
Citation: Zhang, S.; Hou, T.; Qu, Q.;

Glowacz, A.; Alqhtani, S.M.; Irfan,

M.; Królczyk, G.; Li, Z. An Improved

Mayfly Method to Solve Distributed

Flexible Job Shop Scheduling

Problem under Dual Resource

Constraints. Sustainability 2022, 14,

12120. https://doi.org/10.3390/

su141912120

Academic Editor: Ermanno C. Tortia

Received: 17 July 2022

Accepted: 19 September 2022

Published: 25 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

An Improved Mayfly Method to Solve Distributed Flexible Job
Shop Scheduling Problem under Dual Resource Constraints
Shoujing Zhang 1, Tiantian Hou 1, Qing Qu 1, Adam Glowacz 2 , Samar M. Alqhtani 3 , Muhammad Irfan 4 ,
Grzegorz Królczyk 5 and Zhixiong Li 5,6,*

1 Department of Industrial Engineering, Xi’an Key Laboratory of Modern Intelligent Textile Equipment,
Xi’an Polytechnic University, Xi’an 710600, China

2 Department of Automatic, Control and Robotics, AGH University of Science and Technology,
30-059 Kraków, Poland

3 Department of Information Systems, College of Computer Science and Information Systems,
Najran University, Najran 61441, Saudi Arabia

4 Electrical Engineering Department, College of Engineering, Najran University Saudi Arabia,
Najran 61441, Saudi Arabia

5 Faculty of Mechanical Engineering, Opole University of Technology, 45-758 Opole, Poland
6 Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
* Correspondence: zhixiong.li@yonsei.ac.kr

Abstract: Aiming at the distributed flexible job shop scheduling problem under dual resource con-
straints considering the influence of workpiece transportation time between factories and machines,
a distributed flexible job shop scheduling problem (DFJSP) model with the optimization goal of
minimizing completion time is established, and an improved mayfly algorithm (IMA) is proposed to
solve it. Firstly, the mayfly position vector is discrete mapped to make it applicable to the scheduling
problem. Secondly, three-layer coding rules of process, worker, and machine is adopted, in which
the factory selection is reflected by machine number according to the characteristics of the model,
and a hybrid initialization strategy is designed to improve the population quality and diversity.
Thirdly, an active time window decoding strategy considering transportation time is designed for the
worker–machine idle time window to improve the local optimization performance of the algorithm.
In addition, the improved crossover and mutation operators is designed to expand the global search
range of the algorithm. Finally, through simulation experiments, the results of various algorithms
are compared to verify the effectiveness of the proposed algorithm for isomorphism and isomerism
factories instances.

Keywords: dual resource constrained; distributed flexible job shop scheduling; transportation time;
improved mayfly algorithm; discrete mapping

1. Introduction

Economic globalization and the rapid development of new technologies such as
cloud computing, big data, and the Internet of Things are leading the manufacturing
industry to the modes of production globalization, cloud manufacturing, and intelligent
manufacturing [1–4]. The traditional centralized manufacturing mode can no longer
meet the fierce market competition and diversified customer needs. A large number of
enterprises expand their production to the distributed production environment. Through
the rational allocation, optimal combination, and sharing of resources of enterprises or
factories in different regions, they can quickly improve production efficiency and quality
and reduce costs and risks [5,6]. Providing reasonable and efficient resource allocation
and scheduling services for collaborative production of distributed factories is a research
hotspot in the field of scheduling.

The distributed flexible job shop scheduling problem (DFJSP) has many constraints
and is challenging to solve. It is a more complex NP-Hard problem which has attracted the

Sustainability 2022, 14, 12120. https://doi.org/10.3390/su141912120 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su141912120
https://doi.org/10.3390/su141912120
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-0546-7083
https://orcid.org/0000-0002-8664-8953
https://orcid.org/0000-0003-4161-6875
https://orcid.org/0000-0002-2967-1719
https://orcid.org/0000-0002-7265-0008
https://doi.org/10.3390/su141912120
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su141912120?type=check_update&version=2

Sustainability 2022, 14, 12120 2 of 19

attention of many scholars at home and abroad in recent years. De Giovanni et al. [7] pro-
posed an improved genetic algorithm to solve DFJSP with multiple flexible manufacturing
units, which extended the decoding of FJSP to include the information of FMU allocation
and used a new local search operator to improve the population quality. Ziaee [8] assume
that the job shop of each factory/unit is configured as a flexible job shop; in order to obtain
a high-quality scheduling plan quickly, a fast heuristic algorithm based on the constructive
process was proposed for DFJSP. Sang et al. [9] built a DFJSP model for collaborative
manufacturing of smart factories, proposed a high-dimensional multi-objective memory
algorithm combing with improved NSGA-III and local search methods, and optimized
economic indicators and green indicators. Xu et al. [10] proposed a three-layer coding of
hybrid genetic tabu search algorithm to optimize the completion time, cost, quality, and
carbon emissions of DFJSP considering outsourcing some workpieces. Meng et al. [11]
proposed four MILP models and a constraint programming (CP) model for DFJSP and
verified the effectiveness and superiority of the model through small and large instances.
The above studies usually assume that a workpiece can be processed in only one factory. In
recent years, some scholars have studied the open shop scheduling environment consid-
ering that a workpiece can be processed in different factories. Luo et al. [12] established
a DFJSP mathematical model considering the workpiece transfer with the optimization
objectives of the completion time, factory load, and energy consumption, and designed the
GLS initialization method and a variety of neighborhood structures to improve the memetic
algorithm for solving it. Gong et al. [13] considered that workpieces can be transferred
between machines, job shops, and factories; studied the distributed production scheduling
of different factories and job shops; and proposed a new memetic algorithm to optimize the
problem’s completion time and total energy consumption. Du et al. [14] established a MILP
model of dual-objective DFJSP considering the constraints of crane transportation and en-
ergy consumption and proposed an EDA-VNS hybrid algorithm to solve it. However, there
is still lack of relevant literature on the transportation time required for workpiece transfer.

In addition, most studies on DFJSP consider only the constraints of machinery and
equipment but ignore the constraint of worker resources that is inseparable from production
scheduling. There are some related studies on FJSP in the integrated manufacturing
environment. Meng et al. [15] studied the dual resource-constrained flexible job shop
scheduling problem (DRCFJSP) with energy consumption awareness, proposed two MILP
models, and designed a neighborhood search algorithm with eight neighborhood structures
for the solution. Obimuyiwa [16] considered a limited number of cross-trained skilled
installation operators, established a detailed MILP model of DRCFJSP, and solved it with
a genetic algorithm. Gong et al. [17] proposed a DRCFJSP model considering workers’
flexibility and proposed a hybrid artificial bee colony algorithm to solve it.

Previously, our research group studied DRCFJSP of integrated manufacturing mode
which better solved the differences of the operation levels of workers but ignored the influ-
ence of transportation time in the model established [18]. Therefore, to further study the
distributed manufacturing mode scheduling problem, this paper considers the influence
of worker–machine dual resource constraints and workpiece transportation time and con-
structs a distributed flexible job shop scheduling problem under dual resource constraints
(DFJSPD) model with the completion time as the optimization objective. In addition, an
improved mayfly algorithm (IMA) is proposed according to the characteristic of the model,
where discrete mapping of mayfly position variables, a new three-layer coding method
for multiple resource constraints, a mixed initialization strategy, an active time window
decoding algorithm for idle time window, and the improved crossover and mutation modes
are designed to improve solving performance of the algorithm. Finally, the experimental
results show that the proposed DFJSPD model is more in line with the actual scheduling
situation and the effectiveness and superiority of the improved algorithm.

The remainder of this work is organized as follows. Section 2 establishes the DFJSP
model and Section 3 gives the improved mayfly solution. Experimental analysis and results
are presented in Section 4. Section 5 concludes the main findings.

Sustainability 2022, 14, 12120 3 of 19

2. DFJSPD Modeling
2.1. DFJSPD Problem Description

DFJSPD is described as: n workpieces Ji(i = 1, 2, . . . , n) needs to be processed in F flexi-
ble job shop type factories Ff (f = 1, 2, . . . , F). The workpiece i has ni processes with priority

constraints among them. In the factory Ff , there are m f machines M f k

(
k = 1, 2, . . . , m f

)
and w f workers W f s

(
s = 1, 2, . . . , w f

)
operating the machines, generally m f > w f . The

machines in the factory include CNC machines and non-CNC machines. The workers
are responsible for the preparation including the loading and unloading, the replacement
of tool fixtures and cleaning of CNC machines, and the preparation and machining of
non-CNC machines. Individual differences among workers lead to the differences of opera-
tion efficiency. The basic times of preparation and machining on different machines are
known. Workpieces are transported between machines in a factory or different factories
with known transportation time. DFJSPD can be divided into four sub-problems: factory
selection, machine selection, worker selection, and process sequencing.

Considering the data in Table 1 as an example, the distribution of workers is
WF1 = {W1, W2} and WF2 = {W3, W4}. The scheduling diagram of DFJSPD is shown in
Figure 1, where each color represents a job in which order by time course is the process number.

Table 1. An example of DFJSPD.

Workpiece Process
F1 F2

Workpiece Process
F1 F2

M∗1 M∗2 M3 M4 M5 M∗6 M∗1 M∗2 M3 M4 M5 M∗6

J1
O11 1/3 2/5 - 2/4 - 1/3

J3

O31 - 2/4 1/3 2/5 - 3/7

O12 1/2 - 2/4 2/4 1/3 - O32 3/6 - 2/4 - 1/3 2/4

J2

O21 - 2/5 3/7 - 2/4 - O33 1/3 2/5 2/4 2/5 - 3/7

O22 1/3 - 1/3 2/4 2/5 -
J4

O41 - 3/7 2/4 2/5 3/6 3/7

O23 3/7 2/5 - 2/4 - 3/6 O42 3/6 2/4 - 2/5 3/7 -

Notes: M∗: CNC machine; M: ordinary machine; a/b: preparation time/machining time.

Sustainability 2022, 14, x FOR PEER REVIEW 3 of 20

experimental results show that the proposed DFJSPD model is more in line with the actual

scheduling situation and the effectiveness and superiority of the improved algorithm.

The remainder of this work is organized as follows. Section 2 establishes the DFJSP

model and Section 3 gives the improved mayfly solution. Experimental analysis and re-

sults are presented in Section 4. Section 5 concludes the main findings.

