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Medical image segmentation is a key topic in image processing and computer vision. Existing literature mainly focuses on single-
organ segmentation. However, since maximizing the concentration of radiotherapy drugs in the target area with protecting the
surrounding organs is essential for making effective radiotherapy plan, multiorgan segmentation has won more and more
attention. An improved Mask R-CNN (region-based convolutional neural network) model is proposed for multiorgan seg-
mentation to aid esophageal radiation treatment. Due to the fact that organ boundaries may be fuzzy and organ shapes are various,
original Mask R-CNN works well on natural image segmentation while leaves something to be desired on the multiorgan
segmentation task. Addressing it, the advantages of this method are threefold: (1) a ROI (region of interest) generation method is
presented in the RPN (region proposal network) which is able to utilize multiscale semantic features. (2) A prebackground
classification subnetwork is integrated to the original mask generation branch to improve the precision of multiorgan seg-
mentation. (3) 4341 CTimages of 44 patients are collected and annotated to evaluate the proposedmethod. Additionally, extensive
experiments on the collected dataset demonstrate that the proposed method can segment the heart, right lung, left lung, planning
target volume (PTV), and clinical target volume (CTV) accurately and efficiently. Specifically, less than 5% of the cases were
missed detection or false detection on the test set, which shows a great potential for real clinical usage.

1. Introduction

Diagnostic imaging plays an important role in modern
medicine. Computed tomography (CT), magnetic resonance
imaging (MRI), and other imaging modalities provide im-
portant assistance for diagnosis and treatment planning.
Take esophageal cancer as an example; esophageal cancer is a
primary malignant tumor of the esophagus. At least 200,000
people suffer from esophageal cancer every year [1], and
radiotherapy is one of the main treatments in China.
However, treatment planning of radiotherapy is highly
dependent on planning target volume (PTV) and accurate
description of the organs at risk. *e accuracy of organ
countersegmentation determines the quality of dose plan-
ning optimization in radiotherapy and thus affects the
success or failure of radiotherapy or the incidence of
complications [2].

With the increasing scale and quantity of medical im-
ages, organ segmentation via manual delineation by the
clinical experience of radiologists is inefficient [3]. And it is
necessary to use computers for processing and analyzing the
medical images automatically. With the development of
computer vision technology, many different automatic
image segmentation and delineation algorithms have been
developed. *ese algorithms are called medical image seg-
mentation or organ segmentation [4] in the literature.

Conventional medical image segmentation/organ seg-
mentation algorithms can be roughly divided into eight
categories [4]: (a) thresholding approaches, (b) region-
growing approaches, (c) classifiers, (d) clustering ap-
proaches, (e) Markov random field models, (f ) deformable
models, (g) artificial neural networks, and (h) atlas-guided
approaches. Although these methods have made some
progress, the accuracy is not sufficient.
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Benefit from the continuous progress of deep learning
technology, medical image segmentation/organ segmen-
tation is currently dominated by the CNN (convolutional
neural network) [5]. Similar to the object detection
method, CNN-based organ segmentation can also be di-
vided into two types: (a) one-stage algorithm, which deems
the organ segmentation as a one-stage pixel classification
task. *e typical structure is fully convolutional networks
(FCNs) [6]; (b) two-stage algorithm, which decouples the
organ segmentation into organ localization and instance
segmentation stages. *e typical structure is region CNN
(R-CNN) [7]. *e most well-known one-stage CNN ar-
chitecture for organ segmentation is U-Net, published by
Ronneberger et al. [8]. Most state-of-the-art organ seg-
mentation methods are the invariants of U-Net [9–11].
Although they have achieved encouraging performance,
two shortcomings exist. On the one hand, many literature
studies focus on single-organ segmentation, while only few
works are made effort to address the multiorgan seg-
mentation problem [12, 13]. On the other hand, two-stage
segmentation methods work well for multiobject seg-
mentation on the natural image segmentation dataset [14]
but worse than the one-stage algorithm on medical image
segmentation [15]. *erefore, mining the potential of the
two-stage multiorgan segmentation algorithm has great
research value.

