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Abstract In this paper, we propose a new approach for a block-based lossless image

compression using finite mixture models and adaptive arithmetic coding. Conventional

arithmetic encoders encode and decode images sample-by-sample in raster scan order. In

addition, conventional arithmetic coding models provide the probability distribution for

whole source symbols to be compressed or transmitted, including static and adaptive mod-

els. However, in the proposed scheme, an image is divided into non-overlapping blocks

and then each block is encoded separately by using arithmetic coding. The proposed model

provides a probability distribution for each block which is modeled by a mixture of non-

parametric distributions by exploiting the high correlation between neighboring blocks.

The Expectation-Maximization algorithm is used to find the maximum likelihood mix-

ture parameters in order to maximize the arithmetic coding compression efficiency. The

results of comparative experiments show that we provide significant improvements over the

state-of-the-art lossless image compression standards and algorithms. In addition, experi-

mental results show that the proposed compression algorithm beats JPEG-LS by 9.7 % when

switching between pixel and prediction error domains.

Keywords Arithmetic coding · Lossless compression · Image compression ·

Finite mixture model · Expectation-maximization algorithm · Kullback-Leibler distance
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1 Introduction

Arithmetic coding (AC) is a very efficient technique for lossless data compression and it

produces a rate which approaches the entropy [1, 21] of the encoded data. In addition,

AC is widely used in the well known image and video compression algorithms such as

JBIG, JBIG2, JPEG2000 and H.264/AVC. AC is a statistical coding technique which needs

to work with a model that estimates the probability of each pixel at each iteration in the

encoding and decoding processes. The model needs to find the probability distribution of

symbols that maximizes the compression efficiency. The model can be static (SAC) [19],

adaptive (AAC) or context-based adaptive (CAAC). When the adaptive model considers the

probability of just the symbol, without any other additional information, it is called AAC

order-0 (AAC-0) [20, 25].

Several image compression schemes based on AAC and CAAC have been proposed.

Carpentieri [5] proposed to appropriately select, for each pixel position, one of a large num-

ber of possible dynamic probability distributions, and encoded the current pixel prediction

error by using this distribution as a model for AC. The scheme presented by Carpentieri [5]

is very slow and requires large amount of computations, especially for large images. Ye et

al. [28] presented an experimental study on issues related to parametric probability model-

ing for entropy coding. The probability distributions used in [28] include the distributions

most commonly used in image modeling, such as Laplacian distribution, Gaussian distri-

bution, t-distribution and generalized Gaussian distribution. Matsuda et al. [15] proposed

to encode image prediction errors using a kind of CAAC. They proposed to use a model

that approaches the probability density of errors by a generalized Gaussian function which

makes the encoding algorithm very slow. Nokutaba et al. [11] presented a model that esti-

mates the probability density of each pixel error by a Laplacian distribution with zero

mean. The compression ratios in [11] are on average 5 % higher than those by conventional

AC. Zhao et al. [30] assumed that the source has a probability density function of Gaus-

sian mixture models. In [17], Ninoo and Nguyen proposed a new framework for efficient

entropy coding of data which can be represented by a parametric distribution model. The

authors demonstrated that the results obtained from a parametric model based on geomet-

ric distribution are very impressive. In previous work [14], Masmoudi et al. presented an

efficient lossless compression scheme for still images based on AC. The model used in this

scheme is based on updating the pixel probabilities only after detecting the last occurrence

of each pixel. In [3], the local average-based probability model was proposed, where the

probabilities are determined using the immediate neighbors of the currently coded wavelet

coefficient. In [23], Teuhola designed a probability model to map any source string to a

unique integer. Zhang et al. [29] proposed to divide each source symbol into several seg-

ments and each segment is separately coded with an AAC. With this division, possible

values of each segment are concentrated within a small range, which leads to a better fit of

the adaptive model to the source symbols statistics. Recently, a block-based AAC, called

BBAAC, which estimates the probability distribution of each block of pixels by minimizing

the Kullback-Leibler distance between the exact probability distribution of that block and

the probability distributions of its causal neighbor blocks has been proposed [13]. The com-

pression results show significant improvements over conventional AC, reducing the bitrate

by an average of 16.4 %. Estimation of the order of dependencies has been presented in [2].

