Paper number 96GB01608.
$0886-6236 / 96 / 96 \mathrm{~GB}-01608 \$ 12.0$
validated mainly with observations of the bomb radiostraints [K eeling et al., $1989 ;$ quay et al, 1992; Keeling
and Shertz, 1992; Enting et al., 1995] and ocean models tirely on indirect methods including observational con itself [Schimel et al., 1994]. This estimate is based en
tirely on indirect methods including observational con
 activities in the decade from 1980 to 1989 , second in $30 \%\left(2.0 \pm 0.8 \mathrm{Gt} \mathrm{C} \mathrm{yr}^{-1} ; 1 \mathrm{Gt}=10^{15} \mathrm{~g}\right)$ of the 7.1
$\pm 1.1 \mathrm{Gt} \mathrm{yr}^{-1}$ released to the atmosphere by human noqe dn uәyet sey ueaoo әut peut pateu!tso sil qI
exist on a more regional scale, associated with known deficiencies of the models et ahe
 The 2.5-dimensional ocean circulation model of Stocker et al. [1994] and the 3000 m and south of $30^{\circ} \mathrm{N}$ are not yet affected. We estimate an anthropogenic
CO_{2} inventory of $20 \pm 4 \mathrm{Gt} \mathrm{C}$ in the North Atlantic between $10^{\circ} \mathrm{N}$ and $80^{\circ} \mathrm{N}$. of the ocean, north of $50^{\circ} \mathrm{N}$ it has even reached the bottom. Only waters below
3000 m and south of $30^{\circ} \mathrm{N}$ are not yet affected. We estimate an anthropogenic North Atlantic, anthropogenic CO_{2} has already invaded deeply into the interior 1981-1983. The highest anthropogenic CO_{2} concentrations and specifte mory per square meter) are found in the subtropical convergence zone. In the North Atlantic. (TTO NAS) and Tropical Atlantic study (TTO TAS) cruises in data from the North Atlantic sampled during the Transient Tracers in the Ocean using cither information about the water age or the distribution of ΔC^{*} in regions
not affected by the anthropogenic transient. This technique has been applied to disequilibrium component can be discriminated from the anthropogenic signal disequilibrium when a water parcel loses contact with the atmosphere. The air-sea inorganic carbon (C) in the ocean. This technique employs a new quasi-conservative
carbon tracer ΔC^{*}, which reflects the uptake of anthropogenic CO_{2} and the air-sea anthropogenic. CO_{2} from the large natural background variability of dissolved Abstract. An improved method has been developed for the separation of the
Thomas F. Stocker
Climate and Environmen
Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey
Jorge L. Sarmiento
Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland Nicolas Gruber in the oceans

An improved method for detecting anthropogenic CO_{2}

 -ш!р әч7 'sұәә\#ә хеәи!

 pogenic CO_{2} and thus ohscures the temporal trend of is comparable in magnitude to the temporal trend of

 study of Tans et al. [1990] claiming that the oceanic
sink for 1980 to 1989 was only 0.3 to $0.8 \mathrm{Gt} \mathrm{C} \mathrm{yr}^{-1}$. lenges to our estimates of the ocean sink, such as the
 we are able to pin down the anthropogenic invasion by

 because of their banning, show an increase over time reservoirs. The freons, although slowly being stabilized with subsequent redistribution into the other carbon

 input into the ocean are very different from that of an1992; Siegenthaler and Sarmiento, 1993]. Moreover, the
temporal evolution of the bomb radiocarbon and freon
 and ΔC_{L}^{*} versus salinity in the same σ_{0} interval. The
 since the internal sources and sinks have been removed
Invasion of anthropogenic CO_{2}, however, has caused in

 op sopaio pue sosma (SVI) אpnłS otquejfv jeotdox ples from the Transient Tracer in the Oceans (TTO) monds denote samples from the South Atlantic Ventila lantic Ocean (Antarctic Intermediate Water). Dia-
monds denote samples from the South Atlantic Ventila-

C $\left[\mu \mathrm{mol} \mathrm{kg}^{-1}\right]$

кquip 7

 at higher salinities in Figure 1c, which show an effective lell the surface. This gives the lower set of data points

 3 ages (available only for the northern hemisphere) to CO_{2} at all depths. We therefore use tritium heliumHowever, the σ_{θ} 27.0-27.2 surface has anthropogenic order to estimate the disequilibrium and residual effects
 over time. On deeper density surfaces one can use the that the CO_{2} air-sea disequilibrium has not changed horium and other residual effects. We make here the as-
sumption that the ocean operates in a steady state and anthropogenic CO_{2} is to eliminate the air-sea disequi-
librium and other residual effects. We make here the asThe final task we must achieve in order to identify the sion in the upward trend of ΔC^{*} as one moves from the
interior to the boundaries at either end. One can see an indication of the anthropogenic inva
sion in the upward trend of ΔC^{*} as one moves from the librium and the northern end-member disequilibrium. between the sonthern hemisphere end-member disequi CO_{2} invasion, these data would all fall on a straight line and alkalinity cnd-membcrs, as well as data and pa-
rameter uncertainties. If there were no anthropogenic plus any residual effects due to our choice of oxygen the time the water lost contact with the atmosphere of anthropogenic CO_{2} and the air-sea disequilibrium at a new tracer ΔC^{*} (Figure 1 c) that reflects the uptake first estimate of preindustrial preformed C. This defines uration concentration, surface alkalinity observations C^{*} for the preformed concentrations using oxygen satbility. We can eliminate most of this trend by correcting ters of the southern hemisphere having a greater solu-

 than in the northern hemisphere. The north-south difThe dominant feature of the C^{*} distribution is a
higher C^{*} concentration in the southern hemisphere ('concentrations, plis the anthropogenic CO_{2} invasion
(Figure $1 b$).
 rections yield the new tracer C^{*} which is a composite bution is eliminated, using as an indicator the alkalinity
distribution corrected for nitrate cycling. These cor-

$$
* \rho \nabla
$$ to other uncertainties. We thus have fects on a given density surface are negligible compared