2. DFJSPD Modeling

2.1. DFJSPD Problem Description

DFJSPD is described as: n workpieces
()1 2iJ i n= , , ,

 needs to be processed in F

flexible job shop type factories
()1 2fF f F= , , ,

. The workpiece i has in
 processes

with priority constraints among them. In the factory fF
, there are fm

 machines

()1 2fk fM k m= , , ,
 and fw

 workers
()1 2fs fW s w= , , ,

 operating the machines, gener-

ally f fm w
. The machines in the factory include CNC machines and non-CNC ma-

chines. The workers are responsible for the preparation including the loading and unload-

ing, the replacement of tool fixtures and cleaning of CNC machines, and the preparation

and machining of non-CNC machines. Individual differences among workers lead to the

differences of operation efficiency. The basic times of preparation and machining on dif-

ferent machines are known. Workpieces are transported between machines in a factory or

different factories with known transportation time. DFJSPD can be divided into four sub-

problems: factory selection, machine selection, worker selection, and process sequencing.

Considering the data in Table 1 as an example, the distribution of workers is

1 1 2{ , }FW W W=
 and 2 3 4{ , }FW W W=

. The scheduling diagram of DFJSPD is shown in Figure

1, where each color represents a job in which order by time course is the process number.

Table 1. An example of DFJSPD.

Workpiece Process
1F
 2F

 Workpiece Process
1F
 2F

*

1M

*

2M
 3M

 4M
 5M

*

6M

*

1M

*

2M
 3M

 4M
 5M

*

6M

1J

11O
 1/3 2/5 - 2/4 - 1/3

3J

31O
 - 2/4 1/3 2/5 - 3/7

12O
 1/2 - 2/4 2/4 1/3 - 32O

 3/6 - 2/4 - 1/3 2/4

2J

21O
 - 2/5 3/7 - 2/4 - 33O

 1/3 2/5 2/4 2/5 - 3/7

22O
 1/3 - 1/3 2/4 2/5 -

4J

41O
 - 3/7 2/4 2/5 3/6 3/7

23O
 3/7 2/5 - 2/4 - 3/6 42O

 3/6 2/4 - 2/5 3/7 -

Notes: *M : CNC machine; M : ordinary machine; a/b: preparation time/machining time.

Preparation time and
worker number

Machining time and
workpiece number

Transportation time between
the start and end machines

Operating time and
machine number

Figure 1. Schematic diagram of DFJSPD scheduling.

The relevant assumptions for scheduling are as follows:

All workpieces, machines, and workers are available at time 0;

Figure 1. Schematic diagram of DFJSPD scheduling.

The relevant assumptions for scheduling are as follows:
All workpieces, machines, and workers are available at time 0;
At any time, a machine or worker processes one process at most;
At any time, each workpiece is processed by one worker operating one machine

at most;
Workers can flow only in the factory, the transfer time is considered within the prepa-

ration time, and the loading and unloading time of the workpiece is considered within the
transportation time;

Sustainability 2022, 14, 12120 4 of 19

When the front process on the machine (where a process is located) is the front process
of the same workpiece, the preparation time is negligible.

The transportation time of workpieces transferred between factories is longer than
that of those transferred within factories;

The transportation time of each workpiece before and after the first process is negligible;
There are enough transport tools to complete the transfer of the workpiece;
No interruption is considered in the processing.

2.2. Mathematical Modeling

Based on the relevant descriptions and assumptions in Section 2.1, the DFJSPD
scheduling optimization model is constructed to minimize the maximum completion
time (makespan). The notations of the DFJSPD model are listed in Table 2.

Table 2. The notations of the DFJSPD model.

Notation Description Notation Description

i, h index of workpieces k, l index of machines
j, g index of processes s, r index of workers

Ok
i′j′ the front process of process Oij on the machine k

Tijk basic machining time of process Oij on machine k
T1ijk basic preparation time of process Oij on machine k
eks efficiency of worker s operating machine k

Pijks actual processing time of process Oij by worker s operating machine k
Sijks starting time of process Oij processed by worker s operating machine k
Cijks completion time of process Oij processed by worker s operating machine k

C f and Ci completion times of factory f and workpiece i
TYkl transportation time between machines k and l
Xijks 1, if process Oij is processed by worker s operating the machine k; 0, otherwise

Xk
iji′ j′

1, if i′ = i and j′ = j− 1, that is the front process the machine k where process Oij
is located, is the front process of the same workpiece; 0, otherwise

Yikl 1, workpiece i is transported between machines k and l; 0, otherwise
Hk 1, machine k is CNC-machine; 0, otherwise

f = min(makespan) = min(maxC f) = min(maxCi) (1)

Pijks =
T1ijk(1− Xk

iji′ j′) + Tijk(1− Hk)

eks
(2)

Cijks =

Sijks +
T1ijk(1−Xk

iji′ j′)

eks
+ Tijk, Hk = 1

Sijks +
T1ijk(1−Xk

iji′ j′)+Tijk

eks
, Hk = 0

(3)

Sijks ≥ max(Ci(j−1)lr + TYklYikl , Ci′ j′kr, Ci′ j′ ls) (4)

n

∑
i=1

ni

∑
j=1

Xijks = 1 (5)

n

∑
i=1

m f

∑
k=1

mp

∑
l=1

Yikl = 1 (6)

[
Sijks, Cijks

]
∩
[
Shgkr, Fhgkr

]
= ∅ (7)

[
Sijks, Cijks

]
∩
[
Shgls, Fhgls

]
= ∅ (8)

Equation (1) indicates that the objective function is the maximum completion time
of all factories, that is, the maximum completion time of all workpieces; Equation (2)

Sustainability 2022, 14, 12120 5 of 19

indicates that the actual operation time of workers is equal to the ratio of the standard
time to the efficiency of workers operating the machine; Equation (3) indicates that the
whole processing process is continuous without interruption, and the completion time
of the process is the sum of the starting time, transportation time, actual preparation
time, and actual machining time; Equation (4) indicates that the actual start time of the
process is restricted by process, transportation time, selected worker, and machine factors;
Equation (5) indicates that each process can be processed only on one machine by one
worker at the same time; Equation (6) indicates that each workpiece can be transported
only between two machines at the same time; Equation (7) indicates that the time of two
processes processed on the same machine cannot be crossed; and Equation (8) indicates
that the time of two processes processed by the same worker cannot be crossed.

3. Improved Mayfly Algorithm for DFJSPD Model
3.1. Design of Improved Mayfly Algorithm

Mayfly algorithm (MA) is a swarm intelligence algorithm which is inspired by the
flight and mating behaviors of mayflies [19]. The mayfly population is divided into female
and male populations. In mating behavior, male mayflies tend to congregate in groups,
and the position and velocity of each male mayfly is adjusted based on its own and the
population experience. The difference between female and male mayflies is that male
mayflies tend to gather and female mayflies do not gather in groups, but female mayflies
fly to mate with male mayflies. The offspring mayfly populations produced by mating
have new positions and velocities. Each mayfly is randomly placed in the problem space
as a candidate solution i represented by a d-dimensional vector xi = {xi1, . . . , xid}, and
its performance is evaluated on the predefined objective function f (xi). The velocity
vi = {vi1, . . . , vid} of each mayfly is defined as the change of its position and updates
according to different experience.

MA that combines the advantages of particle swarm optimization (PSO) [20], genetic
algorithm (GA) [21], and firefly algorithm (FA) [22] is often used to solve continuous
problems [23,24]. But DFJSPD is a discrete problem, so this paper improves MA to make it
more suitable for the field of job shop scheduling. The improved strategies are as follows:

A discrete mapping method for transforming the positions of mayflies into discrete codes
of the feasible solutions, which make MA suitable for the job shop scheduling problem;

The mixed population initialization strategy, which designs a variety of initialization
methods based on the heuristic rules of time to improve the population quality and diversity;

Design active window decoding algorithm for the three-layer codes to obtain a better
scheduling scheme;

Improve the crossover and mutation operators, which increase the population diversity
and improve the global exploitation and local exploration of the algorithm.

The pseudo code of the improved mayfly algorithm is shown in Algorithm 1.

Sustainability 2022, 14, 12120 6 of 19

Algorithm 1. The pseudo code of the improved mayfly algorithm

Generate randomly the positions and velocities of male mayflies xi and mvi(i = 1, 2, . . . , n)
Generate randomly the positions and velocities of female mayflies yi and f vi(i = 1, 2, . . . , n)
Objective function f (xi), xi = (xi1, . . . , xid)

T ; makespan Ci at xi is determined by f (xi)
Discretize the positions of mayflies to process code OC
Mixed initialization of machine code MC and worker code WC based on OC
Decode and evaluate objective values of all mayflies
While t < max iteration

For i= //all n male mayflies
If > gbest // gbest is the optimal position in the population

Update the position and velocity of male mayflies based on gbest and pbest //
pbest is its own historical optimal position

Else
Random wedding dance mode

End if
Discretize the positions of male mayflies to three-layer codes
Decode and evaluate male mayflies objective values
End for i
Update pbest
For i = 1:n //all n female mayflies
If f (yi) > f (xi)
emale mayfly yi flies towards male mayfly xi
Else
female mayfly yi flies randomly
End if
Discretize the positions of male mayflies to three-layer codes
Decode and evaluate male mayflies objective values
End for i

For i = 1:n
Generate offspring mayfly by male mayfly i and female mayfly i crossing
offspring mayfly mutation
End for i
Merge offspring and parent mayflies
Decode and evaluate all mayflies objective values
Select male and female populations for next generation
t = t + 1
End while

3.2. Discrete Mapping of Mayfly

In the MA algorithm, the initialization formula of velocity and position of mayfly is
as follows:

P = (ub − lb) ∗ rand() + lb (9)

In Equation (9), ub and lb represent the upper and lower boundaries of velocity or
position, respectively. P is a set of random number vectors of n×max(ni) which represents
the initial velocity or position vector of the mayfly.

The workpiece information cannot be read directly from the position vector, so it
needs to be discrete mapped and converted into the process code of integer sequence.
Considering the example in Table 1, n = 4, max(ni) = 3, and the mapping process is shown
in Table 3. In Table 3, pa

mn denotes pmn arranged in ascending order; χ1 is the original
index of pa

mn corresponding to pmn; χ2 is χ1/max(ni) rounded up, that is converted to
workpiece number; ζ1 is the occurrence order in turn of the corresponding workpiece in
χ2, namely, the process number; ζ2 is that all invalid processes in ζ1 are set to zeros; and
a set of workpiece numbers in χ2 corresponding to nonzero numbers in ζ2 is the process
code OC.

