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Abstract 

The meshless Shepard and least squares (MSLS) method and the meshless Shepard 

(MS) method are Partition of Unity (PU) based meshless interpolations which eliminate 

the problems by other meshless methods such as the difficulty in direct imposition of 

the essential boundary conditions. However, singular weight functions have to be used 

in both methods to enforce the approximation interpolatory, which leads to the loss of 

smoothness in approximation and locally oscillatory results. In this paper, an improved 

MSLS interpolation is developed by using dually defined nodal supports such that no 

singular weight function is required. The proposed interpolation satisfies the delta 

property at boundary nodes and the compatibility condition throughout the domain, and 

is capable of exactly reproducing the basis function. The computational cost of the 

present interpolation is much lower than the Moving Least-Squares (MLS) 

approximation which is probably the most widely used meshless interpolation at 

present. 

Keywords: Meshless; Shepard shape function; Partition of unity; Delta property; 

Compatibility 

1. Introduction 

In the past decade, meshless methods have benefited from much theoretical 

development and engineering application, since they offer the possibility of a 

discretised approach without meshing, a major overhead in the finite element method 
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(FEM). A wide variety of meshless methods have been proposed as outlined in recent 

surveys [1-3]. Remarkable successes have been reported in applying these methods for 

analyzing challenging engineering problems, namely, fracture modelling [4-6], plate 

problems [7], finite deformation problem [8,9], consolidation problem [10], dynamic 

simulation [11], three-dimensional problems [12,13], topology-optimization of 

structures and thermodynamic analysis, where laborious preprocessing involved in the 

FEM is avoided. 

As concluded in [3] the difference between the various meshless methods is in the 

type of approximations used in obtaining the shape functions. Some widely used 

meshless approximations are the moving least-squares (MLS) approximation, Shepard 

shape functions, partition of unity (PU), radial basis functions (RBF), reproducing 

kernel particle approximation (RKPA) [14,15], point interpolation (PI) and Kriging 

interpolation (KI) and a generalized meshless approximation [16]. The MLS 

approximation [17] is probably the most widely used meshless approximation at present 

due to its advantages of field continuity in a global sense, completeness of 

approximation and robustness of calculation results. However, the MLS approximation 

suffers from a number of problems that practically limit its application, namely the high 

computational cost in obtaining the shape functions and also their derivatives, the 

retention of accuracy with respect to nodal arrangement and the difficulty with which 

essential boundary conditions can be imposed due to the lack of the Kronecker delta 

property. Efforts have been made to address these problems by various means in the 

past. In [18], explicit expressions are proposed for computing shape functions and 

diffuse derivatives of shape functions by assuming some terms constant and complete 

derivatives of shape functions. However, these formulations are restricted to certain 

nodal arrangements and have to be derived separately when the number of nodes in 

support changes, and the formulation grows unwieldy when there are a large number of 

nodes in support. In [19], the use of the orthogonal basis function in the element-free 

Galerkin (EFG) method is investigated in terms of the solution accuracy and nodal 

arrangement. To remove the difficulty in imposing the boundary conditions, singular 

weight functions are introduced in [20] to produce an interpolatory MLS approximation. 

In [21], a method for direct imposition of essential boundary conditions is proposed to 

reform the global stiffness matrix by using a transformation matrix to enforce boundary 

nodes taking nodal values. All these above describe efforts that help to alleviate the 
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problems, however none are capable of dealing with the problems satisfactorily without 

the loss of generality in the formulation. 

On the other hand, researchers have also started to explore the possibility of new 

meshless interpolations using Shepard shape functions, the lowest order form of the 

MLS shape functions. Unfortunately, the results are of low accuracy if Shepard shape 

functions are directly used because they have only zeroth order continuity. There have 

been some efforts devoted to the construction of high order consistent interpolation 

using Shepard shape functions. For example, a consistent pseudo-derivative is proposed 

in [22] which can preserve the linear consistency of interpolation approximation by 

linearly combining the derivatives of Shepard functions together. In [23], an octree 

partition of unity method was developed by using the data structures of octrees and 

Shepard shape functions as a PU. Griebel and Schweitzer [24-26] proposed a particle-

PU method by employing a localized version of Shepard's method. These methods are 

generally more efficient than some existing meshless methods, and show a high rate of 

convergence and accuracy. However, none provides a direct solution for dealing with 

the essential boundary conditions. In contrast, the recently developed meshless Shepard 

least squares (MSLS) method [27] and the meshless Shepard (MS) method [28] 

satisfactorily maintain the consistency of the approximations up to the order of the basis 

functions and also satisfy the Kronecker delta property. However, singular weight 

functions have to be used to enforce the shape function to be interpolatory, which 

results in the loss of smoothness of the interpolation and results become locally 

oscillatory around the node where singular weight functions are employed.  

In this paper, an improved PU-based MSLS interpolation possessing the delta 

property without using singular weight functions is developed. The support domains at 

the nodes are dually defined for local approximation and for the global PU. The present 

interpolation is capable of exactly reproducing any function which appears in the basis. 