 әм MOY smoys \forall x!puədd \forall 'suotienbə ${ }_{\text {qes }}^{z}$ O pue ba ρ әप7

$$
\begin{aligned}
& (\nabla \mathrm{I})^{\prime}\left({ }_{0}^{z} \mathrm{O}^{z} \mathrm{O}: N l+{ }_{0} 81 V\right) \frac{Z}{\tau}-{ }_{0}^{z} \mathrm{O}^{z} \mathrm{O}: O l-{ }_{0} \rho={ }_{0 * D} \\
& (\varepsilon \mathrm{I})
\end{aligned}
$$

and denoting this new quantity by ΔC^{*} 0*N

Definition of ΔC^{*}

origin of the different water masses (sce Figure 1) (q) แ! sama

$(Z \mathrm{I}) \quad 0=(* D) \mathrm{I}$

with conservative propertics

$$
C^{*}=C-r_{C: \mathrm{O}_{2}} \mathrm{O}_{2}-\frac{1}{2}\left(A l k+r_{N: \mathrm{O}_{2}} \mathrm{O}_{2}\right)
$$

$\left.\frac{1}{2}\left(A l k+r_{N: \mathrm{O}_{2}} \mathrm{O}_{2}\right)\right)$. This permits us to define a new
tracer C^{*},

$\begin{gathered}0 L \\ 0\end{gathered}=\left(\left({ }^{6} \mathrm{O}\right) \mathrm{I}^{z} \mathrm{O}: N_{l}+(y / \mathrm{F}) \mathrm{I}\right) \frac{Z}{\mathrm{I}}-\left({ }^{6} \mathrm{O}\right) \mathrm{I}^{\varepsilon} \mathrm{O} \div \Omega-(D) \mathrm{I}$

 air sea equilibrium for the outcrops of 28 isopycnal sur-

 e mo *D

Calculating the Anthropogenic CO_{2}
the best ones currently available

 coverage and treatment of the mixing problem, gener which encompasses all previous ones with regard to dala

 ratio is nearly constant at all depths throughout the higher at -172 and -175 , respectively, and that this
 : 103: -138). Takahashi et al. [1985a], Broecker et
al. [1985b], and Peng and Broecker [1987] concluded been proposed to the "traditional" $P: N: C_{\text {org }}: O_{2}$
stoichiometric ratios of Redfield et al. $[1963](1: 16$ been proposed to the "traditional" $P: N: C_{o r g}: O_{2}$ ratios have been the subject of an intense scientific de-
 $16 \pm 1: 117 \pm 14:-170 \pm 10$ and approximately inde-
pendent of depth and ocean basin. These stoichiometric they found that these ratios are $P: N: C_{\text {org }}: \mathrm{O}_{2}=1$ using a nonlinear inverse method on neutral surfaces

 rium with the atmospheric CO_{2} for the time when the sccond metrod to determine ΔC dis eq. If the age of a
water parcel is known, the C concentration in equilib ters in the Greenland and Norwegian Seas we employ a
sccond method to determine ΔC dis

 pogenic CO_{2} has also penetrated into the wholc watcr
column, as is evident from the presence of bomb trisurfaces gratater han $\left.\sigma_{\theta}=2,0\right)$ because here surfaces in the Greenland and Norwegian Seas (density
surfaccs greatcr than $\sigma_{0}=27.90$ because here anthro out anthropogenic CO_{2} can be found. It also fails for

 isopycnal surface interval in the region without anthro where $\left.\Delta C^{*}\right|_{\sigma=\text { const }}$ represents the mean ΔC^{*} of the $\Delta C_{\text {dis eq }}=\left.\overline{\Delta C^{*}}\right|_{\sigma=\text { const }}$ end-member water mass, โ. mined calculate the ef southern and northern end-member waler mass (deter-
mined from $P O_{4}^{*}$ [Broecker et al., 1991]). We therefore regions does not show a significant trend with amount of

 nation. ΔC^{*} in thesc uncontaminatcd regions refine a mixture of the effective air-sea disequilibria据 gions far away from the outcrop, where one can safely
assume that there is no anthropogenic CO_{2} contamivariability of ΔC^{*} on deep ocean density surfaces in re ΔC^{*} method. In the first method we look at the

 Disequilibrium Determining the Effective Nir-Sca information about the apparent age of a water parcel air-sea disequilibrium can be estimated from ΔC^{*} and In the next section we describe in detail how the CO_{2}
($L \mathrm{~L}) \quad \cdot(d)^{\mathrm{ba} \operatorname{sip}} \partial \nabla-{ }_{*} D \nabla={ }^{\text {que }} \partial \nabla$

 $\xrightarrow[N]{N}$
for $\Delta C_{\text {dis eq }}^{\prime}$ into (17) for $\Delta C_{\text {ant }}^{Y}$ yields