Sustainability 2022, 14, 12120 7 of 19

Table 3. Discrete mapping of the position vector of mayfly.

Index pmn pa
mn χ1 χ2 ζ1 ζ2 OC

1 0.2580 0.0402 7 3 1 1 3
2 0.6934 0.0613 11 4 1 1 4
3 0.0977 0.0977 3 1 1 1 1
4 0.6920 0.2580 1 1 2 2 1
5 0.5983 0.5983 5 2 1 1 2
6 0.7139 0.6301 8 3 2 2 3
7 0.0402 0.6919 10 4 2 2 4
8 0.6301 0.6920 4 2 2 2 2
9 0.7003 0.6934 2 1 3 0
10 0.6919 0.7003 9 3 3 3 3
11 0.0613 0.7139 6 2 3 3 2
12 0.9185 0.9185 12 4 3 0

3.3. Coding and Decoding

According to the problem characteristics of DFJSPD, each mayfly individual represents
a solution that contains multiple information of process, factory, machine, and worker. This
paper adopts a three-layer coding method: process coding (OC), machine coding (MC),
and worker coding (WC). The three vector elements are in one-to-one correspondence, and
the factory selection is reflected by machine coding. Considering the data in Table 1 as an
example, the coding is shown in Figure 2. The three-layer codes are read from left to right at
the same time. Each number in OC represents the workpiece number of the jth occurrence
in turn, and j is the process number of the workpiece. The corresponding positions of MC
and WC represent the machine that processes the process and the worker who operates
the machine.

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 20

read from left to right at the same time. Each number in OC represents the workpiece

number of the
j

th occurrence in turn, and
j

 is the process number of the workpiece.

The corresponding positions of MC and WC represent the machine that processes the pro-

cess and the worker who operates the machine.

Figure 2. Schematic diagram of coding.

A feasible solution code can show only the resources allocation information, and the

complete scheduling scheme needs to be obtained by decoding. The most commonly used

decoding method is the insertion decoding, as shown in Figure 3. Each process is arranged

in the earliest processing time of the available idle time window. This method can effec-

tively reduce the waste of idle time, but the utilization of idle time window may not be

high.

Therefore, this paper designs an active time window decoding algorithm considering

transportation time for DFJSPD. The key is that when a process can be properly adjusted

within the available idle time window, the start time is determined at the latest end time,

and the larger idle time window is left as far as possible for subsequent processes, as

shown in Figure 4. According to the process, transportation time, machine type, and flex-

ible constraints of machine and worker in DFJSPD, as well as whether the preparation

time and machining time of each process are affected, are judged and arranged in an ap-

propriate idle time window. The steps of decoding are summarized by the pseudo code

shown in Algorithm 2. The main steps are as follows:

Traverse three-layer codes to obtain a process, the selected machine and worker, and

the start and stop time of the idle time window of machine and worker;

According to Formulas (2)–(8), the actual processing time and the earliest start time

of the process are calculated;

Traverse the available idle time window, compare the remaining idle time window

after insertion and kaveT
 to determine the actual start time of the process. kaveT

 is the

average processing time of all processes on the machine, as shown in (10):

1 1

1 1

()
i

i

nn

hgk hgk hgk hgk

h g

k nn

hgk

h g

X Tl X T

aveT

X

= =

= =

+

=

(10)

Determine the actual end time of the process, update the idle time window, and de-

code the next process until all the processes are completed.

3 2 2 1 4 3 3 2 4 1

PC

MC 2 4 2 6 4 3 1 2 6 2

WC 2 4 1 3 3 2 1 2 4 1

可选
机器集

可选
工人集

3 2 2 1 4 3 3 2 4 1OC

MC 4 4 6 2 6 3 2 2 1 2

WC 3 4 4 2 3 2 1 1 1 2

C1 2 1 2 4 1 3 2 4 3 3

P1 2 1 4 1 4 3 2 3 3 2

P2 2 3 2 4 1 3 2 4 1 3

C2 2 3 4 1 4 3 2 1 3 2

3 4 1 1 2 3 4 2 3 2PC

MC 2 4 6 2 4 3 6 2 1 2

WC 2 3 3 1 4 2 4 1 1 2

3 2 2 1 4 3 3 2 4 1

PC

MC 2 5 1 6 4 3 1 2 4 3

WC 2 4 1 3 3 2 1 2 4 1

Optional

machines

Optional

workers

Figure 2. Schematic diagram of coding.

A feasible solution code can show only the resources allocation information, and
the complete scheduling scheme needs to be obtained by decoding. The most commonly
used decoding method is the insertion decoding, as shown in Figure 3. Each process is
arranged in the earliest processing time of the available idle time window. This method
can effectively reduce the waste of idle time, but the utilization of idle time window may
not be high.

Sustainability 2022, 14, 12120 8 of 19
Sustainability 2022, 14, x FOR PEER REVIEW 9 of 20

21O

22O

32O

31O

12O41O 41O
41O21O

22O

32O

31O

12O

11O

12O

11O

M
ac

h
in

e

1

3

2

4

Time

M
ac

h
in

e

1

3

2

4

Time

Figure 3. Insertion decoding.

Figure 4. Active time window decoding.

Algorithm 2. Pseudo code of the active time window decoding algorithm.

Active time window decoding algorithm

TO←Total processes

for o = 1: TO

ijO = OC(o), kM = MC(o), sW == WC(o)

{ }Mspan k ←the idle time windows of kM

{ }Wspan s ←the idle time windows of sW

// STXspan and ETXspan indicates the start and end time of the idle time window

X
If j ==1

(1)−= +ij i j lkA C TY ; = lkYT TY

Else

0=ijA ; 0=YT

End if

If kH ==1

im←total available idle time windows of kM

{ }()Mspan k z ←the z th available idle time window of kM

{ }()Wspan s x ←the x th available idle time window of sW

For z =1: im

If { }()STMspan k z == (1)−i jC

0= =WT PT ; = ijkMT T ; max{ , { }()}=ijks ijS A STMspan k z

Else

{ } [{ }(), { }()]= −MWspan Wspan s STMspan k z ETMspan k z MT

x =find ({ }Wspan s MWspan)

If −ETMWspan STMWspan >WT

min({ }(), { }())= −Lp ETWspan s x ETMspan k z MT

11O

21O

22O

32O

31O

22O22O

21O

22O

32O

31O

12O41O 41O21O

22O

32O

31O

12O

11O

12O

11O

Time

M
ac

h
in

e

1

3

2

4

Time

41OM
ac

h
in

e

1

3

2

4

21O

22O

32O

31O

12O41O 41O
21O

22O

32O

31O

12O

11O

12O

11O

M
ac

h
in

e

1

3

2

4

M
ac

h
in

e

1

3

2

4

Time Time

2-3

4-2

1-2

21O

22O

32O

31O

12O

11O

M
ac

h
in

e
1

3

2

4

Time

2-3

4-2

1-2

41O 41O

Figure 3. Insertion decoding.

Therefore, this paper designs an active time window decoding algorithm considering
transportation time for DFJSPD. The key is that when a process can be properly adjusted
within the available idle time window, the start time is determined at the latest end time,
and the larger idle time window is left as far as possible for subsequent processes, as shown
in Figure 4. According to the process, transportation time, machine type, and flexible
constraints of machine and worker in DFJSPD, as well as whether the preparation time and
machining time of each process are affected, are judged and arranged in an appropriate
idle time window. The steps of decoding are summarized by the pseudo code shown in
Algorithm 2. The main steps are as follows:

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 20

21O

22O

32O

31O

12O41O 41O
41O21O

22O

32O

31O

12O

11O

12O

11O

M
ac

h
in

e

1

3

2

4

Time

M
ac

h
in

e

1

3

2

4

Time

Figure 3. Insertion decoding.

Figure 4. Active time window decoding.

Algorithm 2. Pseudo code of the active time window decoding algorithm.

Active time window decoding algorithm

TO←Total processes

for o = 1: TO

ijO = OC(o), kM = MC(o), sW == WC(o)

{ }Mspan k ←the idle time windows of kM

{ }Wspan s ←the idle time windows of sW

// STXspan and ETXspan indicates the start and end time of the idle time window

X
If j ==1

(1)−= +ij i j lkA C TY ; = lkYT TY

Else

0=ijA ; 0=YT

End if

If kH ==1

im←total available idle time windows of kM

{ }()Mspan k z ←the z th available idle time window of kM

{ }()Wspan s x ←the x th available idle time window of sW

For z =1: im

If { }()STMspan k z == (1)−i jC

0= =WT PT ; = ijkMT T ; max{ , { }()}=ijks ijS A STMspan k z

Else

{ } [{ }(), { }()]= −MWspan Wspan s STMspan k z ETMspan k z MT

x =find ({ }Wspan s MWspan)

If −ETMWspan STMWspan >WT

min({ }(), { }())= −Lp ETWspan s x ETMspan k z MT

11O

21O

22O

32O

31O

22O22O

21O

22O

32O

31O

12O41O 41O21O

22O

32O

31O

12O

11O

12O

11O

Time

M
ac

h
in

e

1

3

2

4

Time

41OM
ac

h
in

e

1

3

2

4

21O

22O

32O

31O

12O41O 41O
21O

22O

32O

31O

12O

11O

12O

11O

M
ac

h
in

e

1

3

2

4

M
ac

h
in

e

1

3

2

4

Time Time

2-3

4-2

1-2

21O

22O

32O

31O

12O

11O

M
ac

h
in

e

1

3

2

4

Time

2-3

4-2

1-2

41O 41O

Figure 4. Active time window decoding.

Traverse three-layer codes to obtain a process, the selected machine and worker, and
the start and stop time of the idle time window of machine and worker;

According to Equations (2)–(8), the actual processing time and the earliest start time of
the process are calculated;

Traverse the available idle time window, compare the remaining idle time window
after insertion and aveTk to determine the actual start time of the process. aveTk is the
average processing time of all processes on the machine, as shown in (10):

aveTk =

n
∑

h=1

ni
∑

g=1
(XhgkTlhgk + XhgkThgk)

n
∑

h=1

ni
∑

g=1
Xhgk

(10)

Determine the actual end time of the process, update the idle time window, and decode
the next process until all the processes are completed.

Sustainability 2022, 14, 12120 9 of 19

Algorithm 2. Pseudo code of the active time window decoding algorithm.