More recently AC is also proposed for lossy image compression [27].

In this work, we define a new improved model-based AAC. The proposed model esti-

mates the distribution of each block by a mixture of non-parametric distributions obtained

from its causal neighboring blocks.
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The rest of this paper is organized as follows. Section 2 presents the AC principle and

Section 3 presents Finite Mixture Models (FMM). In Section 4, we detail our proposed

method and present the mathematical proof. In Section 5, we present experimental results on

the performance of the proposed approach. The conclusion is finally presented in Section 6.

2 Overview of arithmetic coding

In this section, we present the basic notions of AC [8, 12, 18, 25]. Initially, AC determines

the symbols to be encoded, and the symbol probabilities. To estimate the symbol probabili-

ties, AC works with a model which can be static or adaptive. Finally, the encoder performs

the encoding algorithm and generates the corresponding bitstream.

In the SAC technique, the first step consists of calculating the exact frequency table for

all symbols. However, AAC-0 [20] starts with the same frequency count for all symbols

and updates the frequency of each symbol by incrementing its count just after it has been

encoded, to approximate the observed frequencies. In static or fixed models, the exact fre-

quencies must be transmitted before the bitstream is sent. However, in adaptive models no

additional information is required to be sent to the decoder, which uses the same initial

values and the same updating algorithm.

Let X be a message to compress composed of m samples X = x1, . . . , xm. Each sample

xi , with i ∈ {1, . . . , m}, takes value from an alphabet A composed of n mutually distinct

symbols. Let f denote the probability density function (PDF) of the symbols of the alphabet.

Therefore, the number of bits required representing the sequence X, after applying SAC,

denoted by NSAC , is close to:

NSAC ≈ −log2(L(X/f ))

≈ −log2

(

m
∏

i=1

f (xi)

)

≈ −log2

(

∏

k∈A

f (k)c(k)

)

≈ −
∑

k∈A

c(k)log2(f (k)),

(1)

where L(X/f ) corresponds to the likelihood of observed data X given a model f , and c

is the true frequency count table with m =
∑

k∈A

c(k). Hence, the average number of bits

per symbol is bounded by
NSAC

n
, which corresponds to the entropy [21] of the data source

given by:

Hf = −
∑

k∈A

f (k)log2(f (k)). (2)

Now, if we propose to encode message X by an estimated PDF f̂ , then the number of

bits needed to represent X, denoted by N
f̂

, is close to:

N
f̂

≈ −log2(L(X/f̂ ))

≈ −
∑

k∈A

c(k)log2(f̂ (k)), (3)
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and the average number of bit per symbol is bounded by:

H
f̂

= −

n
∑

i=1

f (xi)log2(f̂ (xi)). (4)

Therefore, the number of additional bits when using distribution f̂ to encode message X

is equal to:

H
f̂

− Hf = −

n
∑

i=1

f (xi)log2(f̂ (xi))

+

n
∑

i=1

f (xi)log2(f (xi))

=

n
∑

i=1

f (xi)log2(
f (xi)

f̂ (xi)
)

= KL(f ||f̂ ),

(5)

which corresponds to the Kullback-Leibler distance (KL) [10] of the exact probability table

f with respect to the estimated one f̂ . Hence, a good model is one that minimizes the KL

distance between the estimated and the exact PDF.

3 Finite mixture models

Finite Mixture Models (FMM) [16] provide powerful and flexible probabilistic mod-

els which have been used successfully in many applications such as density estimation,

clustering and classification.