 Study (TIO NAS, 1980). These data were obtained
by the Woods Hole Oceanographic Institution Helium рәu!eqqo әIəm еұер asəчL •(086I 'SVN OLL) крп7S रॉuo əाqeiese suotpes have tritium and helium observations available only We are able to determine the ${ }^{3} \mathrm{H}-{ }^{3} \mathrm{He}$ age and ΔC_{t}^{*} priate units (tritium units) and λ is the tritium decay
constant ($1.77 \cdot 10^{-9} \mathrm{~s}^{-1}$). where the brackets denote the concentrations in appro-
priate units (tritium units) and λ is the tritium decay where the brackets denote the concentrations in appro- helium-3 ${ }^{3}{ }^{3} \mathrm{He}$) measurements to calculate the tritium
helium-3 age ($\tau_{\mathrm{T} / \mathrm{He}}$) following the method of Jenkins termine $-3\left({ }^{3} \mathrm{He}\right)$ measurements to calculate the tritium 11/CFC $12,{ }^{228} \mathrm{Ra} /{ }^{226} \mathrm{Ra}$ and tritium hclium 3) to decombination that contains water age information (CFC
 surface under consideration.
 (0б)
-
$\bigcirc-$
-8 consideration that the global mean CO_{2} air-sea dis

 әұеu!

 make to determine $\Delta C_{\text {dis eq }}$ are problematic and have

 age and measurements of the standard hydrographic
parameters, for example, temperature, salinity, phos-
 $\Delta C_{\text {dis eq }}$ we excluded observations above 100 m depth, the National Oceanic and Atmospheric Administration characteristics is given in Table 1. For the analysis of ward of the wintertime outcrops as determined from in the deep ocean and in the Greenland and Norwe- photic layer, which is on average about 50 to 100 m
gian Seas. A summary of the chosen surfaces and their deep. We furthermore removed all stations lying pole-
UNADW, North Atlantic Deep Water; LSW, Labrador Sea Water; DSOW, Denmark Strait Overflow Water;
ISOW, Iceland-Scotland Overflow Water. a Depth range of the surface south of the steeply sloping region leading to the outcrop.
${ }^{\text {un }}$ NADW, North Atlantic Deep Water; LSW, Labrador Sea Water; DSOW, Denmark Strait Overflow Water;

28.04	$28.02-28.06$
28.08	$28.06-28.10$

$\begin{array}{ll}0 & 0 \\ \infty & \infty \\ \infty & 0 \\ \infty & 1 \\ \\ \\ 0 & 0 \\ \infty & 0 \\ 8 & 0 \\ 1 & 1 \\ 1 & 0 \\ \infty & 0 \\ 0 & 0\end{array}$
N
∞
8
8

0
0
0
1
1
0
0
0
$\begin{array}{ll}86.2 Z-76.2 Z & 96.2 Z \\ 66.1 z-06.1 z & z 6.2 Z\end{array}$
45.950
45.900
45.925
45.850
45.875
45.825

$\stackrel{\infty}{\infty}$
$\dot{\sigma}_{\circ}^{\infty}$

10
04
0.0
0.0
σ_{0} Surfaces

q sassen JəıpM	uoụadụasə		[ел.адй әпјелр!̣л
	ustulura	e ${ }^{\text {ar }}$	

 अ0\%

 the South Atlantic Ventilation Experiment (SAVL) pro-
gram (1987 1989) $[O D F, 1992 \mathrm{a} ; ~ O D F, 1992 \mathrm{~b}$, Taka-
 sient Tracers in the Ocean Tropical Atlantic Study
 the Ocean North Atlantic Study (TTO NAS) program
 Geochemical Occan Section Study (GEOSECS) pro-

Data Considerations the 28 density surfaces.

0	モ	ζ	0	0	78	ஏ	9	002	00%
0	9	ε	0	0	92	9	6	6.91	OGT
0	OL	¢	0	0	89	IT	LI	I'ZI	001
0	LI.	8	0	0	97	61	0ε	[6	09
0	¢z	0 I	0	0	0	97	07	6.2	0
$\underset{، z_{O}: N, u_{D}}{\%}$		$\stackrel{\%}{\langle\sqrt{2} / V u}$	$\begin{gathered} \frac{\%}{{ }_{3}} \\ { }_{3}^{2} O_{0} \end{gathered}$	$\stackrel{\%}{{ }^{\%} z_{O v}}$		$\stackrel{\%}{{ }^{b 2}+D o}$	$\begin{aligned} & \% \\ & \% 0 \end{aligned}$		$\begin{gathered} \text { [-8y pount } \\ 60 \mathrm{O} \end{gathered}$

certainties given by Anderson and Sarmiento $\lceil 1994\rceil$. signal to noise (error) ratio of $\Delta C_{\text {ant }}$ is therefore ≈ 5.

 ${ }_{\tau}\left\{{ }^{b x} \rho \rho-\right\}+{ }_{a}\{\rho \rho\}$

given by and uncorrelated. The error of $\Delta C^{*}\left(\sigma_{\Delta C^{*}}\right)$ is then and that therefore the associated errors are independent

 our technique for finding $\Delta C_{\text {ant }}$. We neglect the very $\left(\sigma_{O_{2}^{\text {sat }}}\right)$. We assume for the moment that systematic er-
rors are relatively small and partially accounted for by

air-sea disequilibrium by the first ΔC^{*} method. These Furthermore, most of the stations used in the tropics lic
 ΔC^{*} and ΔC_{t}^{*} Results and Discussion
uncertainty of this stoichiometric ratio

 with the largest contribution coming from $\sigma_{A l k^{0}}$ and

 errors dre larger, hey do not alfect our anthropogenic
CO_{2} results, since $\Delta C_{\text {ant }}$ is calculated by difference of
 -әр әч7 U! sə!
 tematic origin. We show in the appendices that these pendent. However, some of the errors might be of sysIt was assumed above, for estimating the uncertainty

 28.06, which occurs only in the Greenland and Norwe-
gian Seas.