TO←Total processes
for o = 1: TO
Oij = OC(o), Mk = MC(o), Ws == WC(o)

Mspan{k}←the idle time windows of Mk
Wspan{s}←the idle time windows of Ws
//STXspan and ETXspan indicates the start and end time of the idle time window X
If j == 1
Aij = Ci(j−1) + TYlk; YT = TYlk
Else
Aij = 0; YT = 0
End if
If Hk == 1

im←total available idle time windows of Mk
Mspan{k}(z)←the zth available idle time window of Mk
Wspan{s}(x)←the xth available idle time window of Ws
For z = 1:im
If STMspan{k}(z) == Ci(j−1)

WT = PT = 0; MT = Tijk; Sijks = max
{

Aij, STMspan{k}(z)
}

Else
MWspan = Wspan{s} ∩ [STMspan{k}(z), ETMspan{k}(z)−MT]
x = find (Wspan{s} ⊇ MWspan)
If ETMWspan− STMWspan>WT
Lp = min(ETWspan{s}(x), ETMspan{k}(z)−MT)
Else
End if

Else if
End for z
If Lp− PT − STMspan{k}(z) >= aveTk
Sijks = Lp− PT
Else
Sijks = max

{
Aij, STWMspan

}
End if
Else

MWspan = Mspan{k} ∩Wspan{s}
it←total MWspan
for i = 1:it

m = find (Mspan{k} ⊇ MWspan(i))
If STMspan{k}(m) == Ci(j−1)
PT = 0; MT = Tijk/eks; WT = MT;
Else
PT = Tlijk/eks; MT = Tijk/eks; WT = PT + MT
End if

If Aij > STMWspan(i)&&
(ETMWspan(i)− STMWspan(i)− PT −MT) >= aveTk

Sijks = ETMWspan(i)− PT −MT
break
Else

Sijks = max
{

Aij, STWMspan(i)
}

break
End if

End for i
End if
Cijks = Sijks + PT + MT
Update Mspan{k} and Wspan{s}
End for o

Sustainability 2022, 14, 12120 10 of 19

3.4. Mixed Initialization

Initializing the population is the premise of intelligent algorithm optimization; the
initial population quality has an important influence on the convergence speed and op-
timization ability of the algorithm. When setting the initial solution, it is necessary to
improve the quality of the solution according to the optimization objective. In addition,
the diversity of the initial solution should be ensured to avoid the population falling into
local optimum. In this paper, that initial position vector of mayfly is discrete mapped for
OC, and a variety of initialization rules considering time (population ratio is 4:2:2:1:1) are
designed for the corresponding MC and OC.

Heuristic rule based on completion time: Each process in OC is traversed successively
to select the worker–machine combination that can minimize the completion time.

Global initialization rule: Each process of each workpiece is traversed successively,
and the worker–machine combination for the shortest total cumulative processing time is
selected for it.

Local initialization rule: Each process of each workpiece is traversed in turn to select the
worker–machine combination for the shortest cumulative processing time of the workpiece.

Single initialization rule: Each process in OC is traversed successively to select the
worker–machine combination that can minimize the processing time.

Random initialization rule: Each process in OC is traversed successively to select any
worker–machine combination that can process the process.

3.5. Updating of Mayfly

The male mayfly in MA constantly adjusts its velocity and direction according to its
historical optimal position (pbest) and the optimal position in the population (gbest) to
move towards the optimal position. When the male mayfly is in the best position, the
wedding dance mode is executed, and its velocity varies according to inertia weight and
dance coefficient. The update formulas of the velocity and position of male mayfly are
as follows:

mvt+1
ij =

g ∗mvt
ij + a1e−βr2

p
(

pbestij − xt
ij

)
+ a2e−βr2

g
(

gbestj − xt
ij

)
, if f (xi) > f (gbest)

g ∗mvt
ij + d ∗ r, if f (xi) ≤ f (gbest)

(11)

xt+1
ij = xt

ij + mvt+1
ij (12)

where mvt
ij is the velocity of the male mayfly i in dimension j at time step t. g is the

inertia weight. a1 and a2 are positive attraction constants used to scale the contribution
of the cognitive and social component respectively. β is a fixed visibility coefficient. d is
the nuptial dance coefficient. r is a random value in the range [–1,1]. rp is the Cartesian
distance between xt

i and pbestij, and rg is the Cartesian distance between xt
i and gbestj. In

Equation (12), xt
ij is the position of the male mayfly i in dimension j at time step t.

In order to reproduce offspring, female mayflies are attracted by male mayflies. They
adjust their velocity and direction to fly towards male mayflies and keep approaching.
When a female mayfly is not attracted by a male mayfly, it flies randomly. The update
formulas of the velocity and position of female mayfly are as follows:

f vt+1
ij =

g ∗ f vt
ij + a2e−βr2

m f
(

xt
ij − yt

ij

)
, if f (yi) > f (xi)

g ∗ f vt
ij + f l ∗ r, if f (yi) ≤ f (xi)

(13)

yt+1
ij = yt

ij + f vt+1
ij (14)

where f vt
ij is the velocity of the female mayfly i in dimension j at time step t. f l is a

randomly walk coefficient, and rm f is the Cartesian distance between male and female

Sustainability 2022, 14, 12120 11 of 19

mayflies. In Equation (12), yt
ij is the position of the female mayfly i in dimension j at time

step t.
In order to balance the global exploitation and local exploration in the early and late

stages of the algorithm, the dynamic inertia weight is adopted [19], which linearly decreases
with the number of iterations. After the mayfly position is updated, it is mapped to
process code according to the discrete method in Section 3.2. The original worker–machine
combination of each process is unchanged, and their positions are changed accordingly.
After updating the position of mayfly corresponding to the process code in Figure 2, the
three-layer codes after discrete mapping are as shown in Figure 5.

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 20

Figure 5. The codes after updating of mayfly.

3.6. Crossover and Mutation Operators

The crossover operation of the original MA algorithm is based on the quality of the

solution. A male mayfly breeds with the female mayfly at the same fitness level with it;

however, the original crossover formula is applicable to the continuous optimization

problem [25]. Therefore, in this paper, crossover and mutation operators are designed re-

spectively for the characteristics of the three-layer codes.

(1) Crossover operator

(a) The IPOX crossover operator is adopted on OC. (b) An improved IMPX crossover

operator [26] is adopted on MC. If the machine is unavailable after exchanging, a machine

with the shortest processing time is selected from the set of alternative machines for the

corresponding process. (c) Since it is assumed that workers cannot transfer across facto-

ries, a two-point crossover operator considering factory constraint is designed for WC.

For the parent P1, two crossover points are selected and exchanged respectively with any

two workers in the same factory in the parent P2. If the worker after the exchange is una-

vailable, a worker with the highest efficiency is selected in the optional workers set for the

corresponding machine. Three crossover operators are shown in Figure 6, where P repre-

sents the parent and C represents the offspring.

Figure 6. Crossover operators.

(2) Mutation operator

(a) Reverse sequence mutation is adopted on OC. The genes reverse sequence ex-

change between two different mutation sites randomly selected, and MC and WC are ad-

justed accordingly to keep the original worker–machine combination of each process un-

changed. (b) The mutation rules on MC are the same as OC, and if the machine after mu-

tating is unavailable, the worker–machine combination is reselected in the optional ma-

chines and workers set. (c) Two points of mutation are adopted on WC, that is, randomly

selecting two different workers in a factory to exchange positions. If the worker after the

exchange is unavailable, a worker with the highest efficiency is selected in the optional

workers set for the corresponding machine. The three mutation operators are shown in

Figure 7.

Figure 7. Mutation operators.

3 2 2 1 4 3 3 2 4 1

OC

MC 2 4 2 6 4 3 1 2 6 2

WC 2 4 1 3 3 2 1 2 4 1

可选
机器集

可选
工人集

3 2 2 1 4 3 3 2 4 1OC

MC 4 4 6 2 6 3 2 2 1 2

WC 3 4 4 2 3 2 1 1 1 2

C1 2 1 2 4 1 3 2 4 3 3

P1 2 1 4 1 4 3 2 3 3 2

P2 2 3 2 4 1 3 2 4 1 3

C2 2 3 4 1 4 3 2 1 3 2

3 4 1 1 2 3 4 2 3 2OC

MC 2 4 6 2 4 3 6 2 1 2

WC 2 3 3 1 4 2 4 1 1 2

C1 2 1 2 4 1 3 2 4 3 3

P1 2 1 4 1 4 3 2 3 3 2

P2 2 3 2 4 1 3 2 4 1 3

C2 2 3 4 1 4 3 2 1 3 2

C1 3 1 2 1 1 5 5 3 1 2

P1 3 1 5 1 4 5 5 3 4 2

P2 5 3 2 4 1 5 2 6 1 3

C2 5 3 1 4 4 5 2 6 4 3

0 0 1 0 1 1 0 0 1 0

C1 3 1 1 1 1 3 2 3 4 4

P1 3 1 2 1 4 3 2 3 4 4

P2 4 3 2 4 1 3 2 4 1 3

C2 4 3 2 4 2 3 2 4 1 3

0 0 1 0 0 0 0 1 0 0

P2 2 3 2 4 1 3 2 4 1 3

(a)OC交叉 (b)MC交叉 (c)WC交叉

C1 2 1 2 4 1 3 2 4 3 3

P1 2 1 4 1 4 3 2 3 3 2

P2 2 3 2 4 1 3 2 4 1 3

C2 2 3 4 1 4 3 2 1 3 2

C1 3 1 2 1 1 5 5 3 1 2

P1 3 1 5 1 4 5 5 3 4 2

P2 5 3 2 4 1 5 2 6 1 3

C2 5 3 1 4 4 5 2 6 4 3

0 0 1 0 1 1 0 0 1 0

C1 3 1 1 1 1 3 2 3 4 4

P1 3 1 2 1 4 3 2 3 4 4

P2 4 3 2 4 1 3 2 4 1 3

C2 4 3 2 4 2 3 2 4 1 3

0 0 1 0 0 0 0 1 0 0

P2 2 3 2 4 1 3 2 4 1 3

(a) Crossover of OC (b) Crossover of MC (c) Crossover of WC

2 3 4 1 4 3 2 1 3 2

2 3 4 1 1 2 3 4 3 2

P

C

5 3 2 4 1 5 2 6 1 3

5 3 5 1 4 2 2 6 1 3

P

C

2 3 2 4 1 4 2 1 1 3

2 3 1 4 1 4 2 2 1 3

P

C

(a) Mutation of OC (b) Mutation of MC (c) Mutation of WC

Figure 5. The codes after updating of mayfly.

