
and the number of its neighbors) but also the influences
of its neighbors. In the later simulations, we plug f(ci) =
10−ci ∈ [0.1, 1] into ClusterRank score si.

Remark. The proposed Dispersion-based immunization
is different from the ClusterRank-based immunization [24]
in two aspects. Firstly, in the detailed process of searching
for immunization targets, they are different. In our algo-
rithm, we first choose 〈k〉/2 highly connected neighbors of
source node i, and then find the final immunization tar-
get which has the lowest clustering coefficient among the
〈k〉/2 highly connected neighbors. This selection process
first considers the node’s degree and then considers the
clustering, because in the scale-free networks, the degree
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Table 1. The eight networks and their basic properties.

Networks N L 〈k〉 C 〈d〉
Scale-free 1 5000 14 995 5.998 0.149 4.071
Scale-free 2 5000 14 995 5.998 0.200 4.132
Scale-free 3 5000 14 995 5.998 0.251 4.112
Scale-free 4 5000 14 995 5.998 0.301 4.178
Scale-free 5 5000 14 995 5.998 0.352 4.260
Scale-free 6 5000 14 995 5.998 0.408 4.319

GR-QC 4158 13422 6.456 0.557 6.049
Email 1133 5451 9.622 0.220 3.606

centrality of node has extremely remarkable difference and
can be regarded as the first consideration. However, in
the ClusterRank-based immunization [24], the degree and
clustering coefficient are considered simultaneously in the
computation of ClusterRank score si = f(ci) ·

∑
j∈Γi

kj . Sec-

ondly, our algorithm does not need multiplication operator
and avoids the dependence upon the setting of clustering
function f(ci).

3 Simulation results

We compare our strategy with two typical immunization
strategies by Monte Carlo simulations on eight networks.
These networks used in this study include six artificial
scale-free networks with a high degree of clustering [28]
and two real networks including GR-QC (General Rela-
tivity and Quantum Cosmology) collaboration subnet [29]
and Email subnet [30]. ArXiv GR-QC collaboration net-
work is from the e-print ArXiv and covers scientific col-
laborations between authors of papers submitted to Gen-
eral Relativity and Quantum Cosmology category [29]. For
the Email network, we focus on the largest component
with 1133 users (nodes) from Universitat Rovira i Virgili
(Tarragona) [30]. The basic topological properties of net-
works are shown in Table 1.

N and L are the total numbers of nodes and links,
respectively. 〈k〉 and 〈d〉 denote average degree and av-
erage path length, respectively. C is the clustering coef-
ficient [27] of whole network, where the clustering coeffi-
cient of the node whose degree is one in a network is set to
zero. The degree distributions of these networks are shown
in Figure 2 where the scale-free feature is obvious except
Email subnet.

Extensive Monte Carlo simulations are carried out sim-
ulating the effectiveness of the immunization strategies in
conjunction with the standard SIS epidemiological model
on top of those underlying networks. In the SIS model,
each susceptible (healthy) node is infected with rate ν if
it is connected to an infected node. Infected nodes are
cured and become again susceptible with rate δ, defining
an effective spreading rate λ = ν/δ (without lack of gen-
erality, we set δ = 1). All these simulations are conducted
at a fixed spreading rate λ = 0.25, and each immunization
strategy is implemented via selecting and immunizing gN
nodes on a network of fixed size N . Initially we choose a
random node as an infected spreader in the network, and

Fig. 2. Degree distribution function P (k) of the eight under-
lying networks.

iterate the rules of the SIS model with parallel updating.
Under the same conditions, we analyze the behavior of
the reduced prevalence ρg/ρ0 for increasing immunization
densities g, where ρg is the stationary properties of the
density of infected nodes and ρ0 is the prevalence with-
out immunization. In principle, the global targeted im-
munization algorithm produces the same set of immune
nodes during each run of algorithm, but the local immu-
nization algorithm is likely to produce different one at each
run. Thus, to avoid randomness of local immunization and
spreading process, we run each local immunization algo-
rithm 20 times, and the spreading results are averaged
over 500 realizations corresponding to different initially
infected nodes for each run of immunization algorithm.

In Figure 3, we show the behavior of the reduced
prevalence ρg/ρ0 as a function of the immunization g and
present immunization threshold gc for the described im-
munization strategies applied to eight different networks.

http://www.epj.org


Eur. Phys. J. B (2017) 90: 2 Page 5 of 7

Fig. 3. Reduced prevalence ρg/ρ0 from Monte Carlo simula-
tions of the SIS model with different immunization strategies,
at a fixed spreading rate λ = 0.25.

For artificial networks (see Figs. 3a–3f) and the real
GR-QC collaboration subnet (see Fig. 3g), all plots almost
follow similar patterns that from top to bottom the immu-
nization strategies are, in order, the ClusterRank-based
immunization, the Degree-based immunization, and the
Dispersion-based immunization, indicating that these lo-
cal strategies based on the neighbor information of each
individual are effective for scale-free networks with a high
degree of clustering.