 Water [McCartney and Talley, 1982], and the σ_{2} inerage depth 700 m) which represents the Subpolar Mode (average depth 500 m), the σ_{θ} interval 26.95-27.25 (av-

 well outside the region affected by this western bound-
ary undercurrent. stant values within the uncertainties of the scatter of
the data. This near constancy of ΔC_{t}^{*} also confirms our

ΔC and $\Delta C,[\mu \mathrm{~mol} \mathrm{~kg}]$

ΔC^{*} and $\Delta C^{\prime},\left[\mu \mathrm{m} . \mathrm{m}^{\prime} \mathrm{kg}^{\prime \prime}\right]$

	-
¢Г¢ pue quodit oṭory	
	S
(noq jo	
!	
กれ!	re\|
28	

${ }^{\mathrm{b}}$ Calculated from $\bar{T}, \bar{S}, \overline{A l k^{0}}$, and $\Delta C_{\text {dis eq }}$ using thermodynamic relationships.

[^0]chosen stiffness parameter p is also shown.

al. [1995, Table 1]. Figure 7 shows very good agree$\Delta \mathrm{fCO}_{2}$ (months December-February) by Takahashi et $\Delta \mathrm{fCO}_{2}$ with the direct wintertime observations of
 lated $\Delta f \mathrm{CO}_{2}$, which belong to a density surface out-

 appendix A were employed. In order to calculate zonal 3). The same thermodynamic relationships as used in Alk along the investigated density surfaces (see Table the mean values of temperature, salinity, and preformed tenl with what we know from direct observations of
$\Delta f \mathrm{CO}_{2}$? We calculated $\Delta f \mathrm{CO}_{2}$ from $\Delta C_{\text {dis eq }}$ and Is this pattern of CO_{2} air-sea disequilibrium consis smaller $\Delta C_{\text {dis eq }}$ than the deep waters in these basins. in the middle NADW that these intermediate waters in
the Greenland and Norwegian Seas must have a much uniform and relatively low air-sea disequilibrium found
in the midde NADW that these intermediate waters in tigated in more detail, one can conclude from the near
 are not the product of deep convection but of interme
diate water formation north of the Greenland-Scotland flow Waters), which form the source waters for NADW and on Faroer Bank Channel (Iceland Scotland Overmark Strait, Overflow Waters), on Iceland-Faroer Ridge waters overflowing the sills in the Denmark Strait (I)enout enough time for CO_{2} equilibration. However, the surface waters and subsequent deep convection withbasins a very large $\Delta C_{\text {dis eq }}$ in the range of -36 to -56
$\mu \mathrm{~mol} \mathrm{~kg}^{-1}$, which is probably duc to rapid cooling of Seas [Swifl, 1984a]. We find for the deep waters in these source region mainly in the Greenland and Norwegian
Seas [Swifl, 1984a]. We find for the deep waters in these mo jo भәәц ұиәриәdәри! s!̣ц 'suo!̣елләsqo әपд рие

 strong increase of $\Delta f \mathrm{CO}_{2}$ north of $60^{\circ} \mathrm{N}$. However, we

 ment between our estimated $\Delta f \mathrm{CO}_{2}$, based on data

 eas pureurain aut iof sieaß LL qnoqe fo ase unifou

 In the latitude belts north of $60^{\circ} \mathrm{N}, \Delta C_{\text {ant }}$ shows high

 dent from the increase of $\Delta C_{\text {ant }}$ at 1000 m and the
progressively greater depth at which $\Delta C_{\text {ant }}$ gnes below CO_{2} penetrates more and more deeply, which is cvi
dent from the increase of ΔC at 1000 m and the about 2000 m . Going northward, the anthropogenic decreases downward from the surface to about $10 \mu \mathrm{mo}$
kg^{-1} at 1000 m depth and to below $2 \mu \mathrm{~mol} \mathrm{~kg}^{-1}$ at In the latitude belt from $10^{\circ} \mathrm{N}$ to $20^{\circ} \mathrm{N}, \Delta C_{\text {ant }}$ rapidly the temperature sensitivity of the CO_{2} solubility and kg^{-1} of anthropogenic CO_{2} and the warm waters ($>$
$20^{\circ} \mathrm{C}$) to contain more than $40 \mu \mathrm{~mol} \mathrm{~kg}$
 thropogenic atmospheric CO_{2} increase, we expect the considerations. If the ocean follows more or less the an-
 40 to $50 \mu \mathrm{~mol} \mathrm{~kg}^{-1}$ in the low latitudes and around
$30 \mu \mathrm{~mol} \mathrm{~kg}{ }^{1}$ in the high latitudes. This is in agree

 seven latitude belts from $10^{\circ} \mathrm{N}$ to $80^{\circ} \mathrm{N}$ within the North

Distribution of Anthropogenic CO_{2} in the North
Atlantic
of 1982 .
dimensional model of Stocker et al. [1994]. The model results are the average values for the year

GRUBER ET AL: ANTHROPOGENIC CO_{2} IN THE OCEAN
more rapidly with inceasing 1000 m , large differences exist between high and Recent advancement in the understanding of the lowe
 $5^{\circ} \mathrm{N}$ to $80^{\circ} \mathrm{N}$ in the western Atlantic (see Figure 2 low latitudes. The southward spreading of relatively
approximately $30^{\circ} \mathrm{N}$. (a) observations along the line shown in Figure 2 and (b) results from the Figure 10. Zonal sections of $\Delta C_{\text {ant }}\left(\mu \mathrm{mol} \mathrm{kg}{ }^{-1}\right)$ from $80^{\circ} \mathrm{W}$ to $10^{\circ} \mathrm{W}$ in the North Atlantic a

Depth ma

Depth [m]

 1992].