The content of the paper is outlined as follows. In §2, the formulation of the  

interpolation is described in detail including the local approximation and nodal support 

domain with dual definitions. The Kronecker delta property, completeness property, 

compatibility property, and computational efficiency of the interpolation are analyzed 

and discussed in §3. The discretised formulation of the present interpolation is derived 

using the Galerkin weak form in §4 followed by numerical tests demonstrating the 

convergence characteristics and accuracy  in §5.  

Page 10 of 35

Prof. Dr.-Ing. P. Wriggers, Institute of Continuum Mechanics, Appelstr. 11, 30167 Hannover, Germany

Computational Mechanics



For P
eer R

eview

4 

2. Formulation of the improved MSLS interpolation 

In this section, the improved meshless Shepard least squares (IMSLS) interpolation is 

described in detail. We start with the description of the formulation using a 2D problem 

domain of arbitrary geometry as shown in Fig.1. The formulation is described for the 

interpolation in elastostatics, with the fundamental field variable   where  Iu  and Iv  are 

the nodal displacements in the x and y directions respectively. The interpolation for the 

x-displacement at an arbitrary point x ={x, y} inside the domain is expressed as 

( ) ( ) ( )
1

n
l

I I

I

u uφ
=

= ∑x x x                                                                (1) 

where ( ){ }, 1,...,
I

I nφ =x  is a set of shape functions that forms a partition of unity, i.e. 

( )
1

1
n

I

I

φ
=

≡∑ x ; I is the node index and n is the number of the nodes for which the 

supports cIr  include point x as shown in Fig.2; ( )l

Iu x  here is not the nodal displacement 

in the FEM or the ‘fictitious’ nodal values in the MLS-based EFG method [1] but the 

local approximation at node I where the superscript l indicates local. Shepard shape 

functions are used as the PU given by 

( ) ( )

( )
1

I

I n

J

J

w

w

φ

=

=

∑

x
x

x

,                                                                                                                         (2) 

where ( )Iw x  is the weight function of node I as in the original paper on the MSLS 

interpolation [27]. The construction of the IMSLS interpolation  proceeds as follows: 

firstly, the construction of a local approximation at each node; and secondly the 

application of a  PU approximation over the local approximation to interpolate at a point 

x inside the domain. The definition of nodal support and the construction of local 

approximations at a node will be described in detail in the following. 

2.2 The local approximation at a node 

The local approximation ( )l

Iu x  at an arbitrary node I is given by 

( ) ( )
1

M
l I

I J J

J

u uψ
=

= ∑x x                                                                                                        (3) 
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where Ju  is the nodal displacement for the J th node in support of I, M is the total 

number of nodes falling inside the local cover node I  which is the grey circle marked 

with 
Il   in Fig.1. ( )I

Jψ x  is given as  

( ) ( ) ( )
( ) ( ) ( )




=+−=

≠−=

IJ

IJ

I

I

J

I

J

I

J

I

I

J

I

J

I

J

for    ,1

for        , 

xxx

xxx

ψψψ

ψψψ
 ,                                                                 (4) 

in which  ( )xI

Jψ  is the modified least square shape function of node J at node I and 

is calculated by the following  

( ) ( ) ( ) ( )[ ] ( ) BAxpxxxxψ
1T

21

−== I

M

III ψψψ �  .                                                     (5) 

Here, ( ) ( ) ( ) ( )[ ]T21 ,,, xxxxp mppp �=  is a polynomial basis, and m  is the number of 

monomials in the basis. In the following development of the IMSLS interpolation, we 

will use a bilinear basis throughout in 2D, i.e. ( ) [ ]T 1, , ,x y xy=p x . Matrices A and B in 

Eq. (5) are expressed as 



















==

MM

M

M

yxyxyx

yyy

xxx

�

�

�

�

2211

21

21T

111

PB  ,                                                                            (6) 

and  

PPA ⋅= T
                                                                                                                       (7) 

respectively. It can be seen from Eq. (4) that ( ) 1=I

I

I xψ , ( ) ( )IJI

I

J ≠=  0xψ  and 

( )∑
=

=
M

J

I

J

1

1xψ . Thus  

( )l

I I Iu u=x                                                                                                                      (8) 

It has been shown in [28] that if a singular weight function is used for ( )Iw x  in the PU 

function of Eq. (2), the approximation in Eq. (1) will become interpolatory i.e. 

satisfying the delta property. A similar approach has been previously used by Kaljevic 

and Saigal [20] to make the MLS approximation interpolatory. However, the use of 

singular weight functions brings some problems such as the loss of smoothness in the 

approximation in a global sense as  will be shown in the following sections.  

