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Abstract

This paper describes an approach for improving the accuracy of memory-based collabora-

tive filtering, based on the technique for order of preference by similarity to ideal solution

(TOPSIS) method. Recommender systems are used to filter the huge amount of data avail-

able online based on user-defined preferences. Collaborative filtering (CF) is a commonly

used recommendation approach that generates recommendations based on correlations

among user preferences. Although several enhancements have increased the accuracy of

memory-based CF through the development of improved similarity measures for finding

successful neighbors, there has been less investigation into prediction score methods, in

which rating/preference scores are assigned to items that have not yet been selected by a

user. A TOPSIS solution for evaluating multiple alternatives based on more than one crite-

rion is proposed as an alternative to prediction score methods for evaluating and ranking

items based on the results from similar users. The recommendation accuracy of the pro-

posed TOPSIS technique is evaluated by applying it to various common CF baseline meth-

ods, which are then used to analyze the MovieLens 100K and 1M benchmark datasets. The

results show that CF based on the TOPSIS method is more accurate than baseline CF

methods across a number of common evaluation metrics.

Introduction

Traditional information outlets—including friends, newspapers, advertisements, and mass

media—have been increasingly supplanted by the Internet as a source for advice and guidance

in decision making. Although the Internet is a powerful resource, the vast quantity of data

available online can make it difficult to obtain the information needed to make decisions effi-

ciently [1]. Research on the problem of online information overload has led to the develop-

ment of tools, such as recommendation systems (RSs), that assist users in effective decision

making [2]. RSs make suggestions to users based on preferences inferred from prior selections

[3–10], thus reducing the time and effort required to make online selections [11]. This process

depends on users’ historical behavior and involves the construction of user profiles for
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comparison with those of other users to locate his/her nearest neighbors in terms of prefer-

ence. This process results in a list of items that are predicted to be most preferred by the user

[3, 6, 7, 12].

Moreover, RS studies are of significant interest to a variety of entities and have been the

focus of intensive academic and commercial research [13, 14]. Many commercial and non-

profit websites, including Amazon, eBay, and Lazada, use RS to assist their customers in pur-

chasing items by making suggestions based on their previous selections and those of the most-

similar customers. Such recommendations have become an integral aspect of e-commerce

platforms and are used to personalize the shopping experience [15].

In general, RSs can be classified as either content-based, collaborative filtering (CF)-based,

or a hybrid of the two [6, 8, 12, 14, 16–21]. In content-based approaches, items are recom-

mended to the target user by comparing the information content of his/her past item selections

with the content of items in the database [6, 22–26]. In contrast, CF-based systems propose

items based on an analysis of user feedback along with the preferences of similar users [3, 27–

32]; this additional robustness makes CF the most widely used and successful RS method. CF

approaches can be further classified into model- and memory-based techniques [1, 33–35].

Model-based approaches apply a pre-built model for predicting user preferences, whereas

memory-based approaches (also known as neighbor-based models) access entire databases of

user-provided ratings to find correlations between users/items. Memory-based recommenda-

tion algorithms can generally be further subdivided into user- and item-based approaches [1,

12, 32, 36].

This paper addresses the application of user-based algorithms. Such algorithms use two key

processes—similarity computing and prediction. In the computing process, the system seeks

to find relationships between users, and those who are strongly correlated are designated as

the neighbors of the target user. Any items rated by these neighbors that have not yet been pur-

chased or obtained by the target user are then assembled into a set of candidate items. In the

second process, the system predicts a user score for each item in the candidate set and pro-

motes the highest-rated items as recommendations. This process of evaluating and ranking

candidate items is therefore quite significant to the performance accuracy of the CF algorithm.

Thus, the essential problem in information filtering is calculating whether a specific item is

likely to be of interest to a user. The outcome of this process can be either Boolean (yes or no)

or a score representing the degree to which the item is of interest. Unfortunately, most studies

on improving the accuracy of conventional CF systems have focused solely on enhancing the

similarity measure [3, 5, 6, 11, 37–51]. In contrast, improving the prediction algorithm has

been somewhat neglected, even though it is of similar importance in improving memory-

based CF recommendations [33, 52]. Prediction algorithms produce user preference scores for

items using common aggregation methods. In this paper, we propose a method for enhancing

the accuracy of memory-based CF recommendations by replacing the conventional prediction

algorithm with TOPSIS, which is one of the most frequently used techniques for the evaluation

and ranking of multiple alternatives.

As mentioned above, the majority of studies on enhancing the accuracy of CF have focused

on improving the similarity measure, with relatively few investigating the prediction score

models, even though these are of similar importance [53]. In this study, we investigated the use

of TOPSIS as an alternative to prediction models for improving the accuracy of user-based CF.

The proposed method applies TOPSIS in the evaluation and sorting of items rated by nearest-

neighbor users to produce a set of Top-M ranked recommendations. The TOPSIS method can

be described as a measurement technique based on the use of defined criteria to rank sets of

alternatives, and is widely used as a tool in decision support problems. TOPSIS is useful in

evaluating, sorting, and selecting from a variety of available options [54].
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The remainder of this paper is organized as follows. The following section provides an over-

view of traditional collaborative RSs, discusses relevant memory-based CF methods, and out-

lines the TOPSIS method. The proposed TOPSIS-based recommendation method is then

presented, before the experimental methodology and results are discussed. Finally, the conclu-

sions to this study are provided with suggestions for future work.

Related work

Collaborative filtering techniques

The term “collaborative filtering” was first applied by Goldberg to the Tapestry recommender

system [55], and CF has since become one of the most widely used techniques for providing

service recommendations to users online [11, 56, 57]. As discussed in the Introduction, CF can

be either model-based or memory-based.

