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ABSTRACTThe Steiner tree problem is one of the most fundamentalNP-hard problems: given a weighted undire
ted graph anda subset of terminal nodes, �nd a minimum-
ost tree span-ning the terminals. In a sequen
e of papers, the approxi-mation ratio for this problem was improved from 2 to the
urrent best 1:55 [Robins,Zelikovsky-SIDMA'05℄. All thesealgorithms are purely 
ombinatorial. A long-standing openproblem is whether there is an LP-relaxation for Steiner treewith integrality gap smaller than 2 [Vazirani,Rajagopalan-SODA'99℄.In this paper we improve the approximation fa
tor forSteiner tree, developing an LP-based approximation algo-rithm. Our algorithm is based on a, seemingly novel, itera-tive randomized rounding te
hnique. We 
onsider a dire
ted-
omponent 
ut relaxation for the k-restri
ted Steiner treeproblem. We sample one of these 
omponents with proba-bility proportional to the value of the asso
iated variable inthe optimal fra
tional solution and 
ontra
t it. We iteratethis pro
ess for a proper number of times and �nally outputthe sampled 
omponents together with a minimum-
ost ter-minal spanning tree in the remaining graph. Our algorithmdelivers a solution of 
ost at most ln(4) times the 
ost ofan optimal k-restri
ted Steiner tree. This dire
tly implies aln(4) + " < 1:39 approximation for Steiner tree.As a byprodu
t of our analysis, we show that the integral-ity gap of our LP is at most 1:55, hen
e answering to the�Extended abstra
t.yPartially supported by MNISW grant number N N206 172333, 2007 - 2010.zDeveloped while visiting EPFL.xSupported by Swiss National S
ien
e Foundation withinthe proje
t \Robust Network Design"
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mentioned open question. This might have 
onsequen
es fora number of related problems.
Categories and Subject DescriptorsF.2.2 [Computations on dis
rete stru
tures℄: Non-numeri
alAlgorithms and Problems
General TermsAlgorithms, Theory
KeywordsNetwork design, approximation algorithms, linear program-ming relaxations, randomized algorithms
1. INTRODUCTIONGiven an undire
ted n-node graph G = (V;E), with edge
osts (or weights) 
 : E ! Q+ , and a subset of nodes R � V(terminals), the Steiner tree problem asks for a tree S span-ning the terminals, of minimum 
ost 
(S) := Pe2S 
(e).Note that S might 
ontain some other nodes, besides theterminals (Steiner nodes). Steiner tree is one of the 
lassi-
al and, probably, most fundamental problems in ComputerS
ien
e and Operations Resear
h, with great theoreti
al andpra
ti
al relevan
e. This problem emerges in a number of
ontexts, su
h as the design of VLSI, opti
al and wireless
ommuni
ation systems, as well as transportation and dis-tribution networks (see, e.g., [27℄).The Steiner tree problem appears already in the list ofNP-hard problems in the book by Garey and Johnson [19℄.In fa
t, it is NP-hard to �nd solutions of 
ost less than9695 times the optimal 
ost [5, 10℄. Hen
e, the best one 
anhope for is an approximation algorithm with a small but
onstant approximation guarantee. Without loss of general-ity, we 
an repla
e the weighted graph given as input by itsmetri
 
losure1. It is well-known that a minimum-
ost ter-minal spanning tree T is a 2-approximation for the Steinertree problem [20, 41℄. A terminal spanning tree is a Steinertree without Steiner nodes: su
h a tree always exists in themetri
 
losure of the graph. A sequen
e of improved ap-proximation algorithms appeared in the literature [29, 35,1The metri
 
losure of a weighted graph is a 
ompleteweighted graph on the same node set, with weights givenby shortest path distan
es with respe
t to original weights.



38, 42℄, 
ulminating with the famous 1+ ln(3)2 +" < 1:55 ap-proximation algorithm by Robins and Zelikovsky [38℄ (here" > 0 is an arbitrary small 
onstant).All the mentioned improvements are based on the follow-ing idea. A full 
omponent (or, for short, 
omponent) of aSteiner tree is a maximal subtree whose terminals 
oin
idewith its leaves. Note that the edge set of the Steiner tree ispartitioned by its 
omponents. A k-restri
ted Steiner treeis a Steiner tree whose 
omponents 
ontain no more than kterminals (k-
omponent). The following result by Bor
hersand Du [6℄ shows that, in order to obtain a good approx-imation fa
tor, it is suÆ
ient to restri
t our attention tok-restri
ted Steiner trees. We let Opt and Optk denote anoptimal Steiner tree and an optimal k-restri
ted Steiner tree,respe
tively. Moreover, opt := 
(Opt) and optk := 
(Optk).Theorem 1. [6℄ Let �k be the k-Steiner ratio, i.e. thesupremum of the ratio optk=opt. Then �k = (r+1)2r+sr2r+s �1 + 1blog2 k
 , where r and s are non-negative integers su
hthat k = 2r + s and s < 2r.We remark that, given an optimal k-restri
ted Steiner treeS�, its 
omponents are optimal Steiner trees 
onne
ting the
orresponding terminals. For any �xed k, a list fZ1; : : : ; Zqg,q = O(nk), of all potential k-
omponents 
an be 
omputedin polynomial time by 
onsidering all subsets R0 of at mostk terminals, and 
omputing an optimal Steiner tree2 on ter-minals R0. Unfortunately, sele
ting the 
heapest subset offZ1; : : : ; Zqg spanning the terminals is an NP-hard prob-lem already for k � 4 [18℄. For this reason, [38℄ and previouspapers rather sele
t a subset of the Zi's with a lo
al-sear
happroa
h. The idea is to start with a minimum-
ost termi-nal spanning tree T 0 (whi
h is formed by 2-
omponents),and iteratively improve it. At ea
h step, one 
onsiders ea
hZi, and 
he
ks how mu
h adding Zi to the 
urrent solution(and removing redundant edges) improves the solution it-self. The algorithm ea
h time sele
ts the Zi leading to thelargest improvement, and halts when no further improve-ment is possible. Di�erent algorithms (essentially) di�er inthe way the improvement is evaluated.Despite the e�orts of many resear
hers in the last 10 years,the approa
h above did not provide any further improve-ment after [38℄. This motivated our sear
h for alternativemethods. One standard approa
h is to exploit a properLP-relaxation (see, e.g., [21℄ for a list of LP-relaxations forSteiner tree). A natural formulation for the problem is theundire
ted 
ut formulation (see [22, 41℄), where we have avariable for ea
h edge of the graph and a 
onstraint for ea
h
ut separating the set of terminals. Ea
h 
onstraint for
es topi
k at least one edge 
rossing the 
orresponding 
ut. Consi-dering its linear relaxation, 2-approximation algorithms 
anbe obtained either using primal-dual s
hemes [22℄ or iter-ative rounding [28℄. However, this relaxation has an inte-grality gap of 2 already in the spanning tree 
ase, i.e., whenR = V (see example 22.10 in [41℄).Another well-studied but more promising LP is the so
alled bidire
ted 
ut relaxation [8, 12, 36℄. Let us �x anarbitrary terminal r (root). Repla
e ea
h edge fu; vg by two2We re
all that, given k terminals, the dynami
-programming algorithm by Dreyfus and Wagner [11℄ 
om-putes an optimal Steiner tree among them in O(3kn+2kn2+n3) worst-
ase time. A faster parameterized algorithm 
anbe found in [33℄.