2.3 Dual support domain of a node 

The support domain of a node is the area where a node exerts influence on the field 

variable. In this paper it is defined as a circle centered at the node as shown in Fig. 1 
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although it may take any other shape such as a rectangle. Here dual support domains are 

defined at each node such that one is used in the construction of the local approximation 

and the other used in the PU approximation. In Fig. 1, for example, two support 

domains are associated with node I , namely a local support domain used in the local 

approximation, denoted as l

I�  with radius lIr , and a PU support domain for global 

approximation, denoted as I�  with radius cIr . For the construction of the local 

approximation, if a node  falls inside the local support l

I�  as shown in Fig.1 (for node 

K), then node K will be involved in constructing the local approximation at node I. For 

the PU approximation, if a point say x in Fig.1, is contained in I� , then the local 

approximation of the node, i.e., ( )l

Iu x  will be used to approximate the field value at x. 

For an arbitrary node, such as node I in Fig. 1, the size of l

I�  is defined by 

cI Ir a b d= ⋅ ⋅ ,                                                                                                                   (9) 

where a  is a scale factor that ranges between 1.0 and 2.0, b  is a coefficient such that 

2=b  for a node lying on the boundary and 1=b  for all other nodes, and Id  is the 

distance between I and the fifth nearest neighbour node to I. Eq. (9) is repeated for 

every node in the analysis. The choice of the fifth closest node is due to both the 

requirement of minimum nodes in support for the construction of shape functions and 

avoiding ill-conditioning in calculating the shape functions. When a linear basis is used, 

three nodes are required at least according to Eqs. (5) and (6). From our experiences, 

five nodes are normally sufficient for a regular nodal distribution using the linear basis.  

cI lI
r r=

cJ
r

I
�

J
�

l

J
�

l

I
�

 

Figure 1: Dual support domains of nodes. (An interior node I with identical local and global PU  

support domains, and node J with differing local and global PU support domains.) 
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For a node having its local support domain completely inside the domain, for example 

the subdomain l

I�  of node I in Fig.1, the size of 
I�  is the same as l

I� so that 

cI lIr r=                                                                                                                            (10) 

For a node having is local support domain close to or intersecting the boundary, for 

example node J shown in Fig.1, the definition of subdomain follows these steps. Firstly, 

find the nearest boundary node to J among the neighbor nodes which belongs to 
l

I� , 

and secondly calculate the distance between the nearest boundary node and J, denoted 

as Jd  and then set the size of J� as 

0.99cJ Jr d= .                                                                                                                  (11) 

If we want the approximation to  take nodal values at the nodes, the size of the Jd  can 

be taken as the distance between the J and its nearest node for every node J. In all the 

test examples in the paper, the following quartic spline function is used as the weight 

function over the support domain in Eq. (2) 

( )

2 3 4

1 6 8 3 ,

0

I I I
I cI

cI cI cI

I

I cI

r r r
r r

r r r
w

r r

      
− + − ≤      

      = 

 >

x ,                                                       (12) 

where I Ir = −x x  is the distance between the point x and node I, and Ix  is the 

coordinate of node I. For comparisons, the following singular weight function is also 

tested  

2

2( ) cossg I I
I

cI cI

r r
w

r r
π

   
=    

   
x                                                                                           (13) 

and where it is used in the following it is specifically pointed out. The aim of separately 

defining local domains and support domains is to produce IMSLS interpolations having 

the delta property without using a singular weight, so that the difficulties associated 

with the use of singular weight functions can be removed. This aim is achieved here if 

the domain for local approximation and domain for PU are defined by the method 

described above as will be proved in the following section. 
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3. Properties 

3.1 Delta property at a node 

Suppose essential boundary conditions are to be applied at a boundary node K and the 

support domains of the nodes are set according to Eqs. (10) and (11), then node K will 

be the only node contained in 
K� . Thus the IMSLS interpolation in Eq. (1) at 

Kx  

becomes 

( ) ( ) ( ) ( ) ( )
1

n
h l l

K I K I K K K K K

I

u u uφ φ
=

= =∑x x x x x .                                                             (14) 

As there is only one node in the PU, then Eq. (2) becomes 

( ) ( )

( )

( )
( )

1

1K K K K

K K n

K K
J K

J

w w

w
w

φ

=

= = =

∑

x x
x

x
x

                                                                                        (15) 

It is known by Eq. (8) that the local approximation ( )l

K Ku x  at node K satisfies 

( )l

K K Ku u=x                                                                                                                  (16) 

Substituting Eqs. (14) and (15) into (13) gives  

( ) ( )h l

K K K Ku u u= =x x .                                                                                                (17) 

Hence, the present IMSLS interpolation takes nodal values at boundary nodes, and 

essential boundary conditions or point load conditions can be directly imposed as in the 

FEM. 

3.2 Completeness property 

The Shepard function ( )Iφ x  in Eq. (2) is the lowest order MLS shape functions and  

has only zeroth-order consistency, i.e. only a constant strain field can be exactly 

reproduced by the Shepard function. In contrast, the IMSLS interpolation in Eq. (1) is 

capable of exactly reproducing any function which appears in the basis of ( )xp  in Eq. 