In model-based approaches, a pre-built model is used to predict user preferences [14]. The

most widely used approaches, involving the use of Bayesian networks or cluster models, were

proposed in [58, 59]; the use of latent factor models was subsequently proposed in [60, 61].

Whereas Memory-based approaches compute the correlations between users and items to pro-

duce a preference score that predicts the likelihood of a user acquiring an item in the future

and provide corresponding recommendations. User- and item-based algorithms are the most

common types of memory-based recommendation methods [1, 12, 36]. User-based methods

generate recommendations according to the similarities between users [29], whereas item-

based methods compute similarities within a space of items to find strong relationships with

items that have already been rated by an active user [29, 62].

User-based CF, the first automated CF method to be developed [28], was initially applied in

the Group Lens Usenet article recommender [3], and is currently used in the BellCor video

and Ringo music recommenders [4, 5]. This technique essentially involves four stages:

• user-to-user correlations are applied to find the most similar users to a target user (the neigh-

bors) [29];

• after collecting items rated by neighbors, those that have already been obtained by the target

user are removed, leaving a set of candidate items;

• a degree of preference score is generated to determine the likelihood of future purchase by

the target user for each candidate item;

• based on their respective prediction scores, the items are ranked and a list of recommenda-

tions comprising the items with the highest ranks is generated.

In item-based CF, which was first proposed by Karypis and Sarwar [29], similarities among

items are calculated according to other users’ evaluations. Generally, item-based CF follows

the same steps as the user-based method, except that relationships are calculated across the

space of items.

Common similarity measures and their limitations were discussed in [63, 64]. In the next

section, we briefly present the most commonly used conventional memory-based CF methods.

Baseline memory-based CF methods

i. Pearson’s Correlation Coefficient

Resnick and Iacovou [3] used Pearson’s correlation coefficient (PCC) to find correlations

among users in an approach that has become popular in memory-based CF. However, the
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PCCmethod can be inaccurate when the data are sparse, as missed ratings make it difficult to

find correlations between users. This leads to high/low similarities and, therefore, weak recom-

mendations [11, 65, 66]. The relationship among users can be defined as:

Sðx; yÞ
PCC

¼

P

i2Ixy
ðrx;i � �rxÞðry;i � �ryÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i2Ixy
ðrx;i� �rxÞ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i2Ixy
ðry;i � �ryÞ

2
q ; ð1Þ

where S(x,y)PCC is the similarity between users x and y, Ixy represents the set of items that are

rated by both x and y, �rx and �ry denote the average ratings by users x and y, respectively, and

rx,i denotes the rating value given to item i by user x.

ii. Constrained Pearson Correlation

The RINGO recommender was developed to provide users with recommendations of

music albums and artists. Under RINGO, users provide feedback on a nominal scale from one

(“strong dislike”) to seven (“strong like”), with a neutral value (“neither like nor dislike”) in the

middle of the scale. Based on the increasing number of RINGO users, Shraddhanand and Mae

[5] proposed the constrained Pearson correlation (CPCC) approach to replace the average rat-

ing variables used by PCC approaches with the median value of a scale of positive and negative

ratings. The correlation is calculated as:

Sðx; yÞ
CPCC

¼

P

i2Ixy
ðrx;i � rmÞðry;i � rmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i2Ixy
ðrx;i�rmÞ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i2Ixy
ðry;i � rmÞ

2
q ; ð2Þ

where rm denotes the median value of the rating scale.

iii. Cosine method

The cosine method is a vector-space model that applies a linear algebra approach to define

the relationships between pairs of users [6] as vectors, with user similarities computed as the

cosine distance between each pair of rating vectors. This correlation is defined as:

Sðx; yÞ
Cosine

¼

P

i2Ixy
ðrx;iÞðry;iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i2Ixy
ðrx;iÞ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i2Ixy
ðry;iÞ

2
q ; ð3Þ

iv. Jaccard method

Koutrika and Bercovitz [58] proposed the Jaccard method to compute the correlations

between pairs of users. The Jaccard method only considers the number of co-ratings for each

user pair to define their relationship. Two users will have a strong correlation if they have simi-

lar rating patterns, and vice versa. However, the Jaccard computation process does not con-

sider the absolute values of ratings [44, 45]. Formally, the similarity between users x and y is

given by:

Sðx; yÞ
Jaccard

¼
jIxyj

jIx [ Iyj
; ð4Þ

where |Ix [ Iy| represents the union set of items rated by users x and y.

v. Sigmoid function-based PCC
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Jamali and Ester [46] used a sigmoid function to decrement the similarity values between

items for which few users have rated both items. The sigmoid function-based PCC (SPCC)

approach produces similarity values in the range [0, 1] using the following formulation:

Sðx; yÞ
SPCC

¼ sðx; yÞ
pcc
:

1

1þ exp �
jIj
2ð Þ
; ð5Þ

However, a pair of users with similar ratings can still have a low similarity under this

approach. For example, two users with ratings vectors of u1 = (4,3,5,4) and u2 = (4,3,3,4) will

have very similar ratings but an SPCC similarity of zero.

vi. Jaccard and mean squared difference measure

Bobadilla and Serradilla [39] hybridized the Jaccard [67] method with a mean squared dif-

ference approach [5] to produce the JMSDmeasure, which is computed as follows:

Sðx; yÞ
JMSD

¼ sðx; yÞ
MSD

þ sðx; yÞ
Jacc
; ð6Þ

where

Sðx; yÞ
MSD

¼
jIxyj

P

i2Iðrx;i�ry;iÞ
2
:

The JMSD approach addresses the respective drawbacks of the Jaccard and mean squared

difference approaches, but suffers from the cold-start problem, does not consider the credibil-

ity of common ratings, and is vulnerable to local information and the utilization of rating

problems [45].