 qou sị sdund әqeuoqieכ pue dund anss!t-7jos әЧ7 fo not involved in biological processes, the representation ssentially be treated as a conservative tracer which is carbon cycle. However, since anthropogenic CO_{2} can The two models differ in their representation of the soft-tissue pump, and the carbonate pump.

 taken as the reference alkalinity instead of the ocean
 described by Stocker et al. [1994], since the surface inorganic carbon model differs slightly from the mode circulation (state A) is used for the simulations. The
 $40^{\circ} \mathrm{S}$. An inorganic carbon cycle model has been added
representing the solubility pump. The "best tuned" $40^{\circ} \mathrm{S}$. An inorganic carbon cycle model has been added by three ocean basins (Atlantic, Pacific, and Indian)
which are connected via a Southern Ocean south of
 'I'he 2.5-dimensional SBW model is a zonally averet al. $[1995](\mathrm{SML})$.

of anthropogenic CO_{2} in concentrations.

 main thermocline to a depth of about 3000 m (Figure tion of anthropogenic CO_{2} in upper NADW below the 1992, Figures 5 and 6]. Note also the large accumulais at its deepest at these latitudes [Sarmiento et al. ported by Ekman transport to the subtropical gyre
where it, accummlates in the main thermocline, which which are dominated by upwelling, is laterally trans-

> Table 5. Comparison of the Estimated Water Column Inventory of Anthropogenic CO_{2} in the North Atlantic
With Estimates From the Sarmiento et al. [1995] (SML) Three-Dimensional Model for the Year 1982 by Latitude Comparison of the Estimated Water Column Inventory of Anthropogenic CO_{2} in the North Atlantic

 ing for the underprediction in the thermocline.

 gression of anthropogenic CO_{2} bearing NADW. In the

 necessary to account for the high anthropogenic CO_{2} by an increased horizontal diffusion. Our result here process in the 2.5 -dimensional model is parameterized than in the SML model. The thermocline ventilation
 model does not show such a depression of $\Delta C_{\text {ant }}$ in the
thermocline of the temperate latitudes, but the defi-

 that Chis artificial upwelling might be due to the strictly weiler et al., 1989b, p. 8249]. Veronis [1975] pointed out

（uษ่u）It	$1 \cdot 17$,	6%	（чеәш） 88	L．81	$0 \cdot 1$ \％	
¢て	$\varepsilon \cdot$	$9{ }^{\circ}$	06	$\ddagger \mathrm{C}$	0 c	No08－${ }_{\text {No69 }}$
伍	$9 \cdot 2$	¢゙もI	¢7	92		Noz9－No98
$8 \pm$	\＆il	$0 \% \%$	¢8	$8{ }^{\circ}$	キ・レて	No98－No6
z＿w \cap［our Клоұиәли！ oழ！oods			 ‘Клониәлиі əypoods	$\begin{gathered} 075 \\ \text { ‘रхоұшәлшI } \end{gathered}$		
suopreadisy			Itpow Mas			

 ร！

 Figure 11．Comparison between observed and $O G C M$－
calculated specific inventories of anthropogeric CO_{2} in

tact with the atmosphere. First, there is a possibility equilibrium at the time a water parcel was last in conusing different methods to estimate the CO_{2} air-sea dis Our method can be moditied and extended easily, by tant differences, mostly related to known deficiencies in
 North Atlantic is excellent $(18.7 \mathrm{Gt} \mathrm{C}$ and 18.4 Gt C of the total inventory in the investigated region in the
 performance of two ocean models of different complexity
(2.5-dimensional and three-dimensional model) to esti-
 NADW. We estimate a North Atlantic anthropogenic
CO_{2} inventory from $10^{\circ} \mathrm{N}$ to $80^{\circ} \mathrm{N}$ of $20 \pm 4 \mathrm{Gt} \mathrm{C}$. NADW. We estimate a North Atlantic anthropogenic
 tration is small in the subtropical and temperature latiHighest concentrations of anthropogenic CO_{2} are found
in the shallow subtropical thermocline. Vertical peneHighest concentrations of anthropogenic CO_{2} are found
 anthropogenic CO_{2} distribution in the North Λ tlantic
obtained in this way reflects the pathways of ocean up$\partial \mathrm{LL}^{2} \varepsilon 86 \mathrm{~L}$ of 186 L u! səs!nxo SVL pue SVN OLL $ә \mathrm{q}$ We applied this method to carbon and other tracer
data from the North Atlantic Ocean sampled as part of permits us then to identify the anthropogenic CO_{2} sig-
nal. in reconstruct, the effective air-sea disequilibrium. 'Jhis

 for deep potential density surfaces not entirely affected equilibrium can be estimated directly from the interio rium has nol changed over time, the effective air-sea dismoved. Assuming that the ocean has been operating in
a steady state and that the effective air-sea disequilib of the soft-tissue and carbonate pumps have been re-
moved. Assuming that the ocean has been operating in of oxygen and alkalinity end-members, since the effects the atmosphere, plus residual effects due to our choice

 of anthropogenic CO_{2} does not lead to any calcite or
 face waters are highly supersaturated with respect to calcite and aragonite, respectively. However, since surkalinity in the oceans. The invasion of anthropogenic
CO_{2} affects the degree of equilibrium between C and
 Our estimate of preformed Alk assumes that the an Preformed Alkalinity

Appendix A: Preformed Concentrations

estimate the uptake of anthropogenic CO_{2}

 where good quality data are already availahle (Atlanti
 coverage (including transient tracers) will cventually
make it possible to calculate a global inventory of an

 The strength of this new method will increase when
 into this region. Second, the rapidly increasing data set
of wintertime measurements of $\Delta \mathrm{CO}_{2}$ can be used to
 agcs, since the tritium-helium method fails in the south to use chlorofluorocarbon observations to derive wale