The mixture density f (x) can be formulated as:

f (x, ψ) =

K
∑

l=1

πlfl(x, θl), (6)

where the vector ψ = (π1, · · · , πK , θ1, · · · , θK ) contains all parameters of the mixture

such that 0 ≤ πl ≤ 1 and

K
∑

l=1

πl = 1, and each fl is a density function parametrized by θl .

The mixture model likelihood function is the probability of observing the data given a

model f with parameters vector ψ , and for m independent samples, X = x1, · · · , xm, it is

given by:

L(X, ψ) =

m
∏

i=1

f (xi, ψ), (7)

Maximizing the AC efficiency corresponds to maximizing the likelihood function

L(X, ψ). Thus, we wish to find ψ such that L(X,ψ) is maximum. This is known as the

maximum likelihood estimates (MLE) for ψ . In order to estimate ψ , it is typical to use the

log likelihood function, defined as:

l(X, ψ) = ln(L(X, ψ)). (8)

Note that the value of ψ which maximizes L(X, ψ) also maximizes l(X,ψ).

The FMM parameters can be estimated very efficiently through MLE using the iterative

expectation maximization (EM) algorithm [6]. Each iteration of the EM-algorithm consists

of two processes: the expectation or the E-step, and the maximization or the M-step. The EM
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algorithm starts with initial guesses about the mixture parameters ψ . The E-step calculates

the expected value of the l(X,ψ) function using the current estimate for the parameters,

and the M-step computes parameters maximizing the expected log-likelihood found in the

E-step.

In this work, we limit our study to the case of mixture of non-parametric densities. In

this case, the mixture parameters are only composed of the mixing proportions.

4 Proposed approach

A very important strategy to losslessly compresses images is to divide an image into small

blocks of pixels and to separately encode each block with its exact PDF while the average

entropy of blocks is lower than the entropy of the whole image. Table 1 shows the compres-

sion results, in bits per pixel (bpp), obtained when encoding a Lena image of size 512×512

with a SAC and without taking into account the additional information corresponding to

the PDF of each block, which requires a very large amount of data. The result presented in

Table 1 is very interesting and the coding rate is reduced from 5.63bpp to 3.38bpp when

using a small block size. This result prompted us to define a probabilistic model for finding,

for each block, the PDF that fits its exact density with a minimum of additionnal informa-

tion, because if the probabilities of the samples in a block totally matche those in the model,

the compression efficiency will be optimal.

More specifically, we will focus our attention on defining a new model that efficiently

estimates the PDF of each block of pixels with a minimum of additional information.

Therefore, at the beginning of lossless block encoding, we propose to find a mixture of

non-parametric distributions that maximizes the likelihood function given that block based

on the probability distributions of its neighboring blocks. Non-parametric models offer an

important alternative to traditional parametric models for exploring large amounts of data

without making specific distributional assumptions. AAC uses the probabilities generated

by the founded mixture model and starts encoding symbols with these probabilities. As

the coding process continues, AAC updates the symbol probabilities and they gradually

converge to the real PDF of each block.

Let X be an image block to compress which is composed of m pixels X = x1, . . . , xm.

Each pixel xi , with i ∈ {1, . . . , m}, takes a value from an alphabet A composed of n sym-

bols. We propose to model the PDF of the block X, denoted by fX , by a mixture of K

probability distributions {fXj
}Kj=1, where fXj

is a PDF calculated from Xj , the j th neigh-

bor block, as illustrated in Fig. 1. Therefore, the probability that a certain pixel has a value

k can be written as:

fX(k) =

K
∑

j=1

πjfXj
(k), k ∈ A, (9)

Table 1 Compression results for a Lena image (in bits/pixel) using SAC for each block

Block size

32 × 32 16 × 16 8 × 8 4 × 4

5.63 5.00 4.26 3.38
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Fig. 1 X and its neighboring

blocks Xj Xj

X

where πj is the mixing proportion of the j th distribution, such that 0 ≤ πj ≤ 1 and
K

∑

j=1

πj = 1; K is the number of adjacent blocks used in the mixture model, and fXj
is

calculated as:

fXj
(k) =

cj (k) + 1

m + n
, (10)

where cj (k) is the frequency count of k in the j th neighbor block and m =
∑

k∈A

cj (k).