vii. New heuristic similarity measure (proximity–significance–singularity)

Liu and Hu [66] analyzed the drawbacks of Principles in Pattern approaches [38] and pro-

posed an improved version called the new heuristic similarity measure (NHSM). The NHSM

model considers three user rating factors—proximity, significance, and singularity (PSS)—and

combines local context information on these ratings with the global preferences of user ratings

to alleviate the cold-start problem [68]. However, NHSM only considers co-rated items in

identifying relationships between users [44]. The measure is defined as:

Sðx; yÞ
PSS

¼
P

i2IPSSðrx;i; ry;iÞ; ð7Þ

where PSS(rx,i,ry,i) is the PSS value of users x and y, which is calculated as:

PSSðrx;i; ry;iÞ ¼ Proximityðrx;i; ry;iÞ � Significance ðrx;i; ry;iÞ � Singularityðrx;i; ry;iÞ:

The individual aspects are given by:

Proximity rx;i; ry;i

� �

¼ 1�
1

1þ expð�jrx;i � ry;ijÞ
; ð8Þ

Significance rx;i; ry;i

� �

¼
1

1þ expð�jrx;i � rmedj � jry;i � rmedjÞ
; ð9Þ

Singularity rx;i; ry;i

� �

¼ 1�
1

1þ exp �j
rx;i�ry;i

2
� mij

� � ; ð10Þ
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Liu and Hu further combined the PSS measures with the Jaccard measure to address the

problem of small proportions of common ratings. This so-called JPSS measure is defined as:

Sðx; yÞ
JPSS

¼ Sðx; yÞ
Jacc

� Sðx; yÞ
PSS
; ð11Þ

To account for cases arising when different rating preferences are provided by different

users (i.e., high ratings provided by some and low ratings by others), they also developed a

measure of user preference based on the rating mean and standard variance:

Sðx; yÞ
URP

¼ 1�
1

1þ expð�jmx � myj � jsx � syjÞ
; ð12Þ

where σx and μx are the mean rating and standard variance for user x, respectively, which are

defined as:

sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i2Ix
ðrx;i � �rxÞ

2
q

jIxj
; ð13Þ

mx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i2Ix
ðrx;iÞ

q

jIxj
; ð14Þ

Their final formalization combined the JPSS and user rating preference metrics into the

improved new heuristic similarity model, or improved NHSM, which is defined as:

Sðx; yÞ
NHSM

¼ Sðx; yÞ
JPSS

� Sðx; yÞ
URP

; ð15Þ

Note that prediction algorithms have not been mentioned in the above discussion, which

instead has focused on improving the accuracy of memory-based CF through the development

of similarity methods. In general, there are a number of mechanisms in the generation of rec-

ommendations that can predict the score for target user x with respect to item i. Many such

methods involve aggregation (see Table 1) [69]. In this paper, we propose replacing such con-

ventional methods with the TOPSIS approach to obtain improved recommendations.

In the formulations in Table 1, Px,i represents a prediction in the form of a numeric score

representing how interested target user x would be in a specific item i based on their similari-

ties to and ratings by his/her K neighbors, Gx,i represents a set of users who are neighbors of

user x and have rated item i, and �rx denotes the average rating of the users. In the next subsec-

tion, TOPSIS is introduced as a useful multi-attribute decision-making (MADM) technique

for the ranking and selection of a number of alternatives based on several criteria.

Table 1. Aggregation methods.

Algorithm Formula

Average method Px;i ¼ 1=jGx;ij
P

y2Gx;i
ry;i, where Gx,i 6¼ ;

Weighted sum method
Px;i ¼

P

y2Gx;i
sðx;yÞ�ry;i

.

P

y2Gx;i
sðx;yÞ

, where Gx,i 6¼ ;

Adjusted weighted method (Deviation-From-Mean)
Px;i ¼ �rx þ

P

y2Gx;i
sðx;yÞ�ðry;i� �ry Þ

.

P

y2Gx;i
sðx;yÞ

;

where Gx,i 6¼ ;

https://doi.org/10.1371/journal.pone.0204434.t001
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Multi-attribute decision-making method

As mentioned in the preceding section, most studies on improving the accuracy of CF have

focused on improving the similarity measure, even though the prediction score model is of

similar importance [53]. In memory-based CF, after locating a target user’s neighbors, the sys-

tem collects their items and predicts the rating scores that the target user would apply to them;

the items are then ranked and recommended according to these predicted scores. Clearly, the

prediction algorithm plays an important role in this process. As a replacement for prediction,

we propose the use of TOPSIS as a useful MADMmethod for evaluating and ranking items.

The numerous alternatives people face online can render the decision-making process diffi-

cult, particularly when called upon to rank or choose the best alternative from a set of available

items. In general, multiple criteria are used to evaluate sets of alternatives. For example, the

main criteria in purchasing a car include cost, safety, comfort, and fuel consumption. Multi-

criteria decision making (MCDM), one of the better-known approaches for deciding among

alternatives, can be applied when the decision maker’s preferences must be taken into account.

The literature divides MCDM problems into two basic approaches [70]: multi-objective deci-

sion making (MODM) and multi-attribute decision making (MADM).

MADM problems are distinguished fromMODM problems by the number of predeter-

mined decision alternatives. In MADM, decision problems are subjected to a number of deci-

sion criteria to produce rankings of multiple alternatives according to their attributes. This

primarily involves gathering information and evaluating it against additional information pro-

vided by the decision maker, resulting in a decision matrix that is used to determine the final

ranking of alternatives [71].