(5). The present interpolation also preserves the order of completeness up to the order of 

basis function as is proved in the following. Suppose that the field over the cover of a 

node conforms to a given function, take the following bilinear polynomial as an 

example 

( ) 1 2 3 4,u x y b b x b y b xy= + + +� .                                                                                      (18) 

Substituting Eq. (17) into (1) and then (2) gives 
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( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

1 1

 

m
l I

I J J

J

m m
I I

J J J I J I

J J

u u

u u u

ψ

ψ ψ

=

= =

=

= − +

∑

∑ ∑

x x x

x x x x x

�

� � �

                                                             (19) 

It has been proven in [29] that the basis function can be exactly reproduced through the 

least square approximation so that the first term on the r.h.s. of Eq. (18) becomes 

( ) ( ) ( )
1

m
I

J J

J

u uψ
=

≡∑ x x x� �                                                                                                  (20) 

and the second term becomes 

( ) ( ) ( )
1

m
I

J I J I

J

u uψ
=

≡∑ x x x� � .                                                                                            (21) 

Substituting Eqs. (19) and (20) into (18) leads to 

( ) ( ) ( ) ( ) ( ) l

I I Iu u u u u= − + =x x x x x� � � �                                                                          (22) 

Substituting Eq. (21) into (1) gives 

( ) ( ) ( ) ( ) ( ) ( )
1 1

n n
h l

I I I

i i

u u u uφ φ
= =

= = ⋅ =∑ ∑x x x x x x� �                                                          (23) 

Thus, the present IMSLS interpolation preserves completeness up to the order of the 

basis function. 

3.3 Compatibility 

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

2.52.01.51.00.5

Node 10

Node 15Node 12

 Exact

 IMSLS

 MLS

 LS

 

f (x)

 

Figure 2: Curve fittings for ( ) ( )[ ]π2.0sin −= xxf  using different approximations 
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In the present IMSLS interpolation, although the local cover Il  is fixed for an arbitrary 

node, the field function is approximated based on moving domains. Thus  compatibility 

in the whole domain is ensured in the present IMSLS interpolation, which is the same as 

the MLS approximation. As an example consider, the function ( ) ( )[ ]π2.0sin −= xxf . A 

1D domain ( [ ]0,  2.5x∈ ) is discretised using 25 distributed nodes as shown in Fig.2, 

which also shows the fitting results using the LS, MLS and IMSLS approximations. It is 

clearly seen that the LS approximation is oscillatory and unsmooth at the region from 

Node 10 ( 1.0x = ) to 15 ( 1.5x = ). The MLS approximation is continuous in the whole 

domain, but cannot interpolate through all nodal values. (The readers are referred to the 

literature [30] for detailed discussions on compatibility for other meshless 

approximations). In contrast as shown by Fig. 2 the proposed  IMSLS approximation is 

continuous and passes through nodal values. 

As a further illustration of IMSLS-based shape functions, plots of shape function 

values over a 2D domain are shown in Figs. 3 and 4. Twenty-five nodes are arranged in 

a array of five rows and columns over a 2×2 unit domain and the shape function for the 

central node (located at (1,1)) is plotted over the domain. We compare the shape 

functions of the IMSLS with MSLS where it is noted that  in the  MSLS approximation 

the shape function does not take nodal values when a cubic spline weight function is 

used as shown in Figs. 3(a) and 3(b), and takes nodal values only when a singular 

weight function is used as shown in Figs. 3(c) and 3(d). However, oscillations can be 

observed around the node in Fig. 3(d) using a linear basis. In the proposed IMSLS 

approximation, the shape function takes nodal values regardless of the type of the 

weight function, as shown  in Fig. 4. It can be seen  that the shape function of the 

central node takes the value of unity at the node itself and diminishes at all the other 

nodes. For a linear basis, the oscillatory nature seen with the singular weight function is 

largely absent as shown in Fig. 4(b). Similar situation can be found for the derivatives 

of shape functions as compared between the two methods in Figs. 5 and 6 (derivatives 

plotted only in one direction and are the same for the other due to symmetry). The 

oscillation in Fig. 3(d) is further amplified in Fig. 5(b) for first order derivative and is 

largely improved  in Fig. 6(b). 
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    (a) spline weight function and zeroth order basis       (b) spline weight function and linear basis  

     

(c) singular weight function and zeroth order basis     (d) singular weight function and linear basis  

Figure 3: 2D plot of MSLS shape functions over a square domain 

 

         

(a) spline weight function and zeroth order basis        (b) spline weight function and linear basis 

Figure 4: 2D plot of IMSLS shape functions over a square domain 
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(a) singular weight function and zeroth order basis    (b) singular weight function and linear basis  

Figure 5: 2D plot of MSLS shape functions derivatives over a square domain 

            

(a) spline weight function and zeroth order basis    (b) spline weight function and linear basis  

Figure 6: 2D plot of IMSLS shape functions derivatives over a square domain 

3.4 The derivatives of the IMSLS shape functions and computational cost  

In this section, we will firstly show the formulation and properties of the derivatives 

compare the IMSLS interpolation, and the compare it with the MLS approximation in 

terms of the computational cost. The IMSLS interpolation at any point x is given by 

substituting Eq.(3) into (1) 