In this paper, to address the shortcomings mentioned
above, we present an improved Mask R-CNN framework
for multiorgan segmentation. Original Mask R-CNN [16]
is presented to address the multi-instance segmentation
problem on the natural image. Although the original Mask
R-CNN has achieved state-of-the-art instance segmenta-
tion performance on general image datasets, the latest
research [15] shows that it is able to accurately find
bounding boxes for organs, while its performance on
segmentation is worse than U-Net on the medical image
segmentation dataset. We think a major reason for this is
that the semantic representation obtained from the orig-
inal Mask R-CNN framework is too rough for organ
segmentation because organ boundaries may blur and
organ shapes are various. To address it, we have made two
improvements to the original Mask R-CNN: (a) a ROI
(region of interest) generation method is presented in the
RPN which is able to utilize multiscale semantic features;
(b) a prebackground classification subnetwork is inte-
grated to improve the precision of multiorgan segmen-
tation. Moreover, CT images of 44 esophageal cancer
patients are collected and annotated as benchmark to
evaluate the proposed method.

To sum up, our contributions are as follows:

(1) We applied the Mask R-CNN to esophageal cancer
medical image processing successfully. Most existing
methods focus on single-organ segmentation, while
this paper devotes to address the multiorgan seg-
mentation problem.

(2) To provide a better multiorgan segmentation model,
we propose two improvements compared with the
original Mask R-CNN framework.

(3) We conduct extensive experiments and analysis on
the collected real multiorgan dataset and demon-
strate the excellent performance of our proposed
method on the multiorgan segmentation task.

*e rest of this paper is organized as follows. Section 2
reviews and discusses the related works. Section 3 describes
the proposed improved Mask R-CNN model in detail.
Experimental results and comparisons are discussed in
Section 4, and conclusions with the future work are de-
scribed in Section 5.

2. Related Work

Pham et al. [4] and Litjens et al. [5] reviewed the conven-
tional and deep learning-based organ segmentation
methods, respectively. In this section, we briefly review the
previous methods which are most related to our work in-
cluding the conventional medical image segmentation
method, deep learning-based single-organ segmentation
method, and deep learning-based multiorgan segmentation
method.

2.1. Conventional Medical Image Segmentation Method.
Conventional medical image segmentation method can be
roughly divided into eight categories: (a) thresholding ap-
proaches [17]: thresholding approaches first attempt to
determine an intensity value (threshold), then group all
pixels with intensity greater than the threshold into one
class, and all other pixels into another class. (b) Region-
growing approaches [18]: region-growing approaches utilize
intensity information and/or edges in the medical image to
predefine criteria for extracting a region of the image that is
connected. (c) Classifiers [19, 20]: classifier methods convert
the medical image from the image space to the feature space
first and then train classifiers on the feature space to dis-
tinguish which class of the pixel they belong to. (d) Clus-
tering approaches [21]: commonly used clustering
approaches for medical image segmentation are K-means,
fuzzy c-means, and expectation-maximization. Compared
with the classifiers, the clustering approaches are unsuper-
vised approaches. (e) Markov random field models: Markov
random field (MRF) is a statistical model which can be used
within segmentation methods by modeling model spatial
interactions between neighboring or nearby pixels. (f )
Deformable models: deformable models use closed para-
metric curves or surfaces to delineate region boundaries. (g)
Artificial neural networks (ANNs) [22]: the most widely
applied use of the ANN in conventional medical image
processing is as a classifier. (h) Atlas-guided approaches
[23, 24]: the atlas is generated by compiling information on
the anatomy that requires segmenting.*is atlas is then used
as a reference frame for segmenting new images. In addition,
level set optimization is also utilized for multiorgan seg-
mentation [25]. *ough the methods mentioned above have
achieved some progress, the accuracy of organ segmentation
is not too high because all conventional methods depend on
manual feature representation.
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2.2. Deep Learning-Based Single-Organ Segmentation
Method. Ronneberger et al. [8] first presented a novel
CNN architecture (U-Net) and became the most popular
structure in medical image analysis. *e main novelty in
U-Net is the combination of an equal amount of
upsampling and downsampling layers. Inspired by U-Net,
Zhou et al. [26] presented U-Net++, a more powerful
architecture for medical image segmentation. Milletari
et al. [27] proposed V-Net (a 3D variant of U-Net ar-
chitecture) performing 3D image segmentation using 3D
convolutional layers with an objective function directly
based on the Dice coefficient. Drozdzal et al. [11] inves-
tigated the use of short ResNet-like skip connections in
addition to the long skip connections in a regular U-Net.
Besides CNN, Xie et al. [28], Stollenga et al. [29], Chen
et al. [30], and Poudel et al. [31] utilized the recurrent
neural network (RNN) for organ segmentation tasks. To
combat spurious responses, few papers attempt to com-
bine the CNN/RNN with graphical models like MRFs [32]
and conditional random fields (CRFs) [33] to refine the
segmentation output. Although these methods have
achieved encouraging performance, they were presented to
address the single-organ segmentation problem, which
may not be suitable/optimal for multiorgan segmentation
(It is difficult to segment multiple organs at the same time,
which damages the clinical auxiliary effect.).