(a) r(b)Figure 1: (a) A 4-restri
ted Steiner tree S, wherere
tangles denote terminals and 
ir
les representSteiner nodes. (b) Edges of S are dire
ted towardsa root r. The resulting dire
ted 
omponents are de-pi
ted with di�erent 
olors.dire
ted edges (u; v) and (v; u) of 
ost 
(fu; vg). For a given
ut U � V , de�ne Æ+(U) = f(u; v) 2 E j u 2 U; v =2 Ug asthe set of edges leaving U . The mentioned relaxation isminXe2E 
(e)ze (BCR)
Xe2Æ+(U) ze � 1 8U � V n frg : U \ R 6= ;ze � 0 8e 2 E:We 
an 
onsider the value ze as the 
apa
ity whi
h we aregoing to install on the dire
ted edge e. The LP 
an then beinterpreted as 
omputing the minimum-
ost 
apa
ities thatsupport a 
ow of 1 from ea
h terminal to the root. In aseminal work, Edmonds [12℄ showed that BCR is integral inthe spanning tree 
ase.Theorem 2. [12℄ For R = V , the polyhedron of BCR isintegral.The best-known lower bound on the integrality gap ofBCR is 8=7 [31, 41℄. The best-known upper bound is 2,though BCR is believed to have a smaller integrality gapthan the undire
ted 
ut relaxation [36℄. The authors in [8℄report that the stru
ture of the dual to BCR is highly asym-metri
, whi
h 
ompli
ates a primal-dual approa
h. More-over, iterative rounding based on pi
king a single edge 
an-not yield good approximations, as was pointed out in [36℄.Finding a better-than-2 LP-relaxation for the (k-restri
ted)Steiner tree problem is a long-standing open problem [8, 36℄.We remark that good LP-bounds, besides potentially leadingto better approximation algorithms for Steiner tree, mighthave a mu
h wider impa
t. This is be
ause Steiner tree ap-pears as a building blo
k in several other problems, and thebest approximation algorithms for some of those problemsare LP-based. Strong LPs are also important in the designof (pra
ti
ally) eÆ
ient and a

urate heuristi
s.

1.1 Our Results and TechniquesWe next state the main result of this paper (see Se
tion4.1 for a derandomization of this result).Theorem 3. For any 
onstant " > 0, there is a polynomial-time randomized approximation algorithm for the Steinertree problem with expe
ted approximation ratio ln(4) + ".Our algorithm is based on the following dire
ted-
omponent
ut relaxation for the k-restri
ted Steiner tree problem (seealso [34℄). Consider a k-restri
ted Steiner tree S with theedges dire
ted towards the 
hosen root terminal r (see Fig-ure 1). Consider the (undire
ted) k-
omponents Zi intro-du
ed before. Make a 
opy C of ea
h Zi for ea
h 
hoi
e



of one (sink) terminal ui in it, and dire
t all the edgesof C towards ui. Let C1; : : : ; Ch be the resulting dire
tedk-
omponents. Observe that h = O(knk) is polynomiallybounded for any �xed k. We denote by 
(Cj) the 
ost of Cj .Re
all that 
(Cj) is the 
ost of an optimal Steiner tree overR \ V (Cj), and that this tree 
an be 
omputed in polyno-mial time (for 
onstant k). We also let sink(Cj) be the sinkterminal of Cj , and sour
es(Cj) := V (Cj)\R n fsink(Cj )gbe the other terminals (sour
es of Cj). We say that a 
om-ponent Cj 
rosses U � R if Cj has at least one sour
e inU and the sink outside. By Æ+k (U) we denote the set ofk-
omponents 
rossing U . Our LP-relaxation is then:minXj 
(Cj)xj (k-DCR)
XCj2Æ+k (U)xj � 1 8U � R n frg; R 6= ;xj � 0 8j = 1; : : : ; h:The LP above 
an be solved in polynomial time (see Se
tion2).We remark that k-DCR is a relaxation for the k-restri
tedSteiner tree problem. In fa
t, 
onsider the optimal integralsolution Optk. As already observed, we 
an dire
t all itsedges towards an arbitrary root terminal r. At this point,Optk 
onsists of a set of dire
ted k-
omponents Cj , whereea
h Cj is an optimal Steiner tree over R \ V (Cj). Settingxj = 1 for those 
omponents, and the remaining variables tozero, provides a feasible solution to k-DCR of 
ost exa
tlyoptk.We 
ombine our LP with a (to the best of our knowledge)novel iterative randomized rounding te
hnique. We solve theLP, sample one 
omponent Cj with probability proportionalto its value xj in the optimal fra
tional solution x, 
ontra
tCj into its sink node sink(Cj), and reoptimize the LP. Weiterate this pro
ess for a suitable number of times. Witha simple analysis we 
an show that a minimum-
ost termi-nal spanning tree on the remaining terminals plus the sam-pled 
omponents 
ost (in expe
tation) at most 3=2 times the
ost of the optimal k-restri
ted Steiner tree (see Se
tion 3).With a re�ned analysis, we improve this bound to ln(4) (seeSe
tion 4). A ln(4)�k � ln(4)(1 + 1blog2 k
 ) < 1:39 approx-imation for Steiner tree immediately follows from Theorem1 by 
hoosing k large enough3. This bound 
an be furtherimproved for spe
ial graph 
lasses, as for example for quasi-bipartite graphs, where non-terminal nodes are not adja
ent(details will be given in the journal version of the paper).We remark that our algorithm 
ombines features of ran-domized rounding (where typi
ally variables are roundedrandomly, but simultaneously) and iterative rounding (wherevariables are rounded iteratively, but deterministi
ally). Webelieve that our iterative randomized rounding te
hniquewill also �nd other appli
ations, and is hen
eforth of inde-pendent interest.The key insight in our analysis is to quantify the expe
tedredu
tion of the 
ost of the optimal terminal spanning treeand optimal Steiner tree in ea
h iteration. To show this, weexploit a Bridge Lemma, relating the 
ost of terminal span-ning trees with the 
ost of fra
tional solutions to k-DCR.The proof of the lemma is based on Edmonds' Theorem 23Observe that our approa
h provides approximation fa
torsstri
tly better than 2 for any k � 6, sin
e �6 = 1:4