( ) ( ) ( )
1 1

n M
h I

I J J

I J

u uφ ψ
= =

 
=  

 
∑ ∑x x x                                                                                   (24) 

where the definition of I

Jψ  is given in Eq. (4) and shape functions are calculated by 

( ) ( ) J

I

J BAxpx 1T −=ψ                                                                                                      (25) 

The derivatives of the approximation in Eq.(24) can be obtained by the chain rule 

( ) ( ) ( ) ( ) ( ), ,,
1 1 1 1

n M n M
h I I

I J k J I k J Jk
I J I J

u u uφ ψ φ ψ
= = = =

   
= +   

   
∑ ∑ ∑ ∑x x x x x                                  (26) 

where k indicates the derivatives with respect to the k-th coordinate. The derivatives of 

( )Iφ x is calculated by 
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( )
( ) ( ) ( ) ( )

( )

, ,

1 1
, 2

1

n n

I k J I J k

J J
I k

n

J

J

w w w w

w

φ = =

=

−
=

 
 
 

∑ ∑

∑

x x x x

x

x

                                                          (27) 

It can be easily seen that the summation of the PU function derivatives is  

( )
( ) ( ) ( ) ( )

( )

, ,

1 1 1 1
, 2

1

1

0

n n n n

I k J I J kn

I J I J
I k

n
I

J

J

w w w w

w

φ = = = =

=

=

−
= ≡

 
 
 

∑ ∑ ∑ ∑
∑

∑

x x x x

x

x

                                              (28) 

And the derivatives of the shape functions by  

( ) ( )
Jk

I

kJ BAxpx 1T

 , ,

−=ψ .                                                                                                 (29) 

Denote the final form of the shape functions for the nodes both global and local 

associated with x as NI (x) (see§4 for the matrix notation of shape functions as a result 

of global PU multiplying over local approximation). Then Eq. (24) can be rewritten as  

( )
1

( ) 
R

h

I I

I

u N u
=

= ∑x x                                                                                                      (30) 

where R  is total number of nodes associated with a given point x . Since it has been 

proved the completeness of the IMSLS shape functions in §3.2, it can be directly 

obtained that 

1

( ) 
R

I I

I

N x x
=

=∑ x                                                                                                             (31) 

Therefore, the property of the shape function derivatives is 

,

1

( )
R

j

I k I kj

I

N x δ
=

=∑ x                                                                                                          (32) 

where k denotes the derivatives of the shape function with respect to k-th coordinate of 

x, and j indicates the j-th component of the coordinates of node I. For example,  

1

,1

1 1

( ) 1
R R

I
I I I

I I

N
N x x

x= =

∂ = = ∂ 
∑ ∑x ,                                                                                   (33) 

and 

1

,2

1 1

( ) 0
R R

I
I I I

I I

N
N x x

y= =

 ∂
= = ∂ 

∑ ∑x .                                                                                   (34) 

        To make comparisons of the computational cost, the formulation of the MLS 

approximation [17] is briefly stated in the following. Terms in the MLS approximation 

similar to the present IMSLS interpolation will be marked with a tilde, i.e. A� and A  etc. 
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In the MLS approximation, field variables, such as displacement in solid mechanics, are 

also approximated with  shape functions over nodal values as 

( ) ( )
1

n

I I

I

u uΦ
=

=∑x x                                                                                                        (35) 

where IΦ  are the MLS shape functions, computed by 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )1 T 1

I j I
jI

k

pΦ − −= =∑x x A x B x p x A x B x� �� � ,                                          (36) 

and the matrix ( )A x� is given by 

( ) ( ) ( ) ( )∑
=

=
n

I

IIIw
1

T~
xpxpxxA                                                                                          (37) 

and the matrix ( )B x�  by 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]nnwww xpxxpxxpxxB �2211

~
= .                                                     (38) 

The derivatives of the shape functions can be found by applying the chain rule to Eq. 

(36) 

T 1 T 1 1 T 1

, , , , I k k I k I I kΦ − − − −= − +p A B p A A A B p A B� � � � �� � � ,                                                           (39) 

where the definition of k is same as in Eq. (26). Eqs. (37) and (38) show the 

dependence of ( )xA
~

 and ( )B x�  on x respectively, which then needs to be 

differentiated  with respect to x as shown in Eq. (39).  For the IMSLS interpolation, A  

and B  in Eq. (25) only depend on the coordinates of nodes in support, and thus neither 

needs to be differentiated in Eq. (29). By comparing Eq. (39) with (29), it can be seen 

that the IMSLS interpolation has a more compact formulation and involves many 

fewer matrix operations, which can only mean a reduced computational cost. 

Therefore, the IMSLS works more efficiently than the MLS at each interpolation 

point. However, this is not yet sufficient evidence to assert that the total computing 

time of the IMSLS is less than the MLS for any given problem since the total 

computing time depends on both the computing time in each interpolation and the total 

number of interpolations required. And it is therefore necessary to compare the number 

of interpolations that need to be performed for a certain problem. In the IMSLS 

interpolation, the matrix inversion appears only in the local approximation at each 

node, which means the inversion of A is required only once for each node, thus the 

total number of matrix inversions should be the same as the number of nodes. With the 

MLS approximation, matrix inversion is performed at each integration point. 