2.3. Deep Learning-Based Multiorgan Segmentation Method.
*e research on the deep learning-based multiorgan seg-
mentation method is in its early phase. Tong et al. [34]
introduced discriminative dictionary learning for abdominal
multiorgan segmentation. Lay et al. [35] used context in-
tegration and discriminative models for rapid multiorgan
segmentation. Roth et al. [36] and Chen et al. [37] adopted
the 3D fully convolutional network. Recently, Dong et al.
[38] presented a generative model (U-Net-GAN), andWang
et al. [39] proposed densely connected U-Net for multiorgan
segmentation. Lei et al. [40] presented a review of deep
learning in multiorgan segmentation. Different from these
methods, the proposed method in this paper aims to im-
prove the two-stage instance segmentation algorithm which
is widely used in the natural image dataset, making it suitable
for the multiorgan segmentation task.

3. Methods

In this section, we introduce the proposed method (which is
named improved Mask R-CNN) for multiorgan segmen-
tation. As shown in Figure 1, the proposed method is based
on the existing well-known multi-instance segmentation
method, Mask R-CNN. Compared with the original Mask
R-CNN, we have made two improvements: (a) a ROI (region
of interest) generation method is presented in the RPN
which is able to utilize multiscale semantic features; (b) a
prebackground classification subnetwork is integrated to
improve the precision of multiorgan localization. *e de-
tailed proposed approach is presented in two sections: (a) the
network structure and (b) loss function.

3.1. -e Network Structure. *e network of the proposed
algorithm can be mainly divided into three modules. *e
first module is called feature extraction and ROI generation,
which is mainly composed of ResNet50 + FPN+RPN. In this
module, we generate multilayer feature maps first. *en,
each point on the feature map is mapped into the original
image to acquire the corresponding ROI.

*e second module is named region of interest align-
ment, which pools the ROIs obtained from the first module
to a fixed size and avoids quantization error. *e third
module is mask acquisition. In this module, the fixed-size
ROIs obtained from the second module are sent to the organ
region segmentation network for generating organ mask.
And at the same time, they are also sent to the fully con-
nected layer for organ-position rectangular bounding box
regression and organ classification.*e above three modules
are detailed as follows.

3.1.1. Feature Extraction and ROI Generation. *e purpose
of this step is to extract the features of the input image and
generate the ROI in the corresponding feature layer. First, a
medical CT image containing multiple organs is input to the
ResNet50 network. Res2, Res3, Res4, and Res5 are the
feature output layers of the ResNet [15, 41], respectively.
*en, feature pyramid network (FPN) [42] is adopted to fuse
these multilayer features to obtain strong semantic infor-
mation and improve the accuracy of organ detection. As
shown in Figure 2, the specific approach is to conduct di-
mensionality reduction operation on the features above Res4
(that is, to add a layer of 1∗ 1 convolution layer) and
upsampling operation on the features above P5 to make
them have the same size. *en, addition operation (adding
corresponding elements) is performed on the processed P5
and the processed Res4 to output the obtained results to P4,
P2, P3, and so on. *en, the RPN network is used to predict
in different output layers, P2, P3, P4, and P5, to obtain ROIs.

3.1.2. Region of Interest Alignment. *is step aims to pool all
ROIs remaining on the feature maps to a fixed size. Since the
ROI position is usually obtained by the regression model, it
is generally a floating-point number, while the pooled fea-
ture map requires a fixed size. In order to avoid quantization
errors, the ROI align [15] (illustrated in Figure 3) layer is
adopted. In the presented framework, we use the ROI align
layer to traverse each ROI first, keeping the floating-point
number boundary unquantized. *en, the ROI is divided
into k × k cells with the boundary of each cell not quantized.
*en, the fixed four coordinate positions are calculated in
each cell, the values of these four positions are calculated by
bilinear interpolation, and the max-pooling operation is
carried out finally. *rough the above operations, the fixed
size ROI can be obtained with no quantization error.