Hwang and Yoon [72] describe several MADMmethods, including the TOPSIS. Originally

presented by Yoon and Hwang [73], TOPSIS is a practical method for ranking and selecting

several externally determined alternatives through the use of distance measures [74]. The pri-

mary advantages of TOPSIS include its ability to quickly identify the best alternative [75] and

comparable or superior performance to that of simple additive weighting and analytic hierar-

chy processes, respectively [76]. A limited number of simple inputs (i.e., the weights associated

with the respective criteria [76]) are required of decision-makers, and the output of the process

is easy to understand. The underlying principle of TOPSIS is that the best alternative is that

located closest to the ideal solution and furthest from the negative ideal solution [77].

The TOPSIS technique is implemented in several computational steps, which are outlined

as follows:

• determine the decision alternatives;

• identify the criteria (attributes) that are related to the decision problem;

• construct a decision matrix containingm alternatives associated with n attributes (or

criteria);

• normalize the raw scores to construct a precedence score, or normalized decision, matrix.

The scores in the normalized matrix should be transformed into a normalized scale;

• construct a weighted normalized decision matrix in which each attribute is given a specific

weight to reflect how important it is to the overall decision;

• identify the ideal and negative-ideal solutions;

• calculate the separation measure as an n-dimensional Euclidean distance between

alternatives;
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• calculate the relative closeness of each alternative to the ideal solution;

• create a ranking of alternatives based on the maximization of the relative closeness measures

in the preceding step.

These steps will be explained in more detail in the next section.

Proposedmemory-based CF using TOPSIS

The proposed technique involves the application of TOPSIS to the recommendation of sets of

items that might be of interest to a user. This is implemented over several main phases, as

shown by the architecture in Fig 1.

The phases of the proposed method are summarized as follows:

i. Build user profile: The system gathers feedback from a target user to build his/her preference

profile. Such preferences are conventionally associated with a scale of values representing

the degree of user preference for an item, e.g., one-to-five stars or one-to-ten points. A user

x rating movie a with a “five” score and movie b with a “three” score could therefore be seen

to prefer a over b.

ii. Construct user-item matrix: Data relating to users and items in the system are entered into a

user-item matrix as a collection of numerical ratings.

iii. Compute similarity measures: The similarities among users are calculated using several

common CF baseline methods (e.g., PCC, CPCC, SPCC, Cos, MSD, JMSD, NHSM). Fol-

lowing this, the top-K users with the strongest correlations in terms of similarity with the

target user are used to form his/her neighborhood.

iv. Construct the decision matrix: The attributes of the K-nearest users are collected and used

to populate a matrix of alternatives comprising items that have been rated by these users

but not yet chosen by the target user. Items that have not been rated are assigned values

based on a default vote [58].

v. Apply TOPSIS method: The TOPSIS method [71, 73] is then applied to evaluate and rank all

of the alternative items. As discussed in the next section, TOPSIS identifies the best alterna-

tive as the one with the shortest and furthest distances from the ideal and negative-ideal

Fig 1. Architecture of the proposed memory-based CF method.

https://doi.org/10.1371/journal.pone.0204434.g001
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solutions, respectively. TOPSIS allows the best alternative to be identified quickly [75], is

easy to implement, requires only a limited number of inputs from decision-makers, and

produces easily understandable output. The only input parameters are the weight values

associated with the criteria [76]. This main phase of the process will be explained in detail

in the following subsection.

vi. Generate recommendations: As described above, the output produced by TOPSIS is a list of

sorted alternatives (candidate items) ranked according to an importance measurement

based on several criteria (K-neighbors). In the final phase of the recommendation process,

the Top-M items are selected and presented to the target user as a set of item suggestions.

TOPSIS technique

In the proposed method, the TOPSIS technique is used in place of prediction ratings to evalu-

ate and rank candidate items and produce a sorted list of item recommendations in terms of

their predicted preference. An essential input to this procedure is the list of K-neighbors and

their items, ratings, and similarity weights with respect to the target user. TOPSIS converts this

selection and ranking problem into a decision matrix X withm alternatives (rows) and n crite-

ria (columns) corresponding to the candidate items and K-neighbors, respectively. In X, each

entry xi,j represents the numerical outcome of the jth alternative with respect to the ith criterion,

i.e., the rating value applied by user i to item j. To avoid division by zero during execution,

missing ratings are represented by an average for each user. Because the criteria cannot be

assumed to have equal importance, a set of weighting parameters provided by the decision-

maker is associated with the criteria. These weights are then compared to those of the deci-

sion-maker neighbors to obtain the set of K-neighbors.

Before examining the functioning of TOPSIS in detail, we define the sets used in the analysis:

• A is the set of candidate items representing the alternatives A = {a1,a2,. . .,aj,. . .,am−1,am},

where j = 1,2,. . .,m andm is the total number of candidate items.

• C is the set of neighbors representing the various criteria C = {c1,c2,. . .,ci,. . .,cn−1,cn}, where

i = 1,2,. . .,n and n denotes the number of criteria (K-neighbors).

• X is the set of ratings X = {xj,i|j = 1,. . .,m; i = 1,. . .,n}, where xj,i is the rating value of the j
th

alternative/item with respect to the ith criterion/neighbor user.

• W is the set of weightsW = {w1,w2,. . .,wi,. . .,wn−1,wn|i = 1,2,. . .,n}, where wi is the weight of the

ith criterion/neighbor (i.e., the similarity value between the ith neighbor and the target user).

A decision matrix X containingm alternatives associated with n criteria is represented in

Table 2.

Table 2. Conceptual decision matrix X.

Neighbors

X = c1 c2 � � � ci � � � cn−1 cn

Candidate Items a1 x1,1 x1,2 � � � x1,i � � � x1,n−1 x1,n

a2 x2,1 x2,2 � � � x2,i � � � x2,n−1 x2,n

..

. ..
. ..

. . .
. ..