3.6. Crossover and Mutation Operators

The crossover operation of the original MA algorithm is based on the quality of the
solution. A male mayfly breeds with the female mayfly at the same fitness level with
it; however, the original crossover formula is applicable to the continuous optimization
problem [25]. Therefore, in this paper, crossover and mutation operators are designed
respectively for the characteristics of the three-layer codes.

(1) Crossover operator
(a) The IPOX crossover operator is adopted on OC. (b) An improved IMPX crossover

operator [26] is adopted on MC. If the machine is unavailable after exchanging, a machine
with the shortest processing time is selected from the set of alternative machines for the
corresponding process. (c) Since it is assumed that workers cannot transfer across factories,
a two-point crossover operator considering factory constraint is designed for WC. For
the parent P1, two crossover points are selected and exchanged respectively with any
two workers in the same factory in the parent P2. If the worker after the exchange is
unavailable, a worker with the highest efficiency is selected in the optional workers set
for the corresponding machine. Three crossover operators are shown in Figure 6, where P
represents the parent and C represents the offspring.

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 20

Figure 5. The codes after updating of mayfly.

3.6. Crossover and Mutation Operators

The crossover operation of the original MA algorithm is based on the quality of the

solution. A male mayfly breeds with the female mayfly at the same fitness level with it;

however, the original crossover formula is applicable to the continuous optimization

problem [25]. Therefore, in this paper, crossover and mutation operators are designed re-

spectively for the characteristics of the three-layer codes.

(1) Crossover operator

(a) The IPOX crossover operator is adopted on OC. (b) An improved IMPX crossover

operator [26] is adopted on MC. If the machine is unavailable after exchanging, a machine

with the shortest processing time is selected from the set of alternative machines for the

corresponding process. (c) Since it is assumed that workers cannot transfer across facto-

ries, a two-point crossover operator considering factory constraint is designed for WC.

For the parent P1, two crossover points are selected and exchanged respectively with any

two workers in the same factory in the parent P2. If the worker after the exchange is una-

vailable, a worker with the highest efficiency is selected in the optional workers set for the

corresponding machine. Three crossover operators are shown in Figure 6, where P repre-

sents the parent and C represents the offspring.

Figure 6. Crossover operators.

(2) Mutation operator

(a) Reverse sequence mutation is adopted on OC. The genes reverse sequence ex-

change between two different mutation sites randomly selected, and MC and WC are ad-

justed accordingly to keep the original worker–machine combination of each process un-

changed. (b) The mutation rules on MC are the same as OC, and if the machine after mu-

tating is unavailable, the worker–machine combination is reselected in the optional ma-

chines and workers set. (c) Two points of mutation are adopted on WC, that is, randomly

selecting two different workers in a factory to exchange positions. If the worker after the

exchange is unavailable, a worker with the highest efficiency is selected in the optional

workers set for the corresponding machine. The three mutation operators are shown in

Figure 7.

Figure 7. Mutation operators.

3 2 2 1 4 3 3 2 4 1

OC

MC 2 4 2 6 4 3 1 2 6 2

WC 2 4 1 3 3 2 1 2 4 1

可选
机器集

可选
工人集

3 2 2 1 4 3 3 2 4 1OC

MC 4 4 6 2 6 3 2 2 1 2

WC 3 4 4 2 3 2 1 1 1 2

C1 2 1 2 4 1 3 2 4 3 3

P1 2 1 4 1 4 3 2 3 3 2

P2 2 3 2 4 1 3 2 4 1 3

C2 2 3 4 1 4 3 2 1 3 2

3 4 1 1 2 3 4 2 3 2OC

MC 2 4 6 2 4 3 6 2 1 2

WC 2 3 3 1 4 2 4 1 1 2

C1 2 1 2 4 1 3 2 4 3 3

P1 2 1 4 1 4 3 2 3 3 2

P2 2 3 2 4 1 3 2 4 1 3

C2 2 3 4 1 4 3 2 1 3 2

C1 3 1 2 1 1 5 5 3 1 2

P1 3 1 5 1 4 5 5 3 4 2

P2 5 3 2 4 1 5 2 6 1 3

C2 5 3 1 4 4 5 2 6 4 3

0 0 1 0 1 1 0 0 1 0

C1 3 1 1 1 1 3 2 3 4 4

P1 3 1 2 1 4 3 2 3 4 4

P2 4 3 2 4 1 3 2 4 1 3

C2 4 3 2 4 2 3 2 4 1 3

0 0 1 0 0 0 0 1 0 0

P2 2 3 2 4 1 3 2 4 1 3

(a)OC交叉 (b)MC交叉 (c)WC交叉

C1 2 1 2 4 1 3 2 4 3 3

P1 2 1 4 1 4 3 2 3 3 2

P2 2 3 2 4 1 3 2 4 1 3

C2 2 3 4 1 4 3 2 1 3 2

C1 3 1 2 1 1 5 5 3 1 2

P1 3 1 5 1 4 5 5 3 4 2

P2 5 3 2 4 1 5 2 6 1 3

C2 5 3 1 4 4 5 2 6 4 3

0 0 1 0 1 1 0 0 1 0

C1 3 1 1 1 1 3 2 3 4 4

P1 3 1 2 1 4 3 2 3 4 4

P2 4 3 2 4 1 3 2 4 1 3

C2 4 3 2 4 2 3 2 4 1 3

0 0 1 0 0 0 0 1 0 0

P2 2 3 2 4 1 3 2 4 1 3

(a) Crossover of OC (b) Crossover of MC (c) Crossover of WC

2 3 4 1 4 3 2 1 3 2

2 3 4 1 1 2 3 4 3 2

P

C

5 3 2 4 1 5 2 6 1 3

5 3 5 1 4 2 2 6 1 3

P

C

2 3 2 4 1 4 2 1 1 3

2 3 1 4 1 4 2 2 1 3

P

C

(a) Mutation of OC (b) Mutation of MC (c) Mutation of WC

Figure 6. Crossover operators.

(2) Mutation operator
(a) Reverse sequence mutation is adopted on OC. The genes reverse sequence exchange

between two different mutation sites randomly selected, and MC and WC are adjusted
accordingly to keep the original worker–machine combination of each process unchanged.
(b) The mutation rules on MC are the same as OC, and if the machine after mutating is
unavailable, the worker–machine combination is reselected in the optional machines and
workers set. (c) Two points of mutation are adopted on WC, that is, randomly selecting
two different workers in a factory to exchange positions. If the worker after the exchange is
unavailable, a worker with the highest efficiency is selected in the optional workers set for
the corresponding machine. The three mutation operators are shown in Figure 7.

Sustainability 2022, 14, 12120 12 of 19

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 20

Figure 5. The codes after updating of mayfly.

3.6. Crossover and Mutation Operators

The crossover operation of the original MA algorithm is based on the quality of the

solution. A male mayfly breeds with the female mayfly at the same fitness level with it;

however, the original crossover formula is applicable to the continuous optimization

problem [25]. Therefore, in this paper, crossover and mutation operators are designed re-

spectively for the characteristics of the three-layer codes.

(1) Crossover operator

(a) The IPOX crossover operator is adopted on OC. (b) An improved IMPX crossover

operator [26] is adopted on MC. If the machine is unavailable after exchanging, a machine

with the shortest processing time is selected from the set of alternative machines for the

corresponding process. (c) Since it is assumed that workers cannot transfer across facto-

ries, a two-point crossover operator considering factory constraint is designed for WC.

For the parent P1, two crossover points are selected and exchanged respectively with any

two workers in the same factory in the parent P2. If the worker after the exchange is una-

vailable, a worker with the highest efficiency is selected in the optional workers set for the

corresponding machine. Three crossover operators are shown in Figure 6, where P repre-

sents the parent and C represents the offspring.

Figure 6. Crossover operators.

(2) Mutation operator

(a) Reverse sequence mutation is adopted on OC. The genes reverse sequence ex-

change between two different mutation sites randomly selected, and MC and WC are ad-

justed accordingly to keep the original worker–machine combination of each process un-

changed. (b) The mutation rules on MC are the same as OC, and if the machine after mu-

tating is unavailable, the worker–machine combination is reselected in the optional ma-

chines and workers set. (c) Two points of mutation are adopted on WC, that is, randomly

selecting two different workers in a factory to exchange positions. If the worker after the

exchange is unavailable, a worker with the highest efficiency is selected in the optional

workers set for the corresponding machine. The three mutation operators are shown in

Figure 7.

Figure 7. Mutation operators.

3 2 2 1 4 3 3 2 4 1

OC

MC 2 4 2 6 4 3 1 2 6 2

WC 2 4 1 3 3 2 1 2 4 1

可选
机器集

可选
工人集

3 2 2 1 4 3 3 2 4 1OC

MC 4 4 6 2 6 3 2 2 1 2

WC 3 4 4 2 3 2 1 1 1 2

C1 2 1 2 4 1 3 2 4 3 3

P1 2 1 4 1 4 3 2 3 3 2

P2 2 3 2 4 1 3 2 4 1 3

C2 2 3 4 1 4 3 2 1 3 2

3 4 1 1 2 3 4 2 3 2OC

MC 2 4 6 2 4 3 6 2 1 2

WC 2 3 3 1 4 2 4 1 1 2

C1 2 1 2 4 1 3 2 4 3 3

P1 2 1 4 1 4 3 2 3 3 2

P2 2 3 2 4 1 3 2 4 1 3

C2 2 3 4 1 4 3 2 1 3 2

C1 3 1 2 1 1 5 5 3 1 2

P1 3 1 5 1 4 5 5 3 4 2

P2 5 3 2 4 1 5 2 6 1 3

C2 5 3 1 4 4 5 2 6 4 3

0 0 1 0 1 1 0 0 1 0

C1 3 1 1 1 1 3 2 3 4 4

P1 3 1 2 1 4 3 2 3 4 4

P2 4 3 2 4 1 3 2 4 1 3

C2 4 3 2 4 2 3 2 4 1 3

0 0 1 0 0 0 0 1 0 0

P2 2 3 2 4 1 3 2 4 1 3

(a)OC交叉 (b)MC交叉 (c)WC交叉

C1 2 1 2 4 1 3 2 4 3 3

P1 2 1 4 1 4 3 2 3 3 2

P2 2 3 2 4 1 3 2 4 1 3

C2 2 3 4 1 4 3 2 1 3 2

C1 3 1 2 1 1 5 5 3 1 2

P1 3 1 5 1 4 5 5 3 4 2

P2 5 3 2 4 1 5 2 6 1 3

C2 5 3 1 4 4 5 2 6 4 3

0 0 1 0 1 1 0 0 1 0

C1 3 1 1 1 1 3 2 3 4 4

P1 3 1 2 1 4 3 2 3 4 4

P2 4 3 2 4 1 3 2 4 1 3

C2 4 3 2 4 2 3 2 4 1 3

0 0 1 0 0 0 0 1 0 0

P2 2 3 2 4 1 3 2 4 1 3

(a) Crossover of OC (b) Crossover of MC (c) Crossover of WC

2 3 4 1 4 3 2 1 3 2

2 3 4 1 1 2 3 4 3 2

P

C

5 3 2 4 1 5 2 6 1 3

5 3 5 1 4 2 2 6 1 3

P

C

2 3 2 4 1 4 2 1 1 3

2 3 1 4 1 4 2 2 1 3

P

C

(a) Mutation of OC (b) Mutation of MC (c) Mutation of WC

Figure 7. Mutation operators.