Generally for a certain problem the number of integration points needed is much 
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greater than the number of nodes in the MLS in order to obtain the weak form 

integration with satisfactory accuracy. Therefore, it can be seen that the IMSLS 

surpasses the MLS approximation in terms of number of interpolations required. 

Therefore, the total computational cost is greatly reduced in the IMSLS. The 

computational depends on several factors such as the solver either direct or iterative, 

preconditioning for better convergence regarding the type of the problems, the date 

storage structure and etc [31]. To show the substantial difference of computational 

cost, the running time are compared between the two approximations in§5.1. 

4. Discretisation of the weak form 

Let R  be the total number of nodes associated with a given point x , then Eq. (24) can 

be rewritten as 

( )

( )

T
0 1 1 1 1

11 1 1

0 2 2 2 2
22 1 1

0

1 1

0

1 1
1

       

n n R

h n n R

n n n n

Rn n n R

R

k k
n Rn R k

u

u
u

u

N u

ϕ ψ ψ ψ ψ
ϕ ψ ψ ψ ψ

ϕ ψ ψ ψ ψ

+

+

+

× ×× =

    
    

    =                  

= = ∑

x

Φ ψ u x

� �

� �

�� � � � � � �

� �

                                                             (40) 

where 0
Φ  is the vector of Shepard shape functions, ψ  is a matrix comprising the point 

interpolation in Eq. (4) and ( )xkN  is the IMSLS shape function. In  the implementation, 

all the nodes in local support is normally more than the nodes than in PU support 

meaning R n≥ . For boundary nodes, it is clear than R n= . 

With the interpolation defined, then the problem domain can be discretised using a 

weak form, e.g. a Galerkin procedure as used here, and the rest of the implementation is 

mostly identical to the conventional FEM. We state the discretisation of the weak form 

for  plane stress  linear elasticity  with small displacements on the domain �  bounded 

by Γ , the standard principle of minimum potential energy leads to the following 

expression: 

∫∫∫ ��
−−=Π

   2

1
tdxdytdstdxdy

T

s

TT buTuDεε
σ

                                                              (41) 

where ε  is the infinitesimal strain vector; D  is the elasticity matrix; T  is the surface 

force vector; b  is the body force vector and t  is the thickness of the two-dimensional 

body. If we substitute Eq. (40) into (41) and invoke 0 =Πδ , we will get the following 

discrete equation 
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FUK =⋅                                                                                                                       (42) 

where the stiffness matrix is 

IJ I J

�

= ⋅ ⋅ �∫ TK B D B d                                                                                                    (43) 

in which  
IB  is the strain-displacement matrix 

,

,

, ,

0

0

I x

I I y

I y I x

N

N

N N

 
 

=  
  

B                                                                                                         (44) 

and 
iF  is the right hand side vector 

∫ ∫ ⋅+⋅=
σS �

iii d�NtdsN bTF .                                                                                         (45) 

Eq. (41) can be integrated by Gaussian integration scheme using background integration 

cells. A Delaunay triangulation can be generated for this purpose from the nodes of the 

meshless model with four integration points  in each triangle. 

5. Numerical examples 

The proposed improved IMSLS interpolation has been coded into an existing C++ 

program. In this section, we show the performance of the  interpolation on a range of 

test problems. Results obtained are compared with the exact solutions, those given by 

the EFG method  and also the  FEM . The weight function used in the EFG method for 

testing purposes is the exponential weight function given by 

( )

22

2

( )( )

( )
, if 

1

if 0,

lI II I

lI I

r cr c

i lir c
c

I

i li

e e
r r

e
w

r r

−−

−

 −
≤

 −= 

 >

x                                                                    (46) 

where lIr  is defined by Eq.(9) and 0.3I lIc r=  is used for all test examples. Unless 

otherwise indicated, the scale factor a in Eq. (9) is set as 1.5 in the EFG method and  as 

1.1 in the IMSLS. The same integration schemes are kept in both the proposed method 

and the EFG method. To study the convergence behaviour we define the following error 

norms in displacement and energy respectively 
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( )
1

T 2

 �
 � ,    d= ⋅∫u u u                                                                                                 (47) 

where u is a vector collecting nodal displacement results { }1 1 2 2 = , , , ,
T

n nu v u v u vu � and 

( )
1

T 2

 �
 �d= ⋅∫ε ε σ                                                                                                       (48) 

where ε is the infinitesimal strain vector and σ  is the Cauchy stress vector. The relative 

displacement error and energy error are given by 

num exact

exactur
−

=
u u

u
                                                                                                          (49) 

and 

num exact

exacter
−

=
ε ε

ε
                                                                                                           (50) 

where the superscripts num and exact refer to numerical solutions and exact (or 

reference) solutions respectively.  