 Takahashi et al. [1980] discussed in detail the alkalin-

 ing summer conditions. However, studies at time - series
locations in subtropical regions at station " S " and at cruises. These data have been collected primarily durfor the entire surface ocean as covered by the above $11 \mu \mathrm{ea} \mathrm{kg}^{-1}$ (see Figure A1). This relationship holds
 where S and $P O$ are in the appropriate units (practi-
cal salinity units and micromoles per kilogram, respec-
 the following relalionship:
 tropical Underwater) is affected. over 2400μ mol kg
Allaulic, and therefore only a small water mass (Subhigh alkalinity concentrations. However, alkalinities of
over 2400μ mol kg^{-1} occur only in the subtropical South multiple regression underpredicts the alkalinity at very

 אท!u!

 aq feuoseas aumes ayt moys (puepori punoxe suotieqs ters are formed, O_{2} is very close to its saturation value
Time series stalions in the subarctic (station "P" and

pəa!ossṭ ұеч7 ұхәך и!̣u әч7 u! (cI) u! pəunsse әM ${ }^{6}$ О рәи.лодә.л
lem exists in our relationship using $P O$
 rious problems when waters originating from sources

 ue se od fo peałsu! axnұeıaduą pasn sa!pn?s dəұеा pue

 subtropical South Atlantic Ocean, where alkalinity rich Figure Al). These high alkalinities occur only in the

 $\mathrm{ff}]$. Since these waters also have high $P O$, inclusion of of alkalinty rich deep waters produced oy dissolu 312 show a different trend which is caused by the upwelling
of alkalinity rich deep waters produced by dissolution Waters from the Southern Oceans and the North Pacific
show a different trend which is caused by the upwelling
cruises. The dashertainty of $4 \mu \mathrm{~mol} \mathrm{~kg}{ }^{-1}$. Figure A2. Plot of
tration $C_{\text {eq }}(S, T, A l k$) (see (A2)) versus directly calcu-
lated C equilibrium concentration using the full carbon
chemistry equations. These equilibrium concentrations
are for an atmospheric, $f \mathrm{CO}_{2}$ of $280 \mu \mathrm{~atm}$. This plot is
based on surface $(<100 \mathrm{~m})$ temperature, salinity, and
alkalinity data from the GEOSECS, TTO, and SAVE
cruises. The dashed curves represent the the estimated

 and the CO_{2} solubility of Weiss [1974]. The lineariza-
tion of $C_{\text {eq }}$ yields stants for phosphoric acid of Dickson and Riley [1979b],
and the CO_{2} solubility of Weiss $[1974]$. The linearizater of Dickson and Riley [1979a], the dissociation conson [1990], the dissociation constant for water in seawa-
 ity of $280 \mu \mathrm{~atm}$ was first calculated using the dissocia-
tion constants for carbonic acid of Goyet and Poisson tration of C with respect to an atmospheric CO_{2} fugacature, salinity, and alkalinity. The equilibrium concenIn order to keep the definition of ΔC^{*} conservative,
we lincarizc $C_{\text {eq }}$ around ocean mean values of temperCalculation of $C_{\text {eq }}$

 upper limit because it is summer-biased and that the
average deep water formed during the winter season is supersaturation found by Broecker et al. [1985a] is an

data as summarized by Anderson and Sarmiento [1991]:
 Komapstimo [PII.IEךIII were calculated from C and $f \mathrm{CO}_{2}$. We estimate for
$A l k$ a precision of about $\pm 4 \mu \mathrm{eq} \mathrm{kg}^{-1}$. hashi, personal communication, 1995). The Alk data

 The Alk data during the TTO NAS and TAS cruise C it is about $\pm 10 \mu \mathrm{~mol} \mathrm{~kg}{ }^{-1}$ [Brewer et al., 1986]. dof pue ' \quad ixy ban $6 \neq$ qnoqe aq of paqeutise s! eqep

Measurement Methods, Precision, and

Appendix B: Data Considerations When $C_{\text {eq }}$ is used in context of $(15), A l k$ is replaced
$A l k^{0}$

 deviation of the differencc between the linearized equi

 mean difference for all depths is $-3.6 \mu \mathrm{~mol} \mathrm{~kg}{ }^{-1}$ with a between the PCODF $[1986 \mathrm{~b}] \mathrm{TTO} \mathrm{TAS}$ and the CDRG
C datia is approximately the same (Figure A7b). The kg^{-1} (number of samples $(N)=126$). The difference Figure A7a). The mean difference is $3.4 \pm 5.1 \mu \mathrm{mo}$ TTO NAS revised C data and the CDRG data (see [1988], but there is sull a substantial amount of scat-
ter in the difference between the Brewer el al. [1986] pendency that was described by Bradshaw and Brewer revised TTO NAS C data no longer have the depth decation, 1995] were available for the same bottles. The 1992a; $O D F, 1992 \mathrm{~b}, \mathrm{~T}$. Takahashi, personal communisame bottlcs. In the casc of SAVE, C and $A l k$ from
CDRG and from Oceanographic Data Facility [ODF, same bottles. In the casc of SAVE, C and $A l k$ from For TTO NAS and TTO TAS, C data from CDRG
and from Brewer et al. [1986] were available from the of $\pm 2 \mu \mathrm{eq} \mathrm{kg}$
(Lueker et al., submitted manuscript, 1996)
 suisn pәu!uләдәр sem $3 / \mathrm{F} \cdot(966 \mathrm{I}$ 'fdị̀snueu pałt!u istry, 1996)(Hereinafter referred to as Lueker et al., subBermuda, submitted to the Journal of Marine Chemand accuracy of about $\pm 1 \mu \mathrm{~mol} \mathrm{~kg}^{-1}$ (T.J. Lueker el
 sured employing a cryogenic vacuum extraction method munication, 1994). The CDRG C data were mea ide Research Group (CDRG) at the Scripps Institu-
tion of Oceanography (C.D. Keeling, personal com and Alk measurements obtained by the Carbon Diox lantic data by comparing them with the shore-based C We assessed possible inaccuracies of the corrected At
comparison of HYDROS leg 4 with the other SAVE legs leg 2 from the same region also show a systematic off
set of about $12 \mu \mathrm{eq} \mathrm{kg}^{-1}$, as expected (Figure A6b). A leg 2 from the same region also show a systematic off higher than data from HYDROS leg 4 (SAVE leg 6) by
 $22^{\circ} \mathrm{S}$ to $12^{\circ} \mathrm{S}$ and from $20^{\circ} \mathrm{W}$ to $30^{\circ} \mathrm{W}$ and for depths ure A6a shows C versus temperature in the region from problem with the C and $A l k$ data of SAVE leg 2. Fig-