4. Experiment and Analysis
4.1. Testing Instances and Parameter Setting

Since there are few previous studies on DFJSPD, there are no relevant benchmark
instances for reference and test. This paper designed 20 DFJSPD instances of isomorphism
and isomerism factories by extending 10 FJSP benchmarks of Brandimarte [27] that are
widely applicable in the field of FJSP and used by a large number of researchers [9,28,29].

(1) Isomorphism factories instances (SMk01-SMk10)
The quantity and functional flexibility of machines and workers in isomorphism

factories are the same. Set the workpieces processing time and the worker–machine
information and copy these to construct factories F1 and F2 with the same processing
environment.

(2) Isomerism factories instances (DMk01-DMk10)
There are differences in the number and function flexibility of machines and workers

in isomerism factories. Split the machine information and the number of workers of factory
F1 in isomorphism factories instances to construct factories F1 and F2, respectively; workers’
skills in each factory are completely flexible.

For any instance, the process preparation time is generated in U[2, 8], the worker
efficiency is generated randomly in U[0.8, 1.2], the transportation time between machines
in the same factory is generated in U[1, 5], and the transportation time between machines in
different factories is generated in U[6, 10] [9]. A total of 30% of the machines are selected as
CNC machines. The scale and machines information of each instance are shown in Table 4.
n× (m× w)× F represents n workpieces processed in F factories, and m machines and w
workers are in each factory.

Table 4. Descriptions of the DFJSPD instances.

Isomorphism
Factories Instance

Scale
CNC Machines Isomerism Factories

Instance
Scale

CNC Machinesn×(m×w)×f n×(m×w)×f

SMk01 10 × (6 × 4) × 2 2,4,8,10 DMk01 10 × (3 × 2) × 2 2,4
SMk02 10 × (6 × 4) × 2 2,4,8,10 DMk02 10 × (3 × 2) × 2 2,4
SMk03 15 × (8 × 6) × 2 1,8,9,16 DMk03 15 × (4 × 3) × 2 1,8
SMk04 15 × (8 × 6) × 2 1,3,9,11 DMk04 15 × (4 × 3) × 2 1,3
SMk05 15 × (4 × 3) × 2 3,7 DMk05 15 × (2 × 2) × 2 3
SMk06 10 × (15 × 8) × 2 2,3,4,7,17,18,19,22 DMk06 10 × ((8 × 4) + (7 × 4)) 2,3,4,7
SMk07 20 × (5 × 4) × 2 2,7 DMk07 20 × ((3 × 2) + (2 × 2)) 2
SMk08 20 × (10 × 6) × 2 1,3,10,11,13,20 DMk08 20 × (5 × 3) × 2 1,3,10
SMk09 20 × (10 × 6) × 2 2,4,8,12,14,18 DMk09 20 × (5 × 3) × 2 2,4,8
SMk10 20 × (15 × 8) × 2 2,3,7,10,17,18,22,25 DMk10 20 × ((8 × 4) + (7 × 4)) 2,3,7,10

To verify the superior performance of IMA, it was compared with the results of
traditional MA, GA, PSO, and FA algorithms. Traditional algorithms adopt three-layer
encoding, random initialization, and insertion decoding methods. The parameter settings
of the algorithms are shown in Table 5. All experiments are run on MATLAB R2020a.

Sustainability 2022, 14, 12120 13 of 19

Table 5. Parameters setting of algorithms.

Algorithm Population Scale Number of Iterations Other Parameters

IMA female: 50, male: 50 200 a1 = 1, a2 = a3 = 1.5, β = 2, d = f l = 1,
gmax = 1.5, gmin = 0.4

MA female: 50, male: 50 200 a1 = 1, a2 = a3 = 1.5, β = 2, d = f l = 1, g = 0.8
GA 100 200 crossover rate 0.8, mutation rate 0.05
PSO 100 200 inertia weight ω = 0.8, learning factor c1 = c2 = 2

FA 100 200 attractiveness of firefly β0 = 1, light absorption
coefficient γ = 1, random parameter α = 0.3

4.2. Results Analysis

In order to avoid random differences, each instance is solved 20 times by each al-
gorithm, and the results of isomorphism and isomerism factories instances are shown in
Tables 6 and 7. Cmin

max and Cave
max are the optimal and mean value, respectively, of 20 results of

an algorithm.

Table 6. The results of isomorphism factories instances.

IMA MA GA PSO FA

Cmin
max Cave

max Cmin
max Cave

max Cmin
max Cave

max Cmin
max Cave

max Cmin
max Cave

max

SMk01 42.82 43.86 45.21 46.26 46.83 47.66 46.49 47.38 47.22 48.04
SMk02 31.78 32.39 32.93 33.38 33.10 33.43 33.70 34.66 34.53 35.11
SMk03 154.28 156.06 155.38 157.77 155.86 156.89 164.85 165.28 163.59 165.03
SMk04 63.83 65.63 67.60 68.39 66.51 67.89 68.53 69.99 67.70 69.51
SMk05 142.02 145.27 147.78 149.69 149.21 156.52 148.93 154.08 150.30 158.20
SMk06 91.66 93.02 93.94 94.77 94.12 95.09 96.18 97.57 95.69 96.47
SMk07 122.00 124.35 126.06 128.36 126.30 128.19 128.67 131.26 127.30 130.64
SMk08 430.00 435.96 445.59 447.21 441.00 447.72 446.53 453.16 447.31 451.48
SMk09 319.41 321.98 329.40 332.58 330.24 334.33 349.96 351.68 342.18 346.66
SMk10 237.13 240.55 245.76 256.69 248.64 259.62 252.78 256.63 260.37 262.41

Table 7. The results of isomerism factories instances.

IMA MA GA PSO FA

Cmin
max Cave

max Cmin
max Cave

max Cmin
max Cave

max Cmin
max Cave

max Cmin
max Cave

max

DMk01 68.03 69.97 70.03 73.27 74.28 76.63 74.33 76.08 75.79 77.00
DMk02 45.56 47.38 46.03 47.99 46.54 48.63 48.74 50.60 48.39 50.70
DMk03 235.26 257.21 268.34 284.60 263.26 279.46 266.92 287.95 276.92 286.13
DMk04 104.51 111.52 114.19 117.74 112.84 118.54 118.45 122.00 116.93 122.60
DMk05 234.53 243.02 256.25 270.02 256.93 268.72 258.51 271.35 260.77 272.13
DMk06 133.89 142.71 153.49 158.90 150.54 159.85 153.72 161.22 157.08 160.73
DMk07 213.13 225.70 228.69 238.58 232.32 239.04 249.30 253.57 249.30 252.71
DMk08 735.70 765.51 788.57 811.98 770.23 805.96 801.65 836.58 781.34 844.57
DMk09 529.02 547.75 569.38 585.13 550.38 572.43 556.30 585.96 571.10 591.50
DMk10 428.64 447.54 458.24 463.94 446.04 469.25 468.68 480.76 466.86 479.06

Tables 6 and 7 show that due to the randomness of population initialization and
evolution process, there are differences among the results of each example. Overall, the
optimal value and mean value of IMA are less than other algorithms. The larger the scale
of the example, the more obvious the difference. This shows that the active time window
decoding can better coordinate resources and reduce idle time, especially when solving
large-scale problems.

To significantly compare algorithms differences, two evaluation indicators are de-
signed according to the literature [29]: the minimum value of relative percentage deviation

Sustainability 2022, 14, 12120 14 of 19

(MRPD) and the average value of relative percentage deviation (ARPD). The calculation
formulas are as follows:

MRPD =
Cmin

max − Clow
max

Clow
max

× 100 (15)

ARPD =
1
s

s

∑
i=1

(
Ci

max − Clow
max

Clow
max

× 100

)
(16)

In Equations (15)–(16), for any instance, Ci
max is the ith result of an algorithm solving it,

Clow
max is the optimal value of all the results of all the algorithms, s is the number of iterations

of solving. The smaller the MRPD, the better the accuracy of the algorithm convergence;
the smaller the MRPD, the better the stability of the algorithm. The values of MRPD and
ARPD are shown in Tables 8 and 9.

Table 8. Evaluation results of isomorphism factories instances.

Instance Clow
max

IMA MA GA PSO FA

MRPD ARPD MRPD ARPD MRPD ARPD MRPD ARPD MRPD ARPD

SMk01 42.82 0 2.44 5.58 8.04 9.36 11.31 8.57 10.65 10.28 12.19
SMk02 31.78 0 1.91 3.62 5.04 4.15 5.20 6.04 9.06 8.65 10.47
SMk03 154.28 0 1.16 0.71 2.26 1.02 1.69 6.85 7.13 6.03 6.97
SMk04 63.83 0 2.77 5.86 7.10 4.15 6.31 7.31 9.59 6.01 8.84
SMk05 142.02 0 2.29 4.06 5.40 5.06 10.21 4.87 8.49 5.83 11.39
SMk06 91.66 0 1.49 2.49 3.39 2.68 3.74 4.93 6.45 4.39 5.24
SMk07 122.00 0 1.93 3.33 5.21 3.52 5.07 5.47 7.59 4.34 7.09
SMk08 430.00 0 1.39 3.63 4.00 2.56 4.12 3.84 5.39 4.03 5.00
SMk09 319.41 0 0.80 3.13 4.12 3.39 4.67 9.56 10.10 7.13 8.53
SMk10 237.13 0 1.44 3.64 8.25 4.85 9.48 6.60 8.22 9.80 10.66

Table 9. Evaluation results of isomerism factories instances.