. . .
. ..

. ..
.

aj xj,1 xj,2 � � � xj,i � � � xj,n−1 xj,n

..

. ..
. ..

. . .
. ..

. . .
. ..

. ..
.

am−1 xm−1,1 xm−1,2 � � � xm−1,i � � � xm−1,n−1 xn−1,n

am xm,1 xm,2 � � � xm,i xm,1 xm,n−1 xn,n

https://doi.org/10.1371/journal.pone.0204434.t002
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The steps in the TOPSIS method are described as follows.

Step 1: Construct a normalized decision matrix

Some users prefer to provide high ratings, even for items they do not like very much,

whereas others will give low ratings to items they like. To account and adjust for such rating

disparities and irregularities, it is necessary to normalize the decision matrix. This can be done

through distributive normalization, in which the rating values in each column are divided by

the square root of the sum of each squared alternative in the column. The elements rj,i of the

normalized decision matrix R are therefore given by:

rj;i ¼
xj;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pm

j¼1
xj;i

2

q ; j ¼ 1 . . .m; i ¼ 1 . . . n: ð16Þ

The results of applying Eq (16) to matrix X to produce the normalized matrix R are pre-

sented in Table 3.

Step 2: Construct the weighted normalized decision matrix

To take the weights W provided by the decision-maker into account, a weighted normalized

decision matrix V is given by multiplying the normalized values rj,i by their corresponding

weights wi. In the proposed method, the similarity weights of the target user with respect to

his/her neighbors are used to develop the user’s weight criteria. For example, for a target user

u who has k neighbors (with n criteria), the similarity weights su = {su,1,su,2,. . .,su,i,. . .,su,n−1,su,

n|,i = 1,2,. . .,n}, where si,k denotes the similarity value between u and the ith neighbor, are used

to populate the set of weights wi. The weighted normalized decision matrix V is then obtained

as follows:

vj;i ¼ rj;i � wi; j ¼ 1 . . .m; i ¼ 1 . . . n: ð17Þ

Table 4 presents a weighted normalized decision matrix V obtained by applying Eq (17) to

the normalized decision matrix R.

Step 3: Determine positive and negative ideal solutions

The best and worst evaluation alternatives for each criterion in the normalized decision

matrix V are then identified and used to represent the ideal and negative-ideal solutions,

respectively.

For a set of positive attributes or criteria I1 associated with benefit (more is better) and a set

of negative attributes or criteria I2 associated with cost (less is better), the positive- and nega-

tive-ideal solutions can be defined as follows:

Table 3. Conceptual normalized decision matrix R.

Neighbors

R = c1 C2 � � � ci � � � cn−1 cn

Candidate Items a1 r1,1 r1,2 � � � r1,i � � � r1,n−1 r1,n

a2 r2,1 r2,2 � � � r2,i � � � r2,n−1 r2,n

..

. ..
. ..

. . .
. ..

. . .
. ..

. ..
.

aj rj,1 rj,2 � � � rj,i � � � rj,n−1 rj,n

..

. ..
. ..

. . .
. ..

. . .
. ..

. ..
.

am−1 rm−1,1 rm−1,2 � � � rm−1,i � � � rm−1,n−1 rn−1,n

am rm,1 rm,2 � � � rm,i rm,1 rm,n−1 rn,n

https://doi.org/10.1371/journal.pone.0204434.t003
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Ideal solution:

A� ¼ fv1
�; . . . ; vi

�; . . . ; vn
�g;where vi

� ¼ fmaxðvj;iÞ if ci 2 I1;minðvj;iÞ if ci 2 I2g; ð18Þ

Negative-ideal solution:

A0 ¼ fv1
0; . . . ; vi

0; . . . ; vn
0g;where vi

0 ¼ fminðvj;iÞ if ci 2 I1;maxðvj;iÞ if ci 2 I2g ð19Þ

The alternatives A� and A0 represent the most-favored (ideal solution) and least-favored

(negative-ideal solution) options, respectively.

Step 4: Calculate the separation measure

The distance from each alternative to the ideal and negative-ideal solutions for all alterna-

tives can be calculated using the Euclidean distance measurement. The distance of each alter-

native from the ideal is given by:

Sj
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn

i¼1
ðvj;i � vj

�Þ
22

q

; j ¼ 1; 2; . . . ;m: ð20Þ

Similarly, the distance of each alternative from the negative-ideal is given by:

Sj
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn

i¼1
ðvj;i � vj

0Þ
22

q

; j ¼ 1; 2; . . . ;m: ð21Þ

Table 5 gives an example of a separation matrix (V0).

Step 5: Calculate the relative closeness to the ideal solution

The degree of closeness of each alternative to the ideal solution A� is calculated as

C�
j ¼ Sj

0=ðSj
�
þ Sj

0Þ; 0 < C�
j < 1; j ¼ 1; 2; :::;m: ð22Þ

The relative closeness rating ranges between zero and one; these extremes represent, respec-

tively, the least- and most-favored alternatives. To elaborate, if the distance of alternative aj
from the ideal solution A� is smaller than its distance from the negative-ideal A0, then C�

j will

be closer to one than to zero, and vice versa, as shown in Fig 2.

Step 6: Ranking the alternatives in order according to C�
j

To produce an outcome in the form of a sorted list of alternatives, TOPSIS determines a

preference order by arranging the alternatives in descending order of closeness degree C�
j.

Table 4. Conceptual weighted normalized decision matrix V.

Neighbors

V = c1 c2 � � � ci � � � cn−1 cn

Candidate Items a1 v1,1 v1,2 � � � v1,i � � � v1,n−1 v1,n

a2 v2,1 v2,2 � � � v2,i � � � v2,n−1 v2,n

..

. ..
. ..

. . .
. ..