[12℄. In our opinion, our analysis is simpler (or at least moreintuitive) than the one in [38℄.As an easy 
onsequen
e of our analysis, we obtain that theintegrality gap of k-DCR is at most 1+ ln(2) < 1:694, hen
eanswering to the mentioned open problem in [8, 36℄ (for thek-restri
ted 
ase). A more te
hni
al analysis, based on anadaptation of the analysis of Robins and Zelikovsky whi
hexploits our Bridge Lemma, leads to the following improvedresult (see Se
tion 5).Theorem 4. For any 
onstant k, there is a polynomial-time algorithm whi
h 
omputes a solution for k-restri
tedSteiner tree of 
ost at most 1 + ln(3)2 < 1:55 times the 
ostof the optimal fra
tional solution to k-DCR.As mentioned before, integrality gap results of this typeoften provide new insights to variants and generalizations ofthe original problem. We expe
t that this will be the 
asewith the above theorem as well, sin
e Steiner tree appearsas a building blo
k in many other problems.
1.2 Related WorkOne reason for the importan
e of Steiner tree is that itappears either as a subproblem or as a spe
ial 
ase of manyother problems in network design. A (
ertainly in
omplete)list 
ontains Steiner Forest [1, 22℄, Prize-Colle
ting Steinertree [3, 22℄, Virtual Private Network [13, 14, 25℄, Single-SinkRent-or-Buy [15, 16, 26℄, Conne
ted Fa
ility Lo
ation [15,16, 39℄ and Single-Sink Buy-At-Bulk [23, 26, 40℄.Both the previously 
ited primal-dual and iterative round-ing approximation te
hniques apply to a more general 
lassof problems. In parti
ular, the iterative rounding te
hniqueintrodu
ed by Jain [28℄ provides a 2-approximation for thegeneralized Steiner network problem, and the primal-dualframework developed by Goemans and Williamson [22℄ givesthe same approximation fa
tor for a large 
lass of 
onstrainedforest problems.Regarding the integrality gap of LP relaxations for theSteiner tree problem, upper bounds better than 2 are knownonly for spe
ial graph 
lasses. For example, BCR has an in-tegrality gap smaller than 2 on quasi-bipartite graphs, wherenon-terminal nodes indu
e an independent set. For su
hgraphs Rajagopalan and Vazirani [36℄ (see also Rizzi [37℄)gave an upper bound of 3=2 on the gap. This was re
entlyimproved to 4=3 by Chakrabarty, Devanur and Vazirani [8℄.Still, for this 
lass of graphs the lower bound of 8=7 holds [31,41℄. K�onemann, Prit
hard and Tan [31℄ showed that for adi�erent LP formulation, whi
h is stronger than BCR, theintegrality gap is upper-bounded by 2b+1b+1 , where b is themaximum number of Steiner nodes in full 
omponents.Finally, we remark that under additional 
onstraints, Steinertree admits better approximations. In parti
ular, a PTAS
an be obtained by the te
hnique of Arora [4℄ if the nodesare points in a �xed-dimension Eu
lidean spa
e, and usingthe algorithm of Borradaile, Kenyon-Mathieu and Klein [7℄for planar graphs.
2. A DIRECTED-COMPONENT

CUT RELAXATIONWe now prove some 
ru
ial properties of our k-DCR. Theoptimal fra
tional solution to k-DCR is denoted by Optfk,and optfk is its 
ost. For a given (dire
ted or undire
ted)
omponent C0, R(C0) := R \ V (C0) is the set of its termi-