Instance Clow
max

IMA MA GA PSO FA

MRPD ARPD MRPD ARPD MRPD ARPD MRPD ARPD MRPD ARPD

DMk01 68.03 0 2.85 2.94 7.70 9.19 12.64 9.26 11.84 11.41 13.18
DMk02 45.56 0 4.00 1.03 5.34 2.15 6.73 6.98 11.07 6.21 11.28
DMk03 235.26 0 9.33 14.06 20.97 11.90 18.79 13.46 22.39 17.71 21.62
DMk04 104.51 0 6.71 9.26 12.66 7.97 13.43 13.34 16.73 11.88 17.31
DMk05 234.53 0 3.62 9.26 15.13 11.19 16.03 10.22 15..70 9.55 14.58
DMk06 133.89 0 6.59 15.39 18.83 12.44 19.39 14.81 20.41 17.32 20.04
DMk07 213.13 0 5.90 7.30 11.94 9.00 12.16 16.97 18.98 16.97 18.57
DMk08 735.70 0 4.05 7.19 10.37 4.69 9.55 8.96 13.71 6.20 14.80
DMk09 529.02 0 3.54 7.63 10.61 4.04 8.20 5.16 10.76 7.95 11.81
DMk10 428.64 0 4.41 6.91 8.24 4.06 9.47 9.38 12.16 8.92 11.76

From Tables 8 and 9, it can be seen that all the MRPD values of IMA for 20 DFJSPD
instances are 0, that is, the optimal results of IMA are the best in all algorithms which
indicates that IMA converges more accurately than others. In most instances, the differences
of MRPD values between MA and GA are small, and the probability of obtaining the sub-
optimal solution is greater than PSO and FA; this indicates that the crossover and mutation
operations of MA and GA can expand the search range and improve the probability of
obtaining the better solution, while the operation of updating the position according to
the better solution of PSO and FA has low solution accuracy and can easily fall into local
optimum. Comparing the values of ARPD, the average performance of IMA is better than
MA, GA, PSO, and FA, which shows that IMA hybrid initialization strategy and improved
crossover and mutation operators generally improve the solution quality and stability of
the algorithm.

Sustainability 2022, 14, 12120 15 of 19

Average CPU time of all instances are listed in Table 10.

Table 10. Average CPU time.

Instance
Average CPU Time/s

Instance
Average CPU Time/s

IMA MA GA PSO FA IMA MA GA PSO FA

SMk01 10.21 9.72 10.21 10.06 10.38 DMk01 13.20 12.93 13.05 13.16 13.38
SMk02 11.67 10.64 11.30 10.81 11.94 DMk02 13.40 13.02 13.27 13.04 13.48
SMk03 39.31 38.51 39.46 38.67 39.84 DMk03 44.02 43.48 43.87 43.67 44.05
SMk04 12.14 11.60 12.67 11.97 12.25 DMk04 17.15 16.64 17.14 16.90 17.19
SMk05 41.52 39.57 41.54 40.49 41.81 DMk05 46.23 45.32 46.12 45.63 46.30
SMk06 35.37 31.60 34.08 32.19 34.81 DMk06 40.80 37.67 38.14 37.87 40.42
SMk07 31.72 27.54 29.61 27.93 30.64 DMk07 38.48 34.14 36.80 34.67 37.39
SMk08 80.80 76.43 77.64 76.85 80.30 DMk08 106.91 102.45 103.61 102.64 106.67
SMk09 79.31 74.15 75.34 74.36 78.48 DMk09 99.87 96.32 97.60 96.93 98.18
SMk10 68.10 64.16 66.49 64.89 67.07 DMk10 87.75 83.40 85.69 83.36 86.55

It can be seen from isomorphism instances in Table 10 that the IMA costs 6.83% more
CPU time than MA, 2.96% more than GA, 5.65% more than PSO, and 0.65% more than FA,
on average. It can be seen from isomerism instances in Table 10 that the IMA costs 4.62%
more CPU time than MA, 2.53% more than GA, 4.09% more than PSO, and 0.83% more
than FA, on average. In addition, as the scale of the problem increases, IMA costs more
CPU time than other algorithms. This indicates that the discrete mapping, crossover, and
mutation strategies of IMA can slightly reduce the computational efficiency, especially for
large-scale problems.

The convergence performance of the algorithm is analyzed by considering example
DMk01. It can be seen from Figure 8 that the hybrid initialization strategy of IMA improves
the quality of the initial population. The five algorithms can converge to their respective
optimal solutions, but the convergence speed of GA and FA is slow and the solution
accuracy is low, converging to 74.28 and 75.79, respectively. PSO has the fast convergence
speed, but it is subject to premature converging to 74.33. The convergence speeds of IMA
and MA are fast in the early stage, and the completion time converges to approximately
70 in the 30th generation. The wedding dance and random flight operations in the late
iteration make the algorithm jump out of local optimum, but the accuracy of the crossover
and mutation methods of MA is not high, converging to 70.03. The multiple crossover
and mutation operators of IMA can expand the search range, and found the optimal
solution at 68.03. Overall, the optimization ability and speed of IMA are better than other
four algorithms.

Sustainability 2022, 14, x FOR PEER REVIEW 17 of 20

Figure 8. Algorithms iteration process diagram of DMk01.

From the Gantt charts of the optimal solutions of SMk01 and DMk01 in Figures 9–12,

it can be seen that the scheduling schemes of the same number of workpieces in distrib-

uted factories with different structures are different, and the final completion time is also

different. Workpieces are circulated among multiple open structure factories, and the pro-

cessing resources of each factory can be fully utilized in time. The workpieces are trans-

ferred among multiple open structure factories, which can make full use of the processing

resources of each factory timely. The more comprehensive the resources, the higher the

processing efficiency. This paper can provide a more clear and accurate scheduling

scheme for distributed factories collaborative intelligent manufacturing with different

structures.

Figure 9. The Machine Gantt chart of SMk01 with Optimal solution.

Figure 8. Algorithms iteration process diagram of DMk01.

From the Gantt charts of the optimal solutions of SMk01 and DMk01 in Figures 9–12,
it can be seen that the scheduling schemes of the same number of workpieces in distributed

Sustainability 2022, 14, 12120 16 of 19

factories with different structures are different, and the final completion time is also differ-
ent. Workpieces are circulated among multiple open structure factories, and the processing
resources of each factory can be fully utilized in time. The workpieces are transferred
among multiple open structure factories, which can make full use of the processing re-
sources of each factory timely. The more comprehensive the resources, the higher the
processing efficiency. This paper can provide a more clear and accurate scheduling scheme
for distributed factories collaborative intelligent manufacturing with different structures.

Sustainability 2022, 14, x FOR PEER REVIEW 17 of 20

Figure 8. Algorithms iteration process diagram of DMk01.

From the Gantt charts of the optimal solutions of SMk01 and DMk01 in Figures 9–12,

it can be seen that the scheduling schemes of the same number of workpieces in distrib-

uted factories with different structures are different, and the final completion time is also

different. Workpieces are circulated among multiple open structure factories, and the pro-

cessing resources of each factory can be fully utilized in time. The workpieces are trans-

ferred among multiple open structure factories, which can make full use of the processing

resources of each factory timely. The more comprehensive the resources, the higher the

processing efficiency. This paper can provide a more clear and accurate scheduling

scheme for distributed factories collaborative intelligent manufacturing with different

structures.

Figure 9. The Machine Gantt chart of SMk01 with Optimal solution. Figure 9. The Machine Gantt chart of SMk01 with Optimal solution.

Sustainability 2022, 14, x FOR PEER REVIEW 18 of 20

Figure 10. The Worker Gantt chart of SMk01 with Optimal solution.

Figure 11. The Machine Gantt chart of DMk01 with Optimal solution.

Figure 12. The Worker Gantt chart of DMk01 with Optimal solution.

5. Conclusions

In the actual distributed flexible job shop production process, the worker–machine

dual resource constraints and the transportation time of workpiece flowing among ma-

chines seriously affect the scheduling plan. In order to construct a scheduling model that

is more in line with the actual processing situation, this paper establishes the DFJSPD

model with the optimization objective of the minimum of maximum completion time. For

Figure 10. The Worker Gantt chart of SMk01 with Optimal solution.

Sustainability 2022, 14, 12120 17 of 19

Sustainability 2022, 14, x FOR PEER REVIEW 18 of 20

Figure 10. The Worker Gantt chart of SMk01 with Optimal solution.

Figure 11. The Machine Gantt chart of DMk01 with Optimal solution.

Figure 12. The Worker Gantt chart of DMk01 with Optimal solution.

5. Conclusions

In the actual distributed flexible job shop production process, the worker–machine

dual resource constraints and the transportation time of workpiece flowing among ma-

chines seriously affect the scheduling plan. In order to construct a scheduling model that

is more in line with the actual processing situation, this paper establishes the DFJSPD

model with the optimization objective of the minimum of maximum completion time. For

Figure 11. The Machine Gantt chart of DMk01 with Optimal solution.

Sustainability 2022, 14, x FOR PEER REVIEW 18 of 20

Figure 10. The Worker Gantt chart of SMk01 with Optimal solution.

Figure 11. The Machine Gantt chart of DMk01 with Optimal solution.

Figure 12. The Worker Gantt chart of DMk01 with Optimal solution.

5. Conclusions

In the actual distributed flexible job shop production process, the worker–machine

dual resource constraints and the transportation time of workpiece flowing among ma-

chines seriously affect the scheduling plan. In order to construct a scheduling model that

is more in line with the actual processing situation, this paper establishes the DFJSPD

model with the optimization objective of the minimum of maximum completion time. For

Figure 12. The Worker Gantt chart of DMk01 with Optimal solution.

5. Conclusions

In the actual distributed flexible job shop production process, the worker–machine dual
resource constraints and the transportation time of workpiece flowing among machines
seriously affect the scheduling plan. In order to construct a scheduling model that is more
in line with the actual processing situation, this paper establishes the DFJSPD model with
the optimization objective of the minimum of maximum completion time. For the multiple
constraints of the discrete DFJSPD problem, the mayfly algorithm is improved by using the
discrete mapping method of continuous variables, three-layer coding, decoding algorithm
of an active time window, hybrid initialization strategy, and the crossover and mutation
operator of three-layer codes to improve the global exploitation and local exploration
performance of MA. Finally, the basic instances are expanded to design the instances
of isomorphism and isomerism factories. The simulation experiments are carried out
and compared with various algorithms. The results show that IMA is superior to other
algorithms in terms of solution quality and stability without a sharp decrease in the solution
efficiency. The model and algorithm in this paper can help enterprises realize distributed
collaborative intelligent manufacturing.