In the original Mask R-CNN segmentation algorithm,
the ROI obtained by the RPN network is aligned to extract
the ROI features. In this step, each ROI is aligned by a single-
layer (single-scale) feature. In the presented method, as
shown in Figure 4, we replace the single-layer features with
multilayer features, that is to say, each ROI needs to do ROI
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alignment operation with multilayer features, and then the
ROI features of different layers will be fused together so that
each ROI feature will have multilayer features.

3.1.3. Mask Acquisition. *e goal of this step is to get the
multiorgan segmentation result. ROI of pooling to a fixed
size was sent to the fully connected layer for organ
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Figure 1: *e framework of the proposed method.
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Figure 2: From left to right are the ResNet50 network, the feature pyramid network (FPN), and the region proposal network (RPN).
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Figure 3: *e illustration of ROI alignment operation. *e blue-dotted box represents the feature map obtained after convolution, and the
black solid box represents the ROI feature.
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classification (6 categories including background) and or-
gan-position rectangular bounding box regression. Mean-
while, ROI of pooling to a fixed size was also sent to a mask
generation branch (i.e., fully convolution neural network
operation in each ROI). Organ area segmentation is a
parallel branch to organ classification and organ-position
rectangular bounding box regression. As shown in
Figure 5(a), the branch consists of four consecutive con-
volution layers and a deconvolution layer (with 2 times of
upsampling). *e kernel size and channels of each convo-
lution layer are 3∗ 3 and 25, respectively. A binary classi-
fication branch is added to distinguish foreground and
background before the original mask branch (illustrated in
Figure 5(b)).*e new branch contains two 3∗ 3 convolution
layers and a fully connected layer. *e dimension of the
output of the new branch is the same as the original branch
via a reshape operation. *e output mask of these two
branches was fused to get the final multiorgan segmentation
result.

3.2. Loss Function. In terms of loss function, a third loss
function, which is used to generate mask, is added on the
basis of Fast R-CNN [43] so that the total loss function of our
improved Mask R-CNN framework is

L �Lcls +Lbox +Lmask. (1)

Here, the classification and regression losses are defined
as Lcls and Lbox, respectively:

Lcls � −log Pu, (2)

Lbox �∑
4

i�1

SmoothL1 t
u
i − vi( ), (3)

SmoothL1(X) �
0.5x2, |x|< 1,
|x| − 0.5, otherwise.

{ (4)

P is a (k + 1)-dimensional vector representing the
probability of a pixel belonging to the k class or background.
For each ROI, P � (P0, P1, . . . , Pk), and Pu represents the
probability corresponding to class u. tu � (t

u
x, t

u
y, t

u
w, t

u
h)

represents the predicted translation scaling parameter of
class u, tux, t

u
y refer to the translation with the same scale as

the object proposal, and tuw, t
u
h refer to the height and width

of the logarithmic space relative to the object proposal.
t1, t2, t3, and t4 in equation (3) represent tx, ty, tw, and th,
respectively. Moreover, vi represents the corresponding
parameter of the ground-truth bounding box.

Note that the smooth L1 loss is utilized in equation (3);
the reasons are twofold: (a) compared with the widely used
L2 loss, smooth L1 loss is robust for outlier points. (2) Many
famous object detection frameworks use smooth L1 loss, e.g.,
Faster-RCNN and Mask R-CNN. We utilize the same
bounding loss function which can guarantee the fairness of
algorithm comparison. Of course, some box regression loss
functions which have been proposed recently (e.g., GIoU,
DIoU, and CIoU) are also compatible with the proposed
framework.