nals. Re
all that k is a 
onstant, hen
e k-DCR has a poly-nomial number of variables. Despite the fa
t that k-DCRhas an exponential number of 
onstraints, it 
an be solvedto optimality using the Ellipsoid method [24, 30℄, sin
e we
an solve the separation problem in polynomial time.Lemma 5. k-DCR 
an be solved in polynomial time, forany 
onstant k.Proof. We show how to solve the separation problem inpolynomial time. Create a new dire
ted graph G0, on nodeset V 0 = R [ fvj j j = 1; : : : ; hg. For every 
omponentCj , insert edges (u; vj) for any u 2 sour
es(Cj), and oneedge ej = (vj ; sink(Cj)). Set the 
apa
ity of ea
h ej tow(ej) := xj , and let w(e) := 1 for the remaining edges. Itis not hard to see that, for a terminal s 2 R n frg, there isan s-r 
ut U 0 � V 0 of minimum 
apa
ity Pe2Æ+(U0) w(e),
onsisting of edges ej only. Moreover, given a non-emptysubset R0 � R n frg, there is a 
ut U 0 su
h that
Xe2Æ+(U0)w(e) = Xej :Cj2Æ+k (R0)w(ej) = XCj2Æ+k (R0)xj :It then follows that a non-empty subset R0 � R n frg mini-mizing PCj2Æ+k (R0) xj 
an be 
omputed via jRj�1 minimum-
ut 
omputations in G0. The 
laim follows.Note that one 
an solve k-DCR alternatively by a 
ompa
tLP formulation whi
h 
omputes a minimum-
ost multi
om-modity 
ow in G0 (setting the 
ost of ej to 
(Cj)). This 
anbe done even in strongly-polynomial time using the frame-work of Frank and Tardos [17℄ (see also Theorem 6.6.3 in[24℄). Details will appear in the full version of the paper.Let T 0 be a minimum-
ost terminal spanning tree, i.e.,T 0 spans R, but does not 
ontain any Steiner node. It is awell-known fa
t that 
(T 0) � 2 �opt (see e.g. Theorem 3.3 in[41℄). Extending the standard proof, this bound also holdsw.r.t. our LP relaxation:Lemma 6. For any k, 
(T 0) � 2 � optfk.Proof. For ea
h 
omponent Cj of Optfk, obtain a TSPtour on R(Cj) of 
ost at most 2
(Cj), remove one edge ofthe tour, and dire
t the remaining edges towards sink(Cj).This indu
es a fra
tional solution to k-DCR of 
ost at most2 � optfk, with the property that only 
omponents with 2 ter-minals and without Steiner nodes are used. This provides afeasible fra
tional solution to BCR of the same 
ost. Sin
eBCR without Steiner nodes is integral [12℄, the 
laim fol-lows.We next prove our Bridge Lemma, whi
h is the heart ofour analysis. This lemma relates the 
ost of any terminalspanning tree to the 
ost of any fra
tional solution to k-DCRvia the notion of bridges, and its proof is based on Edmonds'Theorem 2.Before proving the lemma, we need a few intermediateresults. Let R0 be a subset of k0 terminals. Consider a giventree S, with edge weights 
, 
ontaining the terminals R0.The weight fun
tion 
 asso
iated to S will be 
lear from the
ontext. Let us 
ollapse the terminals R0 into one node,and 
onsider the minimum-
ost tree S0 � S in the resulting(possibly, multi-)graph, spanning all nodes of S. Observethat S0 will 
ontain all the edges of S but k0�1 edges, sin
e
ollapsing R0 de
reases the number of nodes in S by k0 � 1.

3 4b17 1 b361 1 b2 2 b4 8 1e17 e22 e48e36
Figure 2: Steiner tree S is drawn in bla
k. Termi-nals of R0 are gray shaded. Bold bla
k edges indi-
ate BrS(R0) = fb1; : : : ; b4g. The 
orresponding edgese1; : : : ; e4 of Y 0 are drawn in gray and labeled withw(ei). Note that w(ei) = 
(bi). Observe also that b3 isthe unique bridge on the 
y
le 
ontained in S [fe3g.We 
all the latter edges the bridges of S w.r.t. R0, anddenote them by BrS(R0)4. Intuitively, if we imagine to addzero 
ost dummy edges between the terminals R0, BrS(R0)is a maximum-
ost subset of edges that we 
ould removefrom S and still have a 
onne
ted spanning subgraph (seeFigure 2). In other terms, BrS(R0) is equal toargmaxn
(B) j B � S; SnB [ `R02 ´ 
onne
ts V (S)o:Let us abbreviate brS(R0) := 
(BrS(R0)). For a (dire
ted orundire
ted) 
omponent C0, we use BrS(C0) and brS(C0) asshort
uts for BrS(R(C0)) and brS(R(C0)), respe
tively.A key ingredient in the proof of our Bridge Lemma is the
onstru
tion of a proper weighted terminal spanning tree asdes
ribed in the following lemma. We de�ne a bridge weightfun
tion w : R�R! Q+ as follows: For any terminal pairu; v 2 R, the quantity w(u; v) is the maximum 
ost of anyedge in the unique u-v path in S.Lemma 7. Let R0 � R and BrS(R0) = fb1; : : : ; bk0�1gwith k0 := jR0j. Then one 
an 
onstru
t a spanning treeY 0 = fe1; : : :, ek0�1g on R0 su
h that, for i = 1; : : : ; k0 � 1,(a) w(ei) = 
(bi) (hen
e w(Y 0) = brS(R0)).(b) bi is the only bridge edge on the 
y
le in S [ feig.Proof. Observe that S n BrS(R0) is a forest of treesF1; : : : ; Fk0 , where ea
h Fi 
ontains exa
tly one terminalri 2 R0. Ea
h bridge bi 
onne
ts exa
tly two trees Fi0 andFi00 . For ea
h bi, we add edge ei = fri0 ; ri00g to Y 0. ClearlyY 0 is a spanning tree on R0. The path Pi between ri0 and ri00
ontains bi and no other bridge. Hen
e bi is a maximum-
ostedge on Pi and w(ei) = 
(bi) (see Figure 2).The following lemma is the heart of our analysis.Lemma 8. [Bridge Lemma℄ Let T be a terminal spanningtree and x be a k-DCR solution. Then
(T ) � Xj xj � brT (Cj):4As usual, we break ties a

ording to edge indexes.