 рие D woy pofe[no[eว uooq sey $47 V$ GAVS oyt oou!s
 below 3500 m shows a significant systematic difference

In summary, carbon data:

 (except leg 1 and 2) and the corrected TTO TAS data
 whereas below 1500 m the difference is $-2.9 \mu \mathrm{~mol} \mathrm{~kg}{ }^{-1}$ be systematically lower by approximately $8 \mu \mathrm{~mol} \mathrm{~kg}^{-1}$ SAVE and the CDRG C data. The upper ocean Taka-
hashi (personal communication, 1995) C data seem to
 Figure A7c shows the difference between the cor-
rected (T . Takahashi, personal communication, 1995) difference is close to the measurement accuracy of these
data.
 $\mu \mathrm{mol} \mathrm{kg}$
tematic difference at the 5% confidence level, we applied $\begin{array}{ll}\mu \mathrm{mol} \mathrm{kg} \\ -1 \\ \text { tematic difference at the } 5 \% & \mathrm{~N}=20) \text {. Although this is a significant sys- }\end{array}$ The mean difference for all depths is found to be -5.1

 рие D G ⿹勹VS pue 'SVL OLL'SVN OLL әчұ шәәмұәq

depth [m]

 Brewer, P., A. Bradshaw, and R. Williams, Measurements of

 Brewer, P., G. Wong, M. Bacon, and D. Spencer, An oceanic Brewer, P. G., Direct observation of the oceanic CO_{2} in
crease, Geophys. Res. Lett., $5(12)$, $997-1000,1978$.

 tolyte(s), Mar. Chem., 23, 69-86, 1988 .
Bradshaw, A. L., P. G. Brewer, and D. K. Shafer, Measure-
 Bradshaw, A. L., and P. G. Brewer, High precision measure
 moṭdumsuoo wəsKx Bainbridge, A., Sections and Profiles, 1972-1973,
GEOSECS Atlantic Expedition, vul. 2, U.S. Gov. Print
Off., Washington, D.C., 1981b. 'eโ86I 'D' 1 'uoqsut

References

Foundation (OCE-9402633) and by the U.S. Department
Energy under contract DE-FG02-90ER61052.

 cle. We appreciate the efforts of M. Bender who served as
editor for this article. T.F.S. and N.G. were supported by
 biogeochemistry model. We thank F . Joos for valuable dis-
cussions during the preparation of this paper. Reviews by for providing the code and results of the Princeton OGCM
 Information Analysis Center (CDIAC) in providing many Thank goes also to Roger Fink for sharing his carbon chem-
istry routines. The work of the Oak Ridge Carbon Dioxide

 pend so heavily upon. We thank C.D. Keeling for providing
us his unpublished C and $A l k$ measurements in the Atlantic possible without the careful and painstaking work of the
scientists and personnel on the ships during the GEOSECS,
TTO, and SAVE programs collecting the data that we deAcknowledgments. This study would not have been
ossible without the careful and painstaking work of the

Doney, S., and W. Jenkins, Ventilation of the deep western
boundary current and abyssal Western North Atlantic
Estimates from tritium and ${ }^{3}$ He distributions, J. Phys
Oceanogr., 24, $638-659,1994$.
Emerson, S., Seasonal oxygen cycles and biological new proDickson, R. R., and J. Brown, The production of North
Atlantic Deep Water: Sources, rates, and pathways, J.
Geophys. Res., $99(\mathrm{C} 6), 12319-12341,1994$.
 Dickson, A. G., and J. Riley, The estimation of acid disso
ciation constants in seawater media from potentiometric titrations with strong base, I, The ionic product of wate
-Kw, Mar. Chem., 7, 89 99, 1979a.
Dickson, A. G., and J. Riley, The estimation of acid disso Dickson, A. (x., and J. Riley, The estimation of acid disso-
ciation constants in seawater media from potentiometric
 Dickson, A. G., Thermodynamics of the dissociation of boric role of mesoscale tracer transports in the global ocean Danabasoglu, G., J. C. McWilliams, and P. R. Gent, The Craig, H., W. Broecker, and D. Spencer, Sections and Pro
flcs, $1979-1974, G E O S E C S$ Pacific Expedition, vol. 4
U.S. Gov. Print. Off., Washington, D.C., 1981 .
 Greenland Seas, Deep Sea Res., 37(9), 1455-1473, 1990.
Chen, C.-T. A., S.-L. Wang, and A.S.Bychkov, Carbonate Chen, C.-T. A., E. P. Jones, and K. Lin, Wintertime to-
Greenland Seas, Deep Sea Res., $37(9), 1455-1473,1990$. titration alkalinity oxygen system in the Pacific Ocean
Nature, 281, 362-365, 1979 . Chen, C.-T. A., and R. M. Pytkowicz, On the total CO_{2}
titration alkalinity oxygen system in the Pacific Ocean
 Chen, C.-T. A., The oceanic anthropogenic CO_{2} sink,
Chemosphere, 27(6), 1041-1064, 1993 . Chen, C.-T. A., On the distribution of anthropogenic
CO_{2} in the Atlantic and Southern Oceans, Deep Seo cles, $5(1), 87-117,1991$