Lmask in equation (1) is the mask loss of the newly added
background segmentation branch (as described in Section
3.1.3). In our improvedMask R-CNN framework, the output
dimension of each ROI is K∗m∗m for the newly added
mask branch, where m∗m represents the size of the mask
and K represents categories, so a total of K-binary masks
were generated in here. After the predicted mask was ob-
tained, the value of the sigmoid function was calculated for
each pixel of the mask, and the obtained result was taken as
one of the inputs of Lmask (cross-entropy loss function). It
should be noted that only positive sample ROI is used to
calculateLmask. *e definition of the positive sample is the
same as that of general object detection algorithms, and IOU
greater than 0.5 is defined as the positive sample. In fact,
Lmask is very similar to Lcls except that the former is
calculated on the basis of pixels and the latter on the basis of

Organ area
segmentation

ROI

ROI align

ROI align

ROI align

ROI align

Figure 4: *e multilayer ROI shall be merged after the operation of ROI alignment and then sent to the organ area segmentation network.
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images, so it is similar toLcls in that although K masks are
given here, only the one corresponding to the ground truth is
valid in calculating the cross-entropy loss function. A mask
contains multiple pixels, so here,Lmask is the average of the
cross-entropy loss of each pixel:

Lmask � −
1

K
∑K
i�1

∑m∗m
j�1

logPMi,j( ). (5)

Here, PMi,j is the j-th pixel of the i-th generated mask.

4. Experiments

In this section, we conduct extensive experiments to evaluate
the proposed improved Mask R-CNN multiorgan seg-
mentation framework. We first introduce the collected and
annotated dataset in Section 4.1 followed by the evaluation
criteria in Section 4.2. *en, Section 4.3 describes the
implementation details. Finally, we discuss the comparison
with state-of-the-art methods in Section 4.4.

4.1. Dataset. *e utilized multiorgan segmentation dataset
consists of all the slice information of 44 esophageal cancer
patients, with a total of 4341 CT images. Each image was
labeled with five areas (heart, right lung, left lung, PTV, and
CTV) by the doctor. We use 80% of these CT images as the

training set, 5% as the validation set, and the remaining 15%
as the test set.

4.2. Evaluation Criteria. *ere are many evaluation criteria
which are proposed to evaluate the image segmentation
results, e.g., region overlap and boundary similarity [44].
Here, we select Dice coefficient (DICE) [45] and Jaccard
index (JAC) [46] as criteria to evaluate the overlap between
the prediction and the ground-truth organ regions. Suppose
that x and y are the organ regions of the prediction and the
ground truth, respectively; JAC and DICE are calculated as
follows:

JAC �
|X∩Y|
|X∪Y|,

DICE �
2|X∩Y|
|X| +|Y|

.

(6)

4.3. Implementation Details. We implement our improved
Mask R-CNN model based on the framework of PyTorch.
*e backbone is the adjusted ResNet50 which is detailed in
Section 3.1.1. We use the stochastic gradient descent (SGD)
optimizer with the learning rate set to 0.01 initially, and the
batch size is set to 64. *e maximum number of iterations is
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Figure 5: A new binary classification branch is added to the original mask generation branch. (a) *e original mask generation branch. (b)
*e proposed mask generation branch.
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set to 100,000. When the number of iterations reached
50,000 and 80,000, the learning rate is reduced 10 times. All
images are resized to 800 × 1000. *e weight decay is set to
0.0001, and the momentum is set to 0.9 for all convolution
and fully connected layers. It should be noted that all pa-
rameters in the proposed model are trained from scratch.

4.4. Results and Discussion

4.4.1. Quantitative Evaluation with State-of-the-ArtMethods.
We compare our proposed methods against the current
widely used multiorgan segmentation models (Linguraru
et al. [47], He et al. [48], and Gauriau et al. [49]), and the

Table 1: Comparisons of the proposed and state-of-the-art multiorgan segmentation methods on the presented dataset.

Methods Organ JAC (%) DICE (%)

Linguraru et al. [47]

Heart 74.9± 4.7 71.3± 3.1
Right lung 86.5± 2.2 86.3± 1.2
Left lung 85.1± 1.3 84.6± 0.9
PTV 82.5± 1.6 81.3± 2.8
CTV 80.5± 1.2 77.5± 1.9

He et al. [48]

Heart 87.5± 1.2 86.3± 0.7
Right lung 89.3± 1.6 87.3± 2.4
Left lung 90.2± 1.9 88.3± 1.1
PTV 86.3± 1.7 84.1± 2.4
CTV 85.6± 2.3 83.7± 3.1

Gauriau et al. [49]

Heart 88.8± 0.6 87.5± 1.2
Right lung 91.5± 0.9 91.3± 0.8
Left lung 90.3± 0.9 90.8± 1.5
PTV 89.1± 1.4 86.2± 1.7
CTV 88.7± 1.9 87.3± 1.5