(1) For t = 1; 2; : : : ; �(1a) Compute an optimal fra
tional solution xt to k-DCR (w.r.t. the 
urrent instan
e).(1b) Sample one 
omponent Ct, where Ct = Cj withprobability xtj=Pi xti. Contra
t Ct.(2) Compute a terminal spanning tree T� in the remaininginstan
e.(3) Output T� [ S�t=1 Ct.Figure 3: A 3=2-approximation algorithm for k-restri
ted Steiner tree.Proof. For every 
omponent Cj we 
onstru
t a spanningtree Yj on R(Cj) with weight w(Yj) = brT (Cj) a

ording toLemma 7. Then we dire
t the edges of Yj towards sink(Cj).We de�ne a dire
ted 
apa
ity reservation y : R � R ! Q+as follows: For every j, install 
apa
ity xj in a 
umulativemanner on Yj . In other terms, y(u; v) := PYj3(u;v) xj . Thedire
ted tree Yj supports at least the same 
ow as 
om-ponent Cj with respe
t to R(Cj). It then follows that ysupports one unit of 
ow from ea
h terminal to the root. Inother terms, y is a feasible fra
tional solution to BCR. ByTheorem 2, BCR is integral when no Steiner node is used.As a 
onsequen
e there is an (integral) terminal spanningtree F that is not more 
ostly than the fra
tional solutiony, i.e. w(F ) � Pe2R�R w(e)y(e).Re
all that w(u; v), for u; v 2 R, is the maximum 
ostof any edge of the unique 
y
le in T [ fu; vg. It followsfrom the 
lassi
al 
y
le rule for minimum-
ost spanning tree
omputation that w(F ) � 
(T ) (see, e.g., Theorem 6.2 in[32℄). Altogether
Xj xjbrT (Cj) = Xj xjw(Yj)= Xe2R�Rw(e)y(e) � w(F ) � 
(T ):

3. ITERATIVE RANDOMIZED
ROUNDINGIn this se
tion we present our approximation algorithm fork-restri
ted Steiner tree. To highlight the novel ideas of theapproximation te
hnique more than the approximation fa
-tor itself, we present a simpli�ed analysis providing a weaker3=2 approximation fa
tor (whi
h is already an improvementon the previous best 1:55 approximation). The more 
om-plex analysis leading to ln(4) is postponed to Se
tion 4.Our 3=2-approximation algorithm for k-restri
ted Steinertree is des
ribed in Figure 3. Let xt be the optimal fra
tionalsolution to k-DCR at a generi
 iteration t. By sampling a
omponent Ct, we mean sele
ting one of the 
omponentsCj with probability xtj=Pi xti. Contra
ting a 
omponentCt means 
ollapsing all its terminals into its sink sink(Ct),whi
h inherits all the edges in
ident to Ct (in 
ase of paralleledges, we only keep the 
heapest one).Re
all that h = O(knk) is the number of potential k-
omponents. Observe that the quantity �t := Pi xti mightvary over the iterations t. In order to simplify the analysis,we apply the above algorithm to a slightly di�erent LP wherewe add a dummy 
omponent Ch+1 formed by the root only(hen
e of 
ost zero), and add the 
onstraint xh+1 = � �

Phi=1 xi. Here � = O(h) is an upper bound on the possiblesum of the xi's in the original LP. The number � of iterations

is �xed to Æ�, where Æ is a proper 
onstant to be 
hosen later.(W.l.o.g., Æ� is integral). It is easy to see that the runningtime of the algorithm is polynomial.We �rst outline the analysis of our algorithm. Let Opttkbe the optimal k-restri
ted Steiner tree at the beginning ofiteration t, and let opttk be its 
ost. By optf;tk := Pj xtj �
(Cj)we denote the 
ost of the optimal fra
tional solution at thebeginning of iteration t. Lemma 9 bounds the expe
ted 
ostof the �nal terminal spanning T�. The basi
 idea is showingthat the 
urrent terminal spanning tree is getting 
heaperby a fa
tor (1� 1� ) at ea
h iteration (in expe
tation): Thisis an easy 
onsequen
e of the Bridge Lemma. Lemma 13bounds the expe
ted 
ost of ea
h sampled 
omponent Ct.For this 
omponent we pay in expe
tation a 1� fra
tion ofoptf;tk , whi
h is in turn upper bounded by opttk. Hen
e it issuÆ
ient to bound the 
ost of opttk (Corollary 12). In orderto do that, we show that the 
ost of the optimal Steinertree de
reases by a fa
tor (1� 12� ) at ea
h iteration (Lemma12). Also in this 
ase the proof relies 
ru
ially on the BridgeLemma.The next lemma bounds the 
ost of the �nal terminalspanning tree.Lemma 9. One has E[
(T�)℄ � `1� 1� ´� � 2optfk.Proof. Let T t (T 0, resp.) be the minimum-
ost terminalspanning tree at the end of iteration t (for the original in-stan
e, resp.). Consider an arbitrary iteration t = 1; : : : ; �.The redu
tion in the 
ost of T t w.r.t. T t�1 is at leastbrT t�1(Ct). Therefore:E[
(T t)℄ � 
(T t�1)�E[brT t�1(Ct)℄= 
(T t�1)� 1�Xj xtj � brT t�1(Cj)Bridge Lem 8� „1� 1�« � 
(T t�1):It follows thatE[
(T�)℄ � „1� 1�«� � 
(T 0) Lem 6� „1� 1�«� � 2optfk:It remains to bound the 
ost of the sampled 
omponents.The proof of the following te
hni
al lemma is based on stan-dard te
hniques (see, e.g., [29℄).Lemma 10. For any Steiner tree S, brS(R) � 12 
(S):Proof. Turn S into a binary tree with leaves R by addingdummy Steiner nodes and zero 
ost edges. For ea
h Steinernode of S, mark the most expensive edge out of the edgesgoing to its 2 
hildren. LetB � S be the set of marked edges.Observe that 
(B) � 12 
(S). Furthermore, after 
ontra
tingR, one 
an remove B while keeping S 
onne
ted. Fromthe de�nition of bridges it follows that brS(R) � 
(B) �12 
(S).The next lemma and 
orollary bound the expe
ted de-
rease of the 
ost of the optimal Steiner tree after ea
h 
on-tra
tion.Lemma 11. Let S be any Steiner tree and x be a feasiblesolution to k-DCR. Sample a 
omponent C randomly w.r.t.x. Then there is a subgraph S0 � S su
h that S0 [ C spansR and E[
(S0)℄ � „1� 12�« � 
(S):