However, the above research is still insufficient and needs to be further optimized.
In the practical production environment, transport resources are not at one’s unlimited
disposal, and this paper had a lack of consideration of transport resources constraints. In

Sustainability 2022, 14, 12120 18 of 19

addition, the IMA has the defect of low computational efficiency while solving large-scale
DFJSPD problems, which will affect production efficiency. Therefore, in the future, this
paper will study DFJSP scheduling methods under more resource constraints and explore
intelligent scheduling algorithms with better performance and efficiency.

Author Contributions: Conceptualization, S.Z. and Z.L.; methodology, S.Z., T.H., Q.Q. and S.M.A.;
software, A.G. and M.I.; validation, S.Z., G.K. and Z.L.; formal analysis, T.H. and Q.Q.; investigation,
S.Z., A.G., S.M.A. and M.I.; resources, Z.L., G.K. and M.I.; data curation, S.Z., T.H. and Q.Q.; writing—
original draft preparation, S.Z., M.I. and Z.L.; writing—review and editing, A.G., S.M.A. and G.K.;
visualization, A.G.; supervision, Z.L.; project administration, S.Z.; funding acquisition, M.I. and Z.L.
All authors have read and agreed to the published version of the manuscript.

Funding: The research leading to these results has received funding from the Norway Grants 2014-
2021 operated by National Science Centre under Project Contract No 2020/37/K/ST8/02748.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data that can reproduce the results in this study can be requested
from the corresponding author.

Acknowledgments: The authors acknowledge the support from the Deanship of Scientific Research,
Najran University, Kingdom of Saudi Arabia, for funding this work under the Research Collaboration
funding program grant code number (NU/RC/SERC/11/7).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Viana, M.S.; Contreras, R.C.; Morandin Junior, O. A New Frequency Analysis Operator for Population Improvement in Genetic

Algorithms to Solve the Job Shop Scheduling Problem. Sensors 2022, 22, 4561. [CrossRef] [PubMed]
2. Wang, K. Migration strategy of cloud collaborative computing for delay-sensitive industrial IoT applications in the context of

intelligent manufacturing. Comput. Commun. 2020, 150, 413–420. [CrossRef]
3. Zhou, L.; Jiang, Z.; Geng, N.; Niu, Y.; Cui, F.; Liu, K.; Qi, N. Production and operations management for intelligent manufacturing:

A systematic literature review. Int. J. Prod. Res. 2022, 60, 808–846. [CrossRef]
4. Jiang, Z.; Yuan, S.; Ma, J.; Wang, Q. The evolution of production scheduling from Industry 3.0 through Industry 4.0. Int. J. Prod.

Res. 2021, 60, 3534–3554. [CrossRef]
5. Huang, J.; Chang, Q.; Arinez, J. Distributed Production Scheduling for Multi-Product Flexible Production Lines. In Proceedings of

the 16th International Conference on Automation Science and Engineering (CASE), Hong Kong, 20–21 August 2020; pp. 1473–1478.
6. Shao, W.; Shao, Z.; Pi, D. Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling

problem. Knowl.-Based Syst. 2020, 194, 105527. [CrossRef]
7. De Giovanni, L.; Pezzella, F. An improved genetic algorithm for the distributed and flexible job-shop scheduling problem. Eur. J.

Oper. Res. 2010, 200, 395–408. [CrossRef]
8. Ziaee, M. A heuristic algorithm for the distributed and flexible job-shop scheduling problem. J. Supercomput. 2014, 67, 69–83.

[CrossRef]
9. Sang, Y.; Tan, J. Intelligent factory many-objective distributed flexible job shop collaborative scheduling method. Comput. Ind.

Eng. 2022, 164, 107884. [CrossRef]
10. Xu, W.; Hu, Y.; Luo, W.; Wang, L.; Wu, R. A multi-objective scheduling method for distributed and flexible job shop based on

hybrid genetic algorithm and tabu search considering operation outsourcing and carbon emission. Comput. Ind. Eng. 2021,
157, 107318. [CrossRef]

11. Meng, L.; Zhang, C.; Ren, Y.; Zhang, B.; Lv, C. Mixed-integer linear programming and constraint programming formulations for
solving distributed flexible job shop scheduling problem. Comput. Ind. Eng. 2020, 142, 106347. [CrossRef]

12. Luo, Q.; Deng, Q.; Gong, G.; Zhang, L.; Han, W.; Li, K. An efficient memetic algorithm for distributed flexible job shop scheduling
problem with transfers. Expert Syst. Appl. 2020, 160, 113721. [CrossRef]

13. Gong, G.; Chiong, R.; Deng, Q.; Luo, Q. A memetic algorithm for multi-objective distributed production scheduling: Minimizing
the makespan and total energy consumption. J. Intell. Manuf. 2020, 31, 1443–1466. [CrossRef]

14. Du, Y.; Li, J.-Q.; Luo, C.; Meng, L.-L. A hybrid estimation of distribution algorithm for distributed flexible job shop scheduling
with crane transportations. Swarm Evol. Comput. 2021, 62, 100861. [CrossRef]

15. Meng, L.; Zhang, C.; Zhang, B.; Ren, Y. Mathematical Modeling and Optimization of Energy-conscious Flexible Job Shop
Scheduling Problem with Worker Flexibility. IEEE Access 2019, 7, 68043–68059. [CrossRef]

http://doi.org/10.3390/s22124561
http://www.ncbi.nlm.nih.gov/pubmed/35746343
http://doi.org/10.1016/j.comcom.2019.12.014
http://doi.org/10.1080/00207543.2021.2017055
http://doi.org/10.1080/00207543.2021.1925772
http://doi.org/10.1016/j.knosys.2020.105527
http://doi.org/10.1016/j.ejor.2009.01.008
http://doi.org/10.1007/s11227-013-0986-8
http://doi.org/10.1016/j.cie.2021.107884
http://doi.org/10.1016/j.cie.2021.107318
http://doi.org/10.1016/j.cie.2020.106347
http://doi.org/10.1016/j.eswa.2020.113721
http://doi.org/10.1007/s10845-019-01521-9
http://doi.org/10.1016/j.swevo.2021.100861
http://doi.org/10.1109/ACCESS.2019.2916468

Sustainability 2022, 14, 12120 19 of 19

16. Obimuyiwa, D. Solving Flexible Job Shop Scheduling Problem in the Presence of Limited Number of Skilled Cross-Trained Setup
Operators. Ph.D. Thesis, University of Guelph, Guelph, Canada, 2020.

17. Gong, G.; Chiong, R.; Deng, Q.; Gong, X. A hybrid artificial bee colony algorithm for flexible job shop scheduling with worker
flexibility. Int. J. Prod. Res. 2020, 58, 4406–4420. [CrossRef]

18. Zhang, S.; Du, H.; Borucki, S.; Jin, S.; Hou, T.; Li, Z. Dual resource constrained flexible job shop scheduling based on improved
quantum genetic algorithm. Machines 2021, 9, 108. [CrossRef]

19. Zervoudakis, K.; Tsafarak, S. A mayfly optimization algorithm. Comput. Ind. Eng. 2020, 145, 106559. [CrossRef]
20. Zarrouk, R.; Bennour, I.E.; Jemai, A. A two-level particle swarm optimization algorithm for the flexible job shop scheduling

problem. Swarm Intell. 2019, 13, 145–168. [CrossRef]
21. Nayak, S.; Sood, A.K.; Pandey, A. Integrated Approach for Flexible Job Shop Scheduling Using Multi-objective Genetic Algorithm.

In Advances in Mechanical and Materials Technology; Springer: Singapore, 2022; pp. 387–395.
22. Miller-Todd, J.; Steinhöfel, K.; Veenstra, P. Firefly-inspired algorithm for job shop scheduling. In Adventures between Lower Bounds

and Higher Altitudes; Springer: Cham, Switzerland, 2018; pp. 423–433.
23. Gupta, J.; Nijhawan, P.; Ganguli, S. Parameter estimation of fuel cell using chaotic Mayflies optimization algorithm. Adv. Theory

Simul. 2021, 4, 2100183. [CrossRef]
24. Mo, S.; Ye, Q.; Jiang, K.; Mo, X.; Shen, G. An improved MPPT method for photovoltaic systems based on mayfly optimization

algorithm. Energy Rep. 2022, 8, 141–150. [CrossRef]
25. Xie, X.; Zheng, J.; Feng, M.; He, S.; Lin, Z. Multi-Objective Mayfly Optimization Algorithm Based on Dimensional Swap Variation

for RFID Network Planning. IEEE Sens. J. 2022, 22, 7311–7323. [CrossRef]
26. Wu, R.; Li, Y.; Guo, S.; Xu, W. Solving the dual-resource constrained flexible job shop scheduling problem with learning effect by

a hybrid genetic algorithm. Adv. Mech. Eng. 2018, 10, 1687814018804096. [CrossRef]
27. Brandimarte, P. Routing and scheduling in a flexible job shop by tabu search. Ann. Oper. Res. 1993, 41, 157–183. [CrossRef]
28. Lei, D.; Guo, X. Variable neighbourhood search for dual-resource constrained flexible job shop scheduling. Int. J. Prod. Res. 2014,

52, 2519–2529. [CrossRef]
29. Zheng, X.L.; Wang, L. A knowledge-guided fruit fly optimization algorithm for dual resource constrained flexible job-shop

scheduling problem. Int. J. Prod. Res. 2016, 54, 5554–5566. [CrossRef]

http://doi.org/10.1080/00207543.2019.1653504
http://doi.org/10.3390/machines9060108
http://doi.org/10.1016/j.cie.2020.106559
http://doi.org/10.1007/s11721-019-00167-w
http://doi.org/10.1002/adts.202100183
http://doi.org/10.1016/j.egyr.2022.02.160
http://doi.org/10.1109/JSEN.2022.3151932
http://doi.org/10.1177/1687814018804096
http://doi.org/10.1007/BF02023073
http://doi.org/10.1080/00207543.2013.849822
http://doi.org/10.1080/00207543.2016.1170226

	Introduction
	DFJSPD Modeling
	DFJSPD Problem Description
	Mathematical Modeling

	Improved Mayfly Algorithm for DFJSPD Model
	Design of Improved Mayfly Algorithm
	Discrete Mapping of Mayfly
	Coding and Decoding
	Mixed Initialization
	Updating of Mayfly
	Crossover and Mutation Operators

	Experiment and Analysis
	Testing Instances and Parameter Setting
	Results Analysis

	Conclusions
	References