Original mask R-CNN

Heart 95.1± 0.5 94.2± 0.7
Right lung 97.0± 0.9 96.2± 1.2
Left lung 96.3± 0.4 95.1± 0.6
PTV 94.7± 1.1 93.2± 0.9
CTV 94.3± 0.5 93.7± 0.8

Improved mask R-CNN (ours)

Heart 96.6± 1.3 95.1± 1.2
Right lung 98.1± 0.5 97.8± 0.3
Left lung 97.6± 0.4 96.2± 1.4
PTV 95.3± 1.5 95.2± 0.7
CTV 95.8± 0.7 94.4± 1.2
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Figure 6: (a)*e accuracy curves in the training stage. (b)*e loss curves in the training stage. Red curve represents the proposed improved
Mask R-CNN model, and blue represents the original Mask R-CNN model.

Mathematical Problems in Engineering 7



comparison results are shown in Table 1. In general, we can
observe that the proposed improved Mask R-CNN frame-
work achieved the best performance. Moreover, Figure 6
shows the accuracy (JAC) and loss curves of the improved
Mask R-CNN and original Mask R-CNN framework in the
training stage. From Table 1 and Figure 6, we can conclude
that the presented technique is able to improve the multi-
organ segmentation performance of the original Mask
R-CNN significantly and steadily.

4.4.2. Qualitative Evaluation. To illustrate the effectiveness
of ourmethodmore visually, somemultiorgan segmentation
results are shown in Figure 7. *e image we selected is
distributed between 35 and 100 slices basically because in
this range, each slice contains five organ regions that we need

basically, and the information of each organ region is rel-
atively rich. We found that the area of some organs from the
60th to 80th layers of patients is very small, which is difficult
to be observed by the naked eye due to the perspective.
However, our improved mask R-CNN algorithm can also
achieve good results (as shown in Figure 4, especially the
area indicated by the arrow in the figure may be difficult for
doctors to annotate).

Although the proposed method can achieve en-
couraging performance, there are still some shortcom-
ings. Examples of false detection and missed detection
segmentation are shown in Figure 8. After analyzing all
failure results, we find that that the missed detection was
mainly concentrated in the slices from the 1st to the 35th
layer of the patient, while the missed detection was
mainly concentrated in the slices from the 110th to the

(a) (b)

(c) (d)

(e) (f )

Figure 7:*e visualization results.*ese six images are slices of the 38th, 60th, 66th, 71st, 89th, and 103rd layers of a patient with esophageal
cancer (yellow represents the right lung, brown represents the left lung, cyan represents the heart, blue represents PTV, and gray represents
CTV). (a)*e slice of the 38th layer of a patient. (b)*e slice of the 60th layer of a patient. (c)*e slice of the 66th layer of a patient. (d)*e
slice of the 71st layer of a patient. (e) *e slice of the 89th layer of a patient. (f ) *e slice of the 103rd layer of a patient.
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130th layer. By observing the constructed dataset, we find
that the amount of data of the slice near the front and the
slice near the back is relatively small, that is, the slice
near the front layer contains relatively less target organ
area, so the doctor’s label information in these parts is
less. *erefore, we believe the major reason for these
failure cases is due to the fact that training data are
insufficient and unbalanced.

5. Conclusion

In this paper, we present the improved Mask R-CNN seg-
mentation framework for the medical domain that is able to
work well on the multiorgan segmentation task. *e pro-
posed improved Mask R-CNN framework builds around the
original Mask R-CNN framework [15]. Compared with the
original Mask R-CNN framework, there are two major
improvements on the improved Mask R-CNN: (a) a ROI
(region of interest) generation method is presented in the
RPN (region proposal network) which is able to utilize
multiscale semantic features; (b) a prebackground classifi-
cation subnetwork is integrated to the original mask gen-
eration branch to improve the precision of multiorgan
segmentation. Additionally, extensive experiments on the
collected and annotated esophageal cancer dataset dem-
onstrate the effectiveness of the proposed framework, i.e.,
the improved Mask R-CNN framework can segment the
heart, right lung, left lung, PTV, and CTV accurately and
simultaneously. Since it is time consuming and laborious to
label medical images, we will investigate semi-supervised
and weakly supervised multiorgan segmentation techniques
in the future.
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