Proof. Let BrS(R) = fb1; : : : ; bqg. We apply Lemma 7to S to obtain a terminal spanning tree Y 
onsisting of edgese1; : : : ; eq su
h that w(ei) = 
(bi) (hen
e w(Y ) = brS(R))and bi is the unique bridge on S [ feig. ChooseS0 := Snfbi j ei 2 BrY (C)g:(Here BrY (C) is 
omputed w.r.t. weights w(ei)). Observethat S0 [ C spans R. In fa
t, 
onsider any edge ei =fui; vig 2 Y nBrY (C). The ui-vi path in S 
ontains onlyone potential bridge edge, namely bi. Hen
e, if two termi-nals are 
onne
ted by Y nBrY (C), then they are so in S0.The 
laim follows sin
e (Y nBrY (C)) [ C is 
onne
ted dueto the de�nition of bridges. We 
on
ludeE[
(S0)℄ = 
(S)�E[brY (C)℄= 
(S)� 1� Xj xjbrY (Cj)Bridge Lem 8� 
(S)� 1�w(Y )= 
(S)� 1� brS(R)Lem 10� “1� 12�”
(S):Corollary 12. For every t = 1; : : : ; �,E[opttk℄ � „1� 12�«t�1 � optk:Proof. Observe that, in Lemma 11, if the initial Steinertree S is k-restri
ted, then S0 [ C is k-restri
ted as well.Hen
e, this lemma implies that E[optt+1k ℄ � `1� 12� ´ � opttkfor any iteration t = 1; : : : ; �� 1. The 
laim follows.Corollary 12 immediately provides an upper bound onoptf;tk . An upper bound on the expe
ted 
ost of the sam-pled 
omponents easily follows.Lemma 13. For every t = 1; : : : ; �,E[
(Ct)℄ � 1� „1� 12�«t�1 � optk:Proof. One hasE[
(Ct)℄ = 1�Eˆ
Pj xtj � 
(Cj)˜= 1�E[optf;tk ℄� 1�E[opttk℄Cor 12� 1� „1� 12�«t�1 � optk:We now have all the ingredients to show a 3=2-approxi-mation fa
tor for the problem.Theorem 14. For any k = O(1), there is a polynomial-time randomized approximation algorithm for k-restri
tedSteiner tree with expe
ted approximation ratio 3=2.Proof. Consider the algorithm of Figure 3 with � = Æ�and Æ = ln(4). The 
ost of the 
omputed solution is 
(T�)+

(1) For t = 1; 2; : : :(1a) Compute an optimal fra
tional solution xt to k-DCR (w.r.t. the 
urrent instan
e).(1b) Sample one 
omponent Ct, where Ct = Cj withprobability xtj=Pi xti. Contra
t Ct.(1
) If the instan
e 
onsists only of the root, return
Sti=1 Ci.Figure 4: A ln(4)-approximation algorithm for k-restri
ted Steiner tree.

P�t=1 
(Ct). The expe
ted approximation ratio satis�esE » 
(T�) + P�t=1 
(Ct)optk –Lem 9 + 13� 2 � „1� 1�«� + 1� �
Xt=1 „1� 12�«t�1= 2 � „1� 1�«Æ�� + 2� 2 � „1� 12�«Æ��� 2e�Æ + 2� 2 � e�Æ=2 = 32 :In the last inequality we used the fa
t that (1 � 1y )Æy �(1 � 12y )Æy is an in
reasing fun
tion of y > 1, and thatlimy!1(1� 1y )y = 1e .Theorems 1 and 14 immediately imply an expe
ted (3=2+")-approximation algorithm for the Steiner tree problem.

4. A REFINED APPROXIMATIONIn this se
tion, we present a (ln(4)+ ")-approximation forSteiner tree. The algorithm is the same as in the previousse
tion, with the di�eren
e that now we let it run until allthe terminals 
ollapse into the root. The set of sampled
omponents provides the desired solution (see Figure 4).We �rst give a high-level des
ription of our analysis. LetS� := Optk be the optimal k-restri
ted Steiner tree for theoriginal instan
e (in parti
ular, 
(S�) = optk). Ea
h timewe sample a 
omponent Ct, we will delete a proper subsetof edges from S�. Consider the sequen
e S� = S1 � S2 �: : : of subgraphs of S� whi
h are obtained this way. Wewill guarantee that at any iteration t, the edge set St plusthe previously sampled 
omponents yields a subgraph that
onne
ts all terminals. Furthermore, we will prove that a�xed edge e 2 S� is deleted after an expe
ted number ofat most ln(4) � � iterations. This immediately implies theapproximation fa
tor of ln(4).In order to tra
k whi
h edges 
an be safely deleted fromS�, we will 
onstru
t an arti�
ial terminal spanning tree Y(the witness tree) and assign a random subsetW (e) of edgesof Y to ea
h edge e 2 S�. The 
hoi
e of W (e) guarantees(deterministi
ally) that, if a pair of terminals is 
onne
tedby Y 0 � Y , then they are as well 
onne
ted by fe 2 S� jW (e) \ Y 0 6= ;g.At ea
h iteration, when 
omponent Ct is sampled, wemark a proper random subset BrY (Ct) of edges of Y . Thisset guarantees that (Y nBrY (Ct)) [ Ct is 
onne
ted (deter-ministi
ally). The intuitive reason for using BrY (Ct) ratherthan BrY (Ct) is that we want to sample ea
h edge of Ymore uniformly. When all the edges in W (e) are marked,



we delete e from S�. Summarizing, we 
onsider the followingrandom pro
ess:For t = 1; 2; : : :, sample one 
omponent Ct fromxt and mark the edges in BrY (Ct). Delete anedge e from S� as soon as all edges in W (e) aremarked.The subgraph St is given by the edges of S� whi
h are notyet deleted at the beginning of iteration t.We next give the details of our analysis. A 
ombination ofFarkas' Lemma together with our Bridge Lemma providesthe existen
e of random sets BrY (Cj) su
h that every edgein Y is marked with probability at least 1� per iteration.Lemma 15. Let Y be any terminal spanning tree and x beany k-DCR solution with � = Pj xj. Then there exist ran-dom sets BrY (Cj) � Y su
h that if we sample a 
omponentC randomly w.r.t. x one has(1) Pr[e 2 BrY (C)℄ � 1� for all e 2 Y ;(2) Y nBrY (Cj) [ Cj 
onne
ts V (Y ) for all Cj .Proof. For a 
omponent Cj , let the set of 
andidatebridges BY (Cj) befB � Y j jBj = jR(Cj)j � 1; (Y nB) [ Cj 
onne
ts V (Y )g:By de�nition any B 2 BY (Cj) satis�es Property (2). Fora proper probability distribution w, we let Pr[BrY (Cj) =B℄ := wjB . In parti
ular, PB2BY (Cj) wjB = 1. We willshow that there is a w with
X(B;j):B2BY (Cj);e2B xjwjB � 1for all e 2 Y . This implies Property (1) sin
ePr[e 2 BrY (C)℄ = X(B;j):B2BY (Cj);e2B xj� � wjB � 1� :Suppose by 
ontradi
tion that su
h a distribution w doesnot exist. Then the following system of linear inequalitieshas no solution5
XB2BY (Cj)wjB � 1 8j