. . .
. ..

. ..
.

aj vj,1 vj,2 � � � vj,i � � � vj,n−1 vj,n

..

. ..
. ..

. . .
. ..

. . .
. ..

. ..
.

am−1 vm−1,1 vm−1,2 � � � vm−1,i � � � vm−1,n−1 vn−1,n

am vm,1 vm,2 � � � vm,i vm,1 vm,n−1 vn,n

https://doi.org/10.1371/journal.pone.0204434.t004
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Experimental setup and results

Datasets

Experiments were performed using four widely used and publicly available datasets, namely

MovieLens 100K and 1M, HetRec2011, and FilmTrust. The MovieLens [78] 100K and 1M

datasets, collected by the GroupLens research group at the University of Minnesota (http://

grouplens.org/datasets/MovieLens/), are often used by CF systems [11, 51]. For this study,

they were used to evaluate the performance of the proposed technique in combination with

several common memory-based CF methods. The MovieLens 100K dataset, which was initially

released in April 1998, includes 100,000 ratings of 1,682 movies provided by 943 users. It only

captures users who have rated 20 or more movies. The 1MMovieLens dataset, which was ini-

tially released in February 2003, contains 1,000,209 ratings of approximately 3,900 movies

from 6,040 users. In both datasets, the ratings are given on a scale of one to five stars with a

one-star granularity. The sparsity values of 100k and 1M are 93.7 and 95.8%, respectively.

The HetRec2011-MovieLens dataset is an extension of a dataset published by GroupLens

(http://grouplens.org/). This dataset was released in the framework of the 2nd International

Workshop on Information Heterogeneity and Fusion in Recommender Systems [79].

HetRec2011-MovieLens consists of 855,598 ratings provided by 2,113 users on 10,197 movies

and has 96.03% sparsity. The FilmTrust dataset (https://www.librec.net/datasets.html) con-

tains 35,497 ratings provided by 1,986 users on 2,071 items and has 98.86% sparsity [80].

Experimental process

The experimental process to evaluate the proposed method was conducted as follows:

Table 5. Conceptual separation matrix V0.

V0 = S� S0

Candidate items a1 S1
� S1

0

a2 S2
� S2

0

..

. ..
. ..

.

aj Sj
� Sj

0

..

. ..
. ..

.

am−1 Sm−1

�

Sm−1
0

am Sm
�

Sm
0

https://doi.org/10.1371/journal.pone.0204434.t005

Fig 2. Euclidean distances to the ideal and negative-ideal solutions.

https://doi.org/10.1371/journal.pone.0204434.g002

An improvedmemory-based collaborative filtering method

PLOSONE | https://doi.org/10.1371/journal.pone.0204434 October 4, 2018 12 / 26

http://grouplens.org/datasets/MovieLens/
http://grouplens.org/datasets/MovieLens/
http://grouplens.org/
https://www.librec.net/datasets.html
https://doi.org/10.1371/journal.pone.0204434.t005
https://doi.org/10.1371/journal.pone.0204434.g002
https://doi.org/10.1371/journal.pone.0204434


• Each dataset was partitioned into five equally sized sets to allow the cross-validation method

to be applied [81]. In five separate trials, one subset was used as the test set (20%) and the

other four were combined to form a training set (80%), with the test and training set roles

rotated across trials. The average result across all trials was then computed.

• Based on the user-item rating matrix, the similarity between users was calculated using PCC,

CPCC, SPCC, COS, MSD, JMSD, and NHSM. A set of K-nearest neighbors was then formed

for the results produced by each similarity method.

• The items ranked by each K-nearest neighbor set were collected and any items that the active

user had previously selected were removed to obtain sets of candidate items.

• Decision matrices were constructed and the TOPSIS technique was applied to them to

obtain sets of ranked items.

• Finally, the top M items were identified as recommendations and presented to the target

user.

The accuracy of CF recommender systems is influenced by two parameters, namely the

number K of neighbors and the size of the recommendation list. These two parameters should

be fixed in the experimental process to ensure a fair comparison among algorithms [12, 82].

Hence, the experiments were executed with K values of 10, 20, 30, 40, and 50 and recom-

mended list sizes of 10, 20, 30, 40, and 50. Fig 3 illustrates the experimental process with

respect to input parameters, datasets, baseline CF methods with and without TOPSIS, and the

measurements. A total of 25 experiments were conducted on each of the four datasets using all

seven baseline methods with and without TOPSIS. Four metrics were selected to evaluate the

proposed method. These metrics, which are described in the following subsection, are widely

used to evaluate the accuracy of memory-based CF techniques.

Evaluation metrics

The TOPSIS technique was applied as an MADM approach in conjunction with various con-

ventional memory-based CF methods, and the results were compared with those obtained

without the use of TOPSIS. The recall, precision, and F-measure [69, 83], which are widely

used to evaluate the accuracy of memory-based CF [15, 37, 84, 85], were used as performance

metrics. These metrics measure the accuracy of a recommender system based on the items rec-

ommended to its users. The precision is the fraction of items rated by the users in the test set

and recommended by the recommender system. The precision metric represents the ratio of

Fig 3. Experimental process with respect to input parameters, datasets, methods with & without TOPSIS, and

measurements.

https://doi.org/10.1371/journal.pone.0204434.g003
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the recommended items to the total number of items recommended by the system, and is

given by Eq (23). The recall metric is the fraction of rated items recommended by a recom-

mender system. The recall represents the ratio of the recommended items to all of the items

rated by the users in the test set, and is defined by Eq (24). The F-measure metric is the

weighted mean of the precision and recall, and is given by Eq (25). Thus, the F-measure is a

combined metric of precision and recall. Table 6 illustrates the recommendation confusion

matrix and its relation to these metrics.