5.1 A cantilever beam 

A cantilever beam problem with dimensions of l = 8 m and d = 1m, as shown in Fig. 7 

is tested first. The beam is subjected to a unit concentrated load p at the right-hand end 

and is constrained at the left-hand end as shown in the Figure. The elastic material 

properties used are PaE
5101×=  and 25.0=ν   and the problem is solved under a plane 

strain assumption. We refer to the analytical solution of the problem given in [33]. The 

convergence of the present method is studied using four nodal arrangements with 50, 

138, 486 and 965 nodes respectively.  
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Figure 7: Cantilever beam and nodal arrangement 

The convergence rate is compared between FEM using three-noded triangles, the 

EFG method and the IMSLS in Figs. 8 and 9. It can be seen that the IMSLS shows good 

accuracy and convergence rate. Figs. 10 and 11 collect the vertical displacement v and 

σxx along  2/dy =  on the beam by FEM, EFG method and IMSLS using a nodal 

arrangement of 138 nodes, and also indicates the good accuracy of results using the 

proposed formulation. Note that in this example, the reason of using the triangular 

element in the FEM as comparison is that the three-noded triangular elements is 

constructed from a linear basis in 2D {1, x, y} which is corresponding to the linear basis 

in the IMSLS. While for higher order element, e.g. the quadrilateral element, the shape 

function corresponds to a bilinear basis {1, x, y, xy} which is of higher order than the 

linear basis in the IMSLS. The choice of element is therefore based on the same order of 

basis function employed for expediency though the triangular element is known poor 

performance in cantilever beam.  
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Figure 8: Convergence of relative displacement error of the cantilever beam 
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Figure 9: Convergence of relative energy error of the cantilever beam 
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Figure 10: Vertical displacement results v along y = 0 of the cantilever beam 

Page 26 of 35

Prof. Dr.-Ing. P. Wriggers, Institute of Continuum Mechanics, Appelstr. 11, 30167 Hannover, Germany

Computational Mechanics



For P
eer R

eview

20 

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45
 Exact

 IMSLS:Linear

 IMSLS:Quadratic

 EFG:Linear

 FEM:Linear
σ

x(P
a)

X(m)

 

Figure 11: σxx results along y = 0 of the cantilever beam 

Table 1: Comparison of computing time in obtaining the strain matrix (unit: second) 

Number of nodes 50 138 486 965 

MLS 0.16 0.59 2.31 4.35 

IMSLS 0.14 0.46 1.41 2.50 

 

Figs. 8 and 9 also demonstrate that the present interpolation is slightly improved with an 

increase of the size of support domain for local approximation. The issue of optimum 

nodal support size with respect to error control has been found with the EFG method 

[33] and the similar issue here can be discussed in further study. It should be noted that 

in the present exapmle, the EFG method outperformed all the other methods using 

linear basis, only the quadratic basis of the present IMSLS performs better. As has been 

highlighted in Section 3, the computational cost in obtaining the shape functions and its 

derivatives is much lower by the present LS interpolation than by the MLS 

approximation. And this point is here clearly proved by the computational time in 

obtaining the strain matrix listed in Tab.1. It can be observed from the table that the 

difference in computational efficiency between the two interpolations increases  when 

the number of nodes increases.  
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5.2 An infinite plate with a circular hole 

The second example is an infinite plate with a circular hole of radius a = 1 m. The plate 

is subjected to far field traction Pa1=σ  in the x direction.  A finite portion of the plate 

is considered for analysis and, due to the symmetry of the problem, only a quarter of the 

portion requires modeling, as shown in Fig. 12. The elastic material properties used are 

PaE 71003 ×= .  and 3.0=ν  and plane stress conditions are assumed. The stresses and 

displacements for this are given in an analytical solution in [32] as 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )θθθσ

θθθσ

θθθσ

4cos
2

3
4cos2cos

2

1

4sin
2
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4sin2sin
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r
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r
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−






 −−=

+






 +−=

+






 +−=

                                                         (51) 

and 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3

3

3

3

2 2
1 cos 1 cos cos3 cos3

8

2 2
3 sin 1 sin sin 3 sin 3

8

a r a a
u

G a r r

a r a a
v

G a r r

κ θ κ θ θ θ

κ θ κ θ θ θ

 
= + + + + −   

 

 
= − + − + −   

 

                  (52) 

where G  is the shear modulus and κ  is the Kolosov constant where ( ) ( )ννκ −−= 1/3  

for the plane strain assumption. 

         

a

 

(a) A small portion taken for analysis                 (b) Boundary conditions applied 

Figure 12: An infinite plate with a circular hole 

    Traction-prescribed boundary conditions consistent with the exact solution in Eq. 

(42) are applied at the top and right edges. Four distributions of 53, 188, 564 and 1012 
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nodes, which are shown in Fig.13, are employed for the convergence studies. Figs.14 

and 15 show that the IMSLS has a good convergence performance in the displacement 

and energy norm. For the relative error in displacement, the error of IMSLS is between 

the EFG and FEM given the same node density. In this example the EFG method 

outperformed the IMSLS linear methods. The displacement 
xu  obtained using the 

IMSLS and the EFG method are shown in Fig.16.  