X(B;j):B2BY (Cj);e2B xjwjB � 1 8e 2 Yw � 0:Farkas' Lemma6 yields that there is a ve
tor (y; 
) � 0 with(a) yj � Xe2B 
exj 8(B; j) : B 2 BY (Cj);(b) Xj yj < Xe2Y 
e = 
(Y ):In parti
ular,yj (a)� xj �maxf
(B) j B 2 BY (Cj)g = xj � brY (Cj):5We 
an repla
e the \=" 
onstraint with \�" without a�e
t-ing feasibility sin
e all 
oeÆ
ients of wjB are non-negative.69x � 0 : Ax � b __ 9z � 0 : zTA � 0; zT b < 0

3 1 1 2 1 3 1 22e0 1 2 11 1
f0f1 (a) (b)Figure 5: (a) Optimal Steiner tree S� in bla
k, wherebold edges indi
ate B, and the asso
iated termi-nal spanning tree Y in gray. Edges e in S� are la-beled with jW (e)j. For example W (e0) = ff0; f1g. (b)Marked edges in Y at a given iteration t are drawndotted; the non-deleted edges in S� (i.e. edges ofSt) are drawn in bla
k. Non-marked edges of Y andnon-deleted edges of S� support the same 
onne
-tivity on R.Then

Xj xj � brY (Cj) � Xj yj (b)< 
(Y );whi
h 
ontradi
ts the Bridge Lemma 8.Next, we de�ne the witness tree Y and the sets W (e) forea
h e 2 S�. Without loss of generality any Steiner node inS� has degree 3 or more. By adding dummy Steiner nodesand zero 
ost edges, we 
an assume that S� is a (not ne
-essarily 
omplete) binary tree, rooted at some Steiner node,of height at most jRj � 1 . For ea
h Steiner node, 
hooseuniformly at random one of the two edges to its 
hildren.Let B denote the 
hosen edges. Clearly Pr[e 2 B℄ = 12 forany e 2 S�. Let Puv � S� be the unique u-v path in S�.The witness tree isY := ffu; vg 2 `R2´ j jPuv \Bj = 1g:Similarly to arguments in Lemma 7, Y is a spanning tree onR. Furthermore, for ea
h edge e 2 S�, we de�neW (e) := ffu; vg 2 Y j e 2 Puvg:See Figure 5(a) for an illustration. Note that 1 � jW (e)j �jY j = jRj � 1. Observe also that jW (e)j = 1 if e 2 B.Indeed, the expe
ted 
ardinality of W (e) is small also forthe remaining edges.Lemma 16. For any edge e 2 S� at level ke � jRj � 1(edges in
ident to the root are at level one), one hasPr[jW (e)j = q℄ = 8

>

<

>

:

1=2q if 1 � q < ke;2=2q if q = ke;0 otherwise:Proof. Consider the path v0; v1; : : : ; vke from e towardsthe root. In parti
ular, e = fv0; v1g. If (vq�1; vq) is the �rstedge from B on this path, then jW (e)j = q. This is be
ause,for ea
h node vj , j � 1, there is one distin
t path Puv withfu; vg 2 Y that 
ontains e (see also Figure 5(a)). This eventhappens with probability 1=2q . Otherwise, jW (e)j = ke by a



similar argument. The latter event happens with probability1=2ke . The 
laim follows.For W � Y , let M(W ) denote the �rst iteration whenall the edge in W are marked. The 
hoi
e for the sequen
eS� = S1 � S2 � : : : is given by St = fe 2 S� j M(W (e)) �tg. In other words, St is the set of edges whi
h are not yetdeleted at the beginning of iteration t.Lemma 17. The graph St [ St�1t0=1 Ct0 spans R.Proof. Let Y 0 � Y be the set of edges whi
h are notyet marked at the beginning of iteration t (see also Figure5(b)). Then, by de�nition of bridges, Y 0 [ St�1t0=1 Ct0 spansR. Consider any edge fu; vg 2 Y 0. Then fu; vg 2 W (e) forall e 2 Puv. Hen
e no edge on Puv is deleted. Therefore uand v are also 
onne
ted in St. The 
laim follows.Re
all that Hq := Pqi=1 1i is the qth harmoni
 number.Lemma 18. Let W � Y . Then the expe
ted number ofiterations until all edges in W are marked satis�esE[M(W )℄ � HjW j � �:Proof. Let mq be the best possible upper bound on theexpe
ted number of iterations until all out of a given set Wof q edges are marked (over all feasible probability distribu-tions). We will prove that mq � Hq � � by indu
tion on q.For q = 1, the only edge in W is marked with probabilityat least 1� in ea
h iteration, hen
e m1 � �. Next, let q > 1and 
onsider the �rst iteration. Consider the probabilitydistribution p = (p0; : : : ; pq) where pi gives the probabilitythat i edges are sampled in the �rst iteration. Of 
ourse,sin
e the expe
ted number of marked edges must be at leastq � 1� in the �rst iteration, this distribution has to satisfy the
onstraintq
Xi=0 pi = 1; q