The terms in Table 6 are defined as follows:

• TP, true positive: number of test samples belonging to the user Interest that are

Recommended.

• FN, false negative: number of test samples belonging to the user Interest that are not

Recommended.

• TN, true negative: number of test samples not belonging to the user Interest that are not

Recommended.

• FP, false positive: number of test samples not belonging to the user Interest that are

Recommended.

The precision, recall, and F-measure were computed using Eqs (23)–(25), respectively:

Precision ¼
TP

TPþ FP
; ð23Þ

Recall ¼
TP

TPþ FN
; ð24Þ

F �measure ¼
2 � ðPrecision � RecallÞ

ðPrecisionþ RecallÞ
; ð25Þ

The mean average precision (MAP) was also used to measure the accuracy of the ranking

produced by each algorithm [2]. MAP computes the average of the precision scores over all

recommendation sizes [86]. In this study, five recommendation sizes of 10, 20, 30, 40, and 50

were considered. Therefore, the Precision value of each specified index j (Precision@j) was

computed separately. The MAP value was then normalized by dividing the sum of the Preci-

sion values for the specified indexes by the total number of specified indexes. The MAP value

for L sets of specified indexes is calculated as:

MAP ¼

PL

j¼1
Precision@jÞ

jLj
; ð26Þ

where Precision@j represents the precision of the jth specified index in the recommendation

list, j = 10, 20, 30, 40, and 50. L is a set of predefined indices and |L| represents the size of the

specified indexes.

Table 6. Recommendation confusion matrix.

Rated Unrated

Recommended TP FP

Not recommended FN TN

https://doi.org/10.1371/journal.pone.0204434.t006
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Results

To assess the accuracy of the proposed approach, the TOPSIS method was used to replace the

prediction method in various memory-based CFs, which were then applied to the MovieLens

100K & 1M, HetRec20111, and FilmTrust datasets. Several trials were conducted using the

cross-validation partitioning method and the results were assessed in terms of the recall, preci-

sion, F-measure, and MAPmetrics. The results were used to construct bar graphs reflecting

the accuracy over an averaged number of neighbors for K values of 10, 20, 30, 40, and 50.

Figs 4–7 show the recall results produced by applying PCC, CPCC, SPCC, Cos, JMSD, and

NHSM with and without TOPSIS. Figs 4 and 5 show the results obtained using the 100K and

1M datasets, respectively, whereas Figs 6 and 7 show the results under cross-validation parti-

tioning using the HetRec2011 and FilmTrust datasets, respectively. The legend shows the rec-

ommendation size in each case (10, 20, 30, 40, or 50).

The results clearly show that the use of TOPSIS produces significant improvement in terms

of recall, with the TOPSIS adaptation of the NHSM CF approach producing the best results

across all cases. Conversely, the Cos and MSD CF methods produce the worst recall values. In

general, the recall rises with the number of recommendations. Furthermore, the results in Figs

4–6 indicate that TOPSIS increases the accuracy by a factor two when applied to the PCC,

CPCC, SPCC, MSD, and Cos methods; the same figures reveal more than three-fold enhance-

ments to JMSD and NHSM using the 100K, HetRec2011, and FilmTrust datasets. Similarly, on

the 1M dataset, there are three-fold enhancements for PCC, CPCC, SPCC, MSD, and Cos, and

more than four- and six-fold enhancements for JMSD and NHSM, respectively. These results

indicate that the application of TOPSIS to conventional methods can significantly improve the

recall performance of memory-based CF.

Figs 8–11 show the precision results obtained by PCC, CPCC, SPCC, Cos, MSD, JMSD,

and NHSM with and without TOPSIS. Figs 8 and 9 show the results obtained using the 100K

and 1M datasets, respectively, whereas Figs 10 and 11 show the results for the HetRec2011 and

FilmTrust datasets, respectively. The legend shows the recommendation size of each case (10,

20, 30, 40, or 50).

The results indicate that the application of TOPSIS produces a significant improvement in

precision across all cases. It is seen that TOPSIS-enhanced NHSM has the highest precision,

although the Cos and MSDmethods produce results that are nearly as good. The average result

Fig 4. Recall measure by number of recommendations on 100KMovieLens.

https://doi.org/10.1371/journal.pone.0204434.g004
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with respect to the number of recommended items increases from less than 0.05 under

CF-NHSM to more than 0.2 under CF-TOPSIS-NHSM, representing a four-fold increase in

precision for NHSM. Contrary to the recall results, the precision gradually decreases with the

number of recommendations for all methods when TOPSIS is applied. Nevertheless, the

results indicate that the application of TOPSIS significantly improves the precision accuracy of

memory-based CF.

Figs 12–15 compare the F-measures produced by PCC, CPCC, SPCC, Cos, JMSD, and

NHSM with and without the TOPSIS method. Figs 12 and 13 show the results obtained using

the 100K and 1MMovieLens datasets, respectively, whereas Figs 14 and 15 show the F-mea-

sure results using the HetRec2011 and FilmTrust datasets, respectively. The legend denotes the

different recommendation sizes of 10, 20, 30, 40, or 50.

As with the other two metrics, all methods show a notable enhancement in their F-measure

results with the application of TOPSIS. In general, the F-measure decreases slightly as the

number of recommendations increases. It is again seen that the TOPSIS-enhanced NHSM

Fig 6. Recall measure by number of recommendations on HetRec2011.

https://doi.org/10.1371/journal.pone.0204434.g006

Fig 5. Recall measure by number of recommendations on 1MMovieLens.

https://doi.org/10.1371/journal.pone.0204434.g005
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method produces the best results across all cases, with an improvement of approximately 50%

and 75% obtained through the application of TOPSIS to (PCC, CPCC, SPCC, Cos, and JMSD)

and NHSM, respectively. These results reinforce the preceding results and indicate that the

application of TOPSIS significantly improves both the precision and recall of memory-based

CF.