To justify this choice, we consider the situation in which the encoder uses the true fre-

quency count table of the neighbor blocks in the mixture model when encoding the current

block. So, what should be done if a pixel k0 has never been seen before. In order to encode

such a pixel, it must be given a non-zero estimated probability. To overcome this, the j th

PDF is calculated according to (10) with respect to the generalized Laplace law of succes-

sion. Therefore, when a pixel k0 has never been seen before, the probability that the next

pixel will be equal to k0 is
1

m + n
.

In this FMM, the parameters vector ψ = (π1, · · · , πK ) contains only the mixing propor-

tions which are calculated by maximizing the log-likelihood of the observed data X, given

by:

l(X,ψ) =

m
∑

i=1

log

⎛

⎝

K
∑

j=1

πjfXj
(xi)

⎞

⎠ . (11)
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The EM-algorithm [6] seeks to find the MLE for ψ by iteratively applying the two

following steps:

E-Step: with initial guesses for the parameters of the proposed mixture model {π
(0)
j }Kj=1,

we calculate the posterior probability τ
(t)
j,i for the observation xi in each

constituent distribution fXj
at the t th iteration by:

τ
(t)
j,i =

π
(t)
j fXj

(xi)

K
∑

l=1

π
(t)
l fXl

(xi)

, (12)

where i = 1, · · · ,m and j = 1, · · · , K .

M-Step: we calculate π
(t+1)
j at the iteration (t + 1):

π
(t+1)
j =

1

m

m
∑

i=1

τ
(t)
j,i . (13)

With the new estimates for ψ = (π1, · · · , πK ), the E-step is repeated to recompute

new posterior probabilities. The entire procedure is repeated until the model parameters

converge [6, 9] to ψ̂ = (π̂1, · · · , π̂K ). Finally, the distribution used to encode the current

block is a mixture calculated from its adjacent blocks distributions defined by:

f̂X(k) =

K
∑

j=1

π̂jfXj
(k), k ∈ A. (14)

This method needs to send ψ̂ values as additional information to the decoder. Note that,

the EM-algorithm consumes less CPU time to converge in the case of non-parametric FMM

by comparison with the parametric ones. The block diagram of the proposed method is

depicted in Fig. 2 where both the modeling and coding part have been included.

Image Block partioning

XX

X X

1

32

EM−algorithm
X

AAC

bitstream

Uniform

f̂

UA

KL distance test

Fig. 2 Functional block diagram of the proposed approach
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In practice, we use an integer implementation of AC, which works with frequency counts

instead of probabilities. The estimated PDF can be written as f̂X(k) = ĉ(k)
M

, where ĉ(k) =
⎢

⎢

⎢

⎣

K
∑

j=1

π̂j cj (k)

⎥

⎥

⎥

⎦+1 is the estimated frequency count table and M =
∑

k∈A

ĉ(k). Therefore, we

propose to start encoding the current block X with the estimated frequency table ĉ calculated

from the new mixture model. As the coding process continues, AAC updates the symbol

frequency by incrementing its count just after it has been encoded, which makes the model

gradually converge to the symbols’ real PDF.
In this case, the probability of the current block X, which corresponds to the likelihood

function given that block, is calculated as:

L(X, ψ̂) = f̂X(x1)

m
∏

i=2

f̂X(xi |x1, · · · , xi−1)

= f̂X(0)c(0)
∏

k∈A\{0}

{f̂X(k|0, · · · , k − 1)}c(k)

=

∏

k∈A

{

c(k)
∏

j=1

(ĉ(k) + j − 1)}

m
∏

i=1

(M + i − 1)

,

(15)

and the number of bits required to represent the block X is close to −log2(L(X, ψ̂)).