Xi=0 i � pi � q�; pi � 0; 8i = 0; : : : ; q: (1)If we 
ondition on the event that i 2 f0; : : : ; qg edges aremarked in the �rst iteration, we need in expe
tation at mostmq�i more iterations until the remaining q � i edges aremarked. Hen
e we obtain the boundmq � 1 + q
Xi=0 pi �mq�i: (2)Assume pessimisti
ally that p is the distribution whi
h max-imizes the right-hand side of (2) under Constraint (1). Thevalue of p is an optimal fra
tional solution of a linear pro-gram. In parti
ular, we 
an assume that p is a vertex ofthe polyhedron indu
ed by (1). Hen
e all but (at most) twoentries of p are zero. Suppose p0 = 0. In this 
ase we wouldmark deterministi
ally at least one edge. The 
laim followssin
e, 
onditioning on the number i 2 f1; : : : ; qg of samplededges, one obtains mq � 1 +mq�i � 1 +Hq�i � � � Hq � �.Here we use q � jY j = jRj � 1 � �. Otherwise, there mustbe an i > 0 su
h that pi = qi� , p0 = 1 � qi� , and pj = 0 forall 0 < j 6= i. Hen
emq � 1 + qi� �Hq�i� + “1� qi�”mq:Rearranging terms yieldsmq � � � “ iq +Hq�i” � � �Hq;and the assertion follows.

Eventually, we prove the expe
ted approximation of ln(4),as 
laimed in Theorem 3.Proof of Theorem 3. For an edge e 2 S�, we de�neD(e) = maxft j e 2 Stg as the iteration in whi
h e is deleted.One hasE[D(e)℄ = ke
Xq=1Pr[jW (e)j = q℄ �E[D(e) j jW (e)j = q℄Lem 18� ke
Xq=1Pr[jW (e)j = q℄ �Hq � �Lem 16= ke�1
Xq=1 “12”q �Hq � � + 22ke �Hke � �� Xq�1 “12”q �Hq � �= � � Xq�1 1q Xi�0 “12”q+i= � � Xq�1 1q“12”q�1 = ln(4) � �:The expe
ted 
ost of the approximate solution satis�esEh

Xt�1 
(Ct)i = Xt�1 1�Eˆoptf;tk ˜� 1� Xt�1 E ˆ
(St)˜= 1� Xe2S�E[D(e)℄ � 
(e) � ln(4) � optk:The 
laim follows.
4.1 DerandomizationAfter submitting the preliminary version of this paper, wefound a way to derandomize our algorithm via the method oflimited independen
e (see, e.g., Alon and Spen
er [2℄). Thebasi
 idea is to partition the sequen
e of iterations into a(large) 
onstant number of phases. In ea
h phase, we samplea proper number of random 
omponents (rather than justone 
omponent). The LP is updated only from phase tophase. This sampling is performed in su
h a way that onlyO(log n) random bits are needed. Hen
e, the algorithm 
anbe derandomized by 
onsidering all the (polynomially-many)
hoi
es for the random bits. The approximation ratio growsby a fa
tor (1 + "). The proof of the following theorem willappear in the journal version of this paper.Theorem 19. For any k = O(1) and any 
onstant " > 0,there is a polynomial time deterministi
 (ln(4)+ ")-approxi-mation algorithm for k-restri
ted Steiner tree.Corollary 20. For any 
onstant " > 0, there is a po-lynomial-time deterministi
 (ln(4) + ")-approximation algo-rithm for Steiner tree.
5. INTEGRALITY GAPIn this se
tion we bound the integrality gap of k-DCR.Note that, despite the fa
t that our analysis is based onan LP relaxation of the problem, it does not imply a ln(4)(nor even a 1:5) bound on the integrality gap of the studied



LP. (This is be
ause the LP 
hanges during the iterations ofthe algorithm). However, an easy adaptation of the analysisfrom previous se
tions proves the following 
laim.Theorem 21. There is a polynomial-time algorithm whi
h
omputes a solution to the k-restri
ted Steiner tree problemof expe
ted 
ost at most 1 + ln(2) < 1:694 times the 
ost ofthe optimal fra
tional solution to k-DCR.Proof. Consider the algorithm from Figure 3 with � =Æ� and Æ = ln(2). Observe that, for any t � 1, optf;tk � optfk(
ontra
ting 
omponents does not in
rease the 
ost of thefra
tional solution). Hen
eEh
(T�) + �
Xt=1 
(Ct)iLem 9� 2 � „1� 1�«� optfk + 1� �

Xt=1 optf;tk� 2 � „1� 1�«� optfk + ��optfk� (2e�Æ + Æ)optfk = (1 + ln(2))optfk:In order to a
hieve the better 1:55 bound on the integral-ity gap 
laimed in Theorem 4, we prove that another algo-rithm, namely the algorithm of Robins and Zelikovsky [38℄,produ
es solutions of 
ost bounded with respe
t to the opti-mal fra
tional solutions to k-DCR. Our alternative analysisof this algorithm is, to some extent, inspired by an analo-gous argument of Charikar and Guha [9℄ in the 
ontext ofthe fa
ility lo
ation problem. Our argument is essentiallya 
ombination of the analysis in [38℄ with our new BridgeLemma 8. For this reason, the proof of Theorem 4 is post-poned to the full version of the paper.We leave it as an interesting open problem to prove aln(4) (or even 1:5) bound on the integrality gap of k-DCR (ifpossible). This might involve the development of a fra
tionalversion of Lemma 11.We 
on
lude the paper with a 
omparison between BCRand k-DCR. It is easy to see that any feasible solution tok-DCR 
an be turned into a feasible solution to BCR of thesame 
ost. In fa
t, it is suÆ
ient to split ea
h 
omponentinto the 
orresponding set of edges.Interestingly enough, the reverse is not true, as observedin [34℄. In other words, for any k, k-DCR is a relaxationstri
tly stronger than BCR. In parti
ular, the 1:55 upperbound on the integrality gap of k-DCR does not imply thesame bound on the integrality gap of BCR. Nevertheless,Skutella's graph [31℄ implies an 8=7 lower bound also on theintegrality gap of our relaxation. It remains as a 
hallengingopen problem to show whether the integrality gap of BCRis smaller than 2 or not.
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