 

 

Figure 13: Nodal arrangements used for the infinite plate problem 
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Figure 14: Convergence of relative displacement error for the infinite plate problem 
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Figure 15: Convergence of relative energy error for the infinite plate problem. 
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Figure 16: Comparison of the horizontal displacement u along y = 0 by different methods 

5.3 A square plate with an edge crack 

The last test example is a rectangular plate with a single edge crack. The dimensions 

of the plate used in the test are L = 10m and W = 5m as shown in Fig. 17. The plate is 

subjected to uniform traction of σ = 1 in the y direction. Boundary conditions are 

applied as shown in Fig. 17 (a). The elastic material parameters used are E = 3.0×10
7
 

and υ = 0.3 and the problem is solved under plane strain assumption. A linear basis in 

2D is used in this example. A structured nodal arrangement of 1344 nodes is used as 

shown in Fig. 17 (b). We test this example by varying the length of crack and study the 

accuracy via the  stress intensity factor (SIF) as the fundamental fracture parameter. 

SIFs are used both to indicate stability, i.e. likelihood of propagation, and to determine 

the direction of crack growth with respect to the current geometry. The SIF is here 

computed using the J-integral [34] using the stress and strain results obtained. For linear 

elastostatics, without body forces and assuming traction free states along crack surfaces, 

the J integral defines the energy release rate along a path as 

,
d          =1,2

k k j j k
J Wn t u j,k

Λ
= − Λ∫                                                                               (53) 

where W is the strain energy calculated by 
1

2
ij ijW σ ε= , jt is the traction along 

Λ calculated by j ji it nσ= , and ,j k
u  is the derivatives of the j-th component of 

displacement with respect to the kth axis. Here j and k indicate the local coordiantes 
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defined around the crack tip. In linear elastic fracture mechanics, 1J is normally used 

since it does not contain singular terms  and 
1J  can be decomposed into symmetric and 

anti-symmetric parts as described in [35].  

h
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(a) dimensions and boundary conditions (b) nodal arrangement 

Figure 17: A single edge crack in a square plate 

In Table 2, we compare the values of normalized SIF ( aKF II πσ= ) obtained by 

the present method, the original MSLS method using a singular weight function and the 

EFG method with the reference values in [36]. The results show an improvement of 

accuracy with the present IMSLS method compared to  the original MSLS method. The 

results also indicate the EFG method using the visibility criterion leads to significant 

errors which is due to the spurious crack extension problem in the MLS approximation 

as has been reported in [37]. It also shows that with the same number of nodes used, the 

IMSLS performs much better than the widely used MLS approximation, and the total 

computational cost is much lower by the former as is explained in §3.4. 

Table 2: Normalized SIF results for the single edge crack problem 

a/W 
0.2 0.4 0.6 

FI Error(%) FI Error(%) FI Error(%) 

Reference value 1.370 -- 2.110 -- 4.030 -- 

IMSLS 1.343 -1.97 2.078 -1.50 3.981 -1.201 

MSLS 1.320 -3.64 2.009 -4.78 3.757 -6.77 

EFG 1.476 7.74 2.233 5.83 4.313 7.03 
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6. Conclusions 

In this paper we propose an improved meshless Shepard and least square interpolation 

which removes the drawbacks associated with the use of singular weight function in the 

original MSLS method. The support domain for constructing local approximation and 

the support domain for PU approximation are dually defined at each node, which 

delivers the ideal delta property along essential boundaries without using singular 

weight functions. The present interpolation benefits from a simple formulation of shape 

functions and their derivatives, which makes it easier to implement than the MLS 

approximation. In addition the computational cost in obtaining shape functions is much 

lower than using the MLS approximation. The  features of the proposed IMSLS 

interpolation can be summarised as follows 

(1) The present interpolation satisfies the delta property on essential boundaries without 

using singular weight functions so that  essential boundary conditions can be 

imposed as directly as in the FEM; 

(2) The computational cost in obtaining the shape functions and their derivatives is 

much lower than the widely used MLS approximation; 

(3) The proposed interpolation preserves the consistency up to the order of the basis 

function, which is a necessary requirement of accuracy; 

(4) The proposed interpolation starts to converge towards the real solution even with a 

small size of support domain and such convergence characteristic is not sensitive 

when the size of support domain increases.  

Based on the above described advantages, which are the necessary elements to make a 

meshless method useful for application and which are absent from many other meshless 

methods, we  conclude that the proposed IMSLS interpolation is a promising meshless 

method worthy of consideration in a variety of applications. The formulation here is 

derived for 2D analysis but is readily extendable to 3D and the essential ideas are the 

same. Further development of the proposed interpolation is ongoing with its application 

to problems of changing geometry, such as those including finite deformation, 

elastoplasticity and three-dimensional cracking problems.  
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