5 Experimental results

The AC implementation used during the experiment analysis was based on [25]. In this

experimental study, we assumed that the distribution of block X, i.e the block to be encoded,

is estimated by a mixture of their three causal neighboring block PDF. Therefore, from (9),

the estimated distribution f̂X is:

f̂X = π̂1fX1
+ π̂2fX2

+ π̂3fX3
, (16)

where fX1
, fX2

and fX3
correspond respectively to the PDF of the blocks X1, X2 and X3.

The EM-algorithm is used to find the mixing proportions {π̂j }
3
j=1 that maximize the AC

efficiency.

For our experiments, we propose to analyze our method on some well-known 8-bit

grayscale images, which are available from the University of Waterloo Greyset2 collec-

tion.1 In Section 5.1 we analyzed and estimated the distribution of blocks from the image

of Barbara and in Section 5.2, we presented and compared the compression results.

5.1 Distribution estimation

Figure 3 shows four neighbor blocks from the image of Barbara and their corresponding dis-

tributions. From Fig. 3.h we can show that the distributions fX and f̂X are very similar. For

this example, the estimated distribution is f̂X = 0.3fX1
+ 0.1fX2

+ 0.6fX3
, and the results

1http://links.uwaterloo.ca/repository.html

http://links.uwaterloo.ca/repository.html
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(a) X1 (b) X2 (c) X3 (d) X
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0.16

fX1

80 85 90 95 100 105 110 115
0
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0.14

0.16

fX2
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0

0.02

0.04

0.06

0.08

0.1
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0.14

0.16

fX3

80 85 90 95 100 105 110 115
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

f

f̂

(e) fX 1
(f) fX 2

(g) fX 3
(h) fX and f̂X

Fig. 3 Four neighbor 16 × 16 blocks of the image of Barbara: a X1, b X2, c X3, d X, block to be encoded.

Their corresponding probability distributions: e fX1
, f fX2

, g fX3
, h fX and f̂X

of KL distances between fX and other distributions fX1
, fX2

, fX3
and f̂X are presented in

Table 2. From these results, we found that the minimum KL distance is between fX and

f̂X , and therefore AC works better when using f̂X to encode the current block instead of

using one of its neighboring blocks distributions [13].

Let UA be a discrete uniform distribution in the alphabet set A composed of n sym-

bols and every n symbol has an equal probability 1
n

. If we consider a block-based AAC-0

(BAAC-0), which encodes each image block separately by starting with the discrete uniform

distribution UA and by updating the pixel frequency count just after it has been encoded,

then the likelihood function is given by:

L(X,UA) =

∏

k∈A

{

c(k)
∏

j=1

(j)}

m
∏

i=1

(n + i − 1)

=

∏

k∈A

{

c(k)
∏

j=1

(j)}

m
∏

i=1

(n + i − 1)

.

(17)

Therefore, the number of bits needed to encode the block X by using BAAC-0 is bounded

by −log2(L(X,UA)).

Table 2 KL distance between fX and some other distributions of blocks presented in Fig. 3

KL(fX ||fX1
) KL(fX||fX2

) KL(fX||fX3
) KL(fX||f̂X)

0.87 0.96 0.81 0.09
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Another four neighbor blocks obtained from a Barbara image and their corresponding

distributions are presented in Fig. 4. For this second example, the estimated distribution

is f̂X = 0.4fX1
+ 0.4fX2

+ 0.2fX3
. The results of KL distances between fX and other

distributions including the discrete uniform distribution are presented in Table 3. From these

results, the minimum KL distance is between fX and UA, and therefore AC works better

when using UA to encode the current block instead of using f̂X . From Fig. 2, we can see

that the proposed compression scheme adopts a modeling switcher for each block between

the estimated PDF obtained by using the proposed FMM and the uniform distribution. The

switcher selects modeling in uniform or in mixture mode, as determined by a simple KL

distance test. Note that uniform distribution presents a good alternative for very complex

models.