In Figures 3a–3g, we can see that our Dispersion-based
immunization strategy with utilization of the clustering
coefficient and nodal degree is slightly better than the
Degree-based immunization only based on the degree of
each neighbor. With the increasing of clustering coefficient
C of network, the advantage of our strategy becomes more
and more obvious, illustrating the importance of nodal
clustering coefficient in the immunization of scale-free net-
works of high clustering. It can be understood that the
superior performance of our strategy is based on that its

calculations during iterations are a little more than that of
the Degree-based immunization strategy with only signal
information (degree) taken into account.

Although the ClusterRank-based immunization strat-
egy also uses the local information about clustering coeffi-
cient and degree, it is clearly seen from the critical im-
munization threshold gc (as the arrows denoted in the
Figs. 3a and 3b) that our strategy works much better
than the ClusterRank-based immunization does and ob-
tains satisfactory effect. In the steps of ClusterRank-based
immunization, the ClusterRank score of each i’s neigh-
bor needs to be computed and sorted. However, in our
strategy, only 〈k〉/2 clustering coefficients of neighbors
need to be computed and sorted. Compared with the
ClusterRank-based immunization, our strategy has obvi-
ous advantages of both less computations and better im-
mune effect, so it can be widely used in large-scale and
dynamic-evolving networks (e.g. P2P networks and Social
networks). Since both of the above strategies (our strategy
and the ClusterRank-based immunization strategy) use
clustering coefficient and nodal degree, we’ll discuss why
the immune effect of ClusterRank-based immunization is
worse than that of our strategy. As can be seen in equa-
tion (1), the calculation of ClusterRank score si depends
on clustering function f(ci), which reveals that the per-
formance of ClusterRank-based immunization is closely
related to the design of function f(ci). Thus, the nonde-
terminacy of construction of the function f(ci) affects the
performance of ClusterRank-based immunization.

Given the above, our strategy with utilization of the
clustering coefficient and nodal degree requires small com-
puting burden compared to the ClusterRank-based immu-
nization and the performance of our strategy is superior to
that of two typical strategies (the ClusterRank-based im-
munization and the Degree-based immunization), which
make our strategy efficiently achieve a trade-off between
computational complexity and immune effect. The simu-
lation results reveal that the nodes with lower clustering
coefficient have more dispersive social circle and cannot
be ignored in the immunization strategies.

However, for homogeneous Email subnet, the curves
of these three strategies (see Fig. 3h) overlap almost com-
pletely, which shows that these strategies have no signif-
icant advantages in homogenous network. It is further
proved that all these local immunization strategies are
suitable for scale-free networks of high clustering.

Actually all these immunization strategies have essen-
tially the same ultimate operations of removing edges,
that is, cut the path through which most of the suscepti-
ble nodes catch the epidemics [31]. In Figure 4, we depict
the reduced edges E(g) for the described immunization
strategies applied to the eight networks above.

The results in Figures 4a–4f indicate that our strategy
leads to largest E(g) compared with two typical immu-
nization strategies. Based on the results shown in Fig-
ures 3a–3f and 4a–4f, we can clearly see that the more the
number of reduced edges in an immunization procedure
is, the better its capacity of controlling the spreading of
diseases will be. This conclusion can be used as guidance
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Fig. 4. Reduced edges E(g) from Monte Carlo simulations of
the SIS model with different immunization strategies, at a fixed
spreading rate λ = 0.25.

for developing immunization strategies of suppressing the
transmission of contagious diseases (e.g. SARS, H1N1, and
MERS) in the human contact networks. However, in Fig-
ures 3g and 4g, the simulations on real GR-QC subnet
show that our strategy not only costs least number of re-
duced edges E(g) but also obtains best immune effect.
This finding in real network may be a special case but can
give us new perspectives on empirical research of immu-
nization strategies.

Nowadays, in order to guarantee the transmission ca-
pacity of specific networks, such as computer networks,
power networks, online social networks, and transporta-
tion networks, the less the number of reduced edges E(g)
in an immunization procedure is, the better its ability of
carrying information will be. Therefore, we can employ
different immunization strategies to adapt different sce-
narios, such as different types of networks and different
networks sizes. From this angle, our strategy can also be
viewed as a compromise.

4 Conclusions

The immunization of scale-free networks with a high de-
gree of clustering has been investigated in this paper, and
an improved local immunization strategy has been pro-
posed. The main aim of the proposed strategy is to iter-
atively immunize the node with a high degree and a low
clustering coefficient. Our strategy is local not only be-
cause the decision for immunization of a given node is
taken with only requiring the connectivity of subnet com-
posed of node itself and its neighbors, but also because
the immunization strategy is completed through an itera-
tive process until the percentage g of immunized nodes is
reached meaning that only a certain number of subnet are
involved. The effectiveness of our strategy has been veri-
fied through comparing with two typical local immuniza-
tion strategies on both real-world and scale-free networks
with a high level of clustering. In terms of application, the
proposed strategy regarded as a compromise between com-
putational complexity and immune effect can be widely
applied in social network, technological networks, such as
Internet and WWW, where the number of links and the
connected user (or hyperlink) categories for a given node
are exactly known to the network administrator.
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