Fig 16 shows the MAP results with respect to the recommendation list size for the PCC,

CPCC, SPCC, Cos, JMSD, and NHSMmethods with and without TOPSIS. The legend denotes

the different data sets (100K & 1MMovieLens, HetRec2011, and FilmTrust).

The results clearly show that the use of TOPSIS produces a significant improvement in

terms of MAP, with the TOPSIS adaptation of the NHSM CF approach producing the best

results across all datasets. Conversely, the Cos and MSD CFmethods produce the worst results.

In terms of data sets, the MAP values using 100KMovieLens and HetRec2001 are better than

with the other data sets (1MMovieLens and FilmTrust). The worst scores were obtained when

applying the FilmTrust data set to all methods based on TOPSIS, except for SPCC, which

Fig 7. Recall measure by number of recommendations on FilmTrust.

https://doi.org/10.1371/journal.pone.0204434.g007

Fig 8. Precision measure by number of recommendations on 100KMovieLens.

https://doi.org/10.1371/journal.pone.0204434.g008
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performed worst using the HeRec2011 data set. Overall, the results indicate that the methods

based on TOPSIS more than double the accuracy of PCC, CPCC, SPCC, MSD, and Cos, and

produce three-fold enhancements in JMSD and NHSM. These results indicate that the applica-

tion of TOPSIS to conventional methods can significantly improve the MAP accuracy of mem-

ory-based CF.

Generally, the RS does not guarantee that the suggested items will be relevant to the prefer-

ences of the target user, but may encourage users to find useful or interesting items. Therefore,

the accuracy of the RS is affected by the user’s subsequent selection from the list of recommen-

dations. For instance, if the recommendation list contains 10 items and the user selects just

four, then the accuracy will be negatively affected by the user disregarding the other six items.

Thus, in this study, the experimental results above clearly show that the application of TOPSIS

to the baseline methods results in better accuracy. Although the general accuracy of the pro-

posed method is less than 0.5 in term of precision, the accuracy of all baseline methods is

lower than that of the proposed method. For instance, the precision of the baseline methods

Fig 9. Precision measure by number of recommendations on 1MMovieLens.

https://doi.org/10.1371/journal.pone.0204434.g009

Fig 10. Precision measure by number of recommendations on HetRec2011.

https://doi.org/10.1371/journal.pone.0204434.g010
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does not exceed 0.1, except for NHSM, which scored around 0.12 using 100KMovieLens. In

contrast, the maximum precision when TOPSIS was applied to NHSM reached 0.44 and 0.38

on the 100K and 1MMovieLens datasets, respectively. The low accuracy of the baseline meth-

ods in this case is related to the prediction algorithm. The prediction algorithm produces a pre-

dicted score for all candidate items within a given range of 1–5. Thus, there is a possibility that

many items will have the same predicted score rating. Consequently, we do not know which (if

either) of two items that have the same prediction score is actually more preferred by the user.

This may lead to incorrect rankings and, in turn, low accuracy. However, the proposed method

based on TOPSIS successfully minimizes the negative effect of the prediction algorithm in

evaluating and ranking the candidate items. Thus, the application of TOPSIS significantly

improves the accuracy of memory-based CF and produces more accurate results than the base-

line methods.

Fig 11. Precision measure by number of recommendations on FilmTrust.

https://doi.org/10.1371/journal.pone.0204434.g011

Fig 12. F-measure by number of recommendations on 100KMovieLens.

https://doi.org/10.1371/journal.pone.0204434.g012
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Conclusions

This paper has presented a new memory-based CF in which the TOPSIS method is applied to

improve the accuracy of recommendations. The proposed method applies TOPSIS as a substi-

tute for the prediction methods used in conventional memory-based CF. The application of

TOPSIS to several commonly used CF methods (PCC, CPCC, SPCC, Cos, MSD, JMSD, and

NHSM) was shown to produce sharp improvements in terms of precision, recall, F-measure,

and MAP results over the respective baseline methods. In particular, the recall and MAP

improved by a factor of more than two under application to the PCC, CPCC, SPCC, MSD, and

Cos methods and by factors of more than three and four under application to JMSD and

NHSM, respectively. Although the improvement in precision was generally smaller across all

Fig 13. F-measure by number of recommendations on 1MMovieLens.

https://doi.org/10.1371/journal.pone.0204434.g013

Fig 14. F-measure by number of recommendations on HetRec2011.

https://doi.org/10.1371/journal.pone.0204434.g014
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cases, applying TOPSIS achieved a three-fold increase in precision in NHSM and a doubling

of the precision in the other methods. The results conclusively underline the enhancements

that can be achieved by using TOPSIS in place of prediction to improve the accuracy of mem-

ory-based CF methods. This improvement arises from the consideration by the TOPSIS-

enhanced CF of the item ratings by all K-neighbors in constructing a decision matrix to weight

the criteria applied by the target user, and the application of the TOPSIS technique to evaluate

and rank candidate items.

The key to successful memory-based CF is finding an appropriate set of neighbors. In

future work, therefore, we will focus on improving the accuracy of recommendations by

formulating a new similarity measure to locate sets of neighbors that produce better

recommendations.

Fig 15. F-measure by number of recommendations on FilmTrust.

https://doi.org/10.1371/journal.pone.0204434.g015

Fig 16. Comparison of MAP for all methods using all datasets.

https://doi.org/10.1371/journal.pone.0204434.g016
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42. Bilge A, Yargıç A. Improving Accuracy of Multi-Criteria Collaborative Filtering by Normalizing User Rat-
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