5.2 Compression results

In our scheme, we propose to truncate the values of the mixing proportions {π̂j }
K
j=1 (of type

float) by considering one decimal point. Thus, when we have three mixing proportions for

each block, we have to store only two digits because

3
∑

j=1

πj = 1, which requires 8 bits.

Note that, we have experimentally found that truncating the mixing proportions up to one

decimal point does not give any improvement in the overall compression rate. Therefore, by

using three mixing proportions and the PDF of causal neighboring blocks, we can estimate

the PDF of each block. In addition, it should be noticed that the proposed compression

algorithm can be applied with the same manner in both pixel and prediction error domains.

Without loss of generality, we employ in this paper the median edge detector (MED), which

is a nonlinear predictor used in LOCO-I image coder [24], to calculate the predicted errors

according to following equations:

x̂ =

⎧

⎨

⎩

min(a, b) if C ≥ max(a, b)

max(a, b) if C ≤ min(a, b)

a + b − c otherwise

. (18)

(a) X1 (b) X2 (c) X3 (d) X1

40 50 60 70 80 90 100 110
0

0.01

0.02

0.03

0.04

0.05

0.06

fX1

30 40 50 60 70 80 90
0

0.01

0.02

0.03

0.04

0.05

0.06

fX2

30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

fX3

40 60 80 100 120 140 160
0

0.01

0.02

0.03

0.04

0.05

0.06
f

f̂

(e) fX 1
(f) fX 2

(g) fX 3
(h) fX and f̂X

Fig. 4 Four neighbor 16 × 16 blocks of the image of Barbara: a X1, b X2, c X3, d X, block to be encoded.

Their corresponding probability distributions: e fX1
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, g fX3
, h fX and f̂X
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Table 3 KL distance between fX and some other distributions of blocks presented in Fig. 4

KL(fX ||fX1
) KL(fX ||fX2

) KL(fX||fX3
) KL(fX||f̂X) KL(fX ||UA)

1.71 1.71 1.78 1.18 0.5

The MED predictor can be viewed as the median selector of three predictors; a, b and c;

where the set {a, b, c} is a 3-pixel neighborhood for the prediction of the current pixel. The

predicted error pixel is calculated as e = x − x̂ and will be mapped to a non-negative value

by applying successively (19) and (20) in order to improve the AC efficiency by reducing

the error range from [−255, 255] to [0, 255]. The mapping process leads to a model which

better fit the source symbols statistics.
{

e = e + 256 if e < −128

e = e − 256 if e > 128
. (19)

{

e = 2 |e| if e ≥ 0

e = 2 |e| − 1 if e < 0
. (20)

Table 4 lists the compression results, in bits per pixel (bpp), measured by the state-

of-the-art lossless image compression standards and algorithms. The columns correspond

respectively to:

• FELICS [7]: The compression mechanism of Howard and Vitter.
• JPEG-2000 [22]: An international standard for still image compression, which sup-

ports a wider set of features.
• bzip2 [4]: A highly-quality implementation of the Burrows-Wheeler transform.
• JPEG-LS [24]: The latest coding standard for lossless and near-lossless of continuous-

tone images.
• BBAAC method [13]: A new AAC which estimates the probability distribution of each

block of pixels by minimizing the Kullback-Leibler distance between the exact PDF of

that block and the PDF of its causal neighbor blocks.
• CALIC [26]: The context-based adaptive lossless image codec, was evaluated to be in

the best performance by the JPEG working group.
• Proposed approach in pixel domain (PD): Proposed approach applied in pixel

domain with blocks of size 16 × 16.
• Proposed approach in prediction error domain (PED): Proposed approach applied

in prediction error domain by applying the MED predictor and with blocks of size

16 × 16.

CALIC, JPEG-2000 and JPEG-LS are among well known lossless image compression algo-

rithms. Among these CALIC was evaluated to be in best performance by the JPEG working

group.

The average compression rate obtained by encoding each block, of size 16 × 16, with

a mixture of three causal block PDF in PD is 4.94 bpp, while the average coding rate in

PED when using the MED predictor is 4.51 bpp, which outperforms JPEG-LS by 2.6 %. In

addition, from the Table 4, it is apparent that the proposed compression scheme, if we mix

PD and PED, offers fairly competitive performance to CALIC, with only 2 % increase in

average bit-rate.

Table 5 presents the best coding rates attained by a hybrid system that applies both alter-

natives, AC of sources in PD and PED. These coding rates are obtained from two different
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Table 4 Compression results of the state-of-the-art lossless image compression standards and algorithms

on Waterloo image test set in bits/pixel (bpp)

Name FELICS BZIP2 BBAAC JPEG2000 JPEG-LS CALIC Proposed approach

PD PED

Barbara 5.34 6.12 6.46 4.66 4.73 4.45 5.96 4.96

Boat 4.67 5.33 5.79 4.40 4.25 4.15 5.36 4.53

France 2.36 0.39 3.20 2.02 1.41 0.82 3.05 0.67

Frog 6.13 3.46 3.73 6.25 6.05 5.85 3.57 5.29

Goldhill 4.97 5.60 6.26 4.83 4.71 4.63 5.85 4.85

Lena 4.60 5.30 5.99 4.31 4.24 4.11 5.47 4.45

Library 5.47 4.48 4.50 5.69 5.10 5.01 4.45 5.24

Mandrill 6.30 6.60 6.90 6.11 6.04 5.87 6.64 6.19

Mountain 6.57 5.13 5.08 6.70 6.42 6.27 5.08 6.53

Peppers 4.79 5.34 6.10 4.61 4.49 4.38 5.61 4.84

Washsat 4.15 2.52 3.01 4.43 4.13 3.67 2.71 2.31

Zelda 4.29 5.12 6.19 3.99 4.01 3.86 5.57 4.22

Average 4.97 4.62 5.27 4.83 4.63 4.42 4.94 4.51

The notations PD and PED means Pixel Domain and Prediction Error Domain, respectively

sets of results, beating JPEG-LS and CALIC by 9.7 and 5.4 %, respectively. We plan to con-

tinue exploring this approach to provide a single system for an appropriate choice of source

basis before doing AC process.

Table 5 A mix system which chooses for each image the best compression result between PD and PED

Name JPEG-LS CALIC Proposed approach Mixing

PD PED

Barbara 4.73 4.45 5.96 4.96 4.96

Boat 4.25 4.15 5.36 4.53 4.53

France 1.41 0.82 3.05 0.67 0.67

Frog 6.05 5.85 3.57 5.29 3.57

Goldhill 4.71 4.63 5.85 4.85 4.85

Lena 4.24 4.11 5.47 4.45 4.45

Library 5.10 5.01 4.45 5.24 4.45

Mandrill 6.04 5.87 6.64 6.19 6.19

Mountain 6.42 6.27 5.08 6.53 5.08

Peppers 4.49 4.38 5.61 4.84 4.84

Washsat 4.13 3.67 2.71 2.31 2.31

Zelda 4.01 3.86 5.57 4.22 4.22

Average 4.63 4.42 4.94 4.51 4.18
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6 Conclusions

In this work, we have proposed an efficient scheme for block-based lossless image com-

pression using adaptive arithmetic coding. The model proposed to estimate the statistics of

each block is designed by a finite mixture model of non-parametric distributions by exploit-

ing the high correlation between neighboring blocks. The experimental results showed that

the compression efficiency of arithmetic coding when using finite mixture model for data

statistics estimation is increased, and when combined with the median edge detector, it out-

performs JPEG-LS by 2.6 %. An hybrid algorithm combining the results obtained when

encoding image in PD and PED does very well, beating JPEG-LS by 9.7 %. More predic-

tors should be studied and a single system which switch between pixel and prediction error

is needed to provide more improvement.
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