 иолу раэпрәр se s.əәрем шеәวо-dәәр јо suianาed мон pue
 contemporary ocean: An evaluation, Tech. Rep. TRO 20
U.S. Dep. of Energy, Washington, D.C., 1985a.

 isades, N.Y., 1982.
Broerker, W.S., D.
 Broecker, W. S., Keeping global change honest, Globa
Biogeochem. Cycles, $5(3), 191-192,1991$.

 Broecker, W. S., 'NO', a conservative water-mass tracer
Earth Planet. Sci. Lett., 23, 100-107, 1974.

 and the Western Americas, Geophys. Monogr. Ser., vol.
55 , edited by D.H. Peterson, pp. 305-363, AGU, Wash-
ington, D.C., 1989 .
 mensional model of atmospheric CO_{2} transport based on
observed winds, 4 , Mean annual gradients and interannual Keeling, C. D., S. C. Piper, and M. Heimann, A three di-ORNL/CDIAC-65, pp. 16-26, Carbun Diuxide Inf. Anal.
Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn., 1994. by T. Boden, D. Kaiser, R. Sepanski, and F. Stoss, Rep.
$O R N L / C D I A C-65$, pp. 16-26, Carbou Diuxide Inf. Anal.
 Keeling, C. D., and T. Whorf, Atmospheric CO_{2} records
from sites in the SIO air sampling network, in Irends Global Carbon Cycle, edited by M. Heimann, pp. 413-430,
Springer-Verlag, New York, 1993 .

 Kawase, M., and J. L. Sarmiento, Nutrients in the Atlantic Jenkins, W. J., and J. Coldman, Seasonal oxygen rycling
and primary production in the Sargasso Sea, J. Mar.
 Jenkins, W. J., ${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}$ in the Beta Triangle: Obscrva-
tions of gyre ventilation and oxygen utilization rates, J. acid dissociation constants in seawater as a function of
temperature and salinity, Deep Sea Res., $36(11), 2635-$
$1654,1989$. Goyet, C., and A. Poisson, New determination of carbonic actions, edited by J. Willebrand and D. L. T. Anderson
pp. 271-297, Springer Vorlag, Ncw York, 1993 .
Goyet. C. and A. Poisson, New determination of carbonic Goyet, C., and P. G. Brcwer, Biochcmical propertics of the rep., Part II, ocean depths, Rand Corp., Santa Monica,
Calif., 1975 . Gates, W., and A. Nelson, A new (revised) tabulation of the U.S. Natl. Rep. Int. Union Geod. Geophys. 1991-1994,
Rev. Geophys., 33, 1353-1365, 1995 .

 Enting, I. G., C. M. Trudinger, and R. J. Francey, A synthe-
 J. Geophys. Res., 92(C6), 6535-6544, 1987.
Emerson, S., P. Quay, C. Stump, D. Wilbur, and duction in surface waters of the subarctic Pacific Ocean,
J. Geophys. Res., $92(\mathrm{C} 6), 6535-6544,1987$. $661-677,1995$.
Minster, J., and M. Boulahdid, Redfield ratios along Neftel, A., H. Friedli, E. Moor, H. Lötscher, H. Oeschger
U. Siegenthaler, and B. Stauffer, Historical CO_{2} record isopycnal surfaces - A complimentary study, Deep Sea tem in the oceans, Geochim. Cosmochim. Acta, 59(4),
$661-677,1995$. T. Buden, D. Kaiser, R. Sepaunski, and F. Sluss, Rep.
ORNL/CDIAC-65, pp. 11-14, Carbon Dioxide Inf. Anal.
Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn., 1994. Oceanographic Data Facility (ODF), South Atlantic Venti lation Experiment (SAVE), Chemical, Physical and CTD
Data Report, Legs 1-3, Scripps Inst. of Oceanogr., La
Jolla., Calif., 1992a. Compendium of Data on Global Change, edited by J. Siegenthaler, and B. Stauffer, Historical CO_{2} record
rom the Siple station ice core, in Trends '93: A Peng, 'I'.-H., and W. S. Broerker, C/P ratios in marine
detritus, Global Biogeochem. Cycles, $1(2), 155-161,1987$. ceanographic Data Facility (ODF), South Atlantic Venti-
lation Experiment (SAVE), Chcmical, Physical and CTD
Data Report, Legs $4-5$, Scripps Inst. of Oceanogr., Ta. lantic Study, Shipboard Physical and Chemical Data Re-
port, Scripps Inst. of Oceanogr., La Jolla, Calif., 1986 an .
Physical and Chemical Occanographic Data Facility (PCODF), Transient Tracers in the Ocean: North Athysical and Chemical Oceanographic Data Facility Quay, P. D., B. Tilbrook, and C. S. Wung, Oceanic uptake of
fossil fuel $\mathrm{CO} \mathrm{O}_{2}$: Carbon-13 evidence, Science, 256, 74-79,
1992 . Poisson, A., and C.-T. A. Chen, Why is there so little anlantic Study, Shipboard Physical and Chemical Data Re-
port, Scripps Inst. of Oceanogr., La Jolla, Calif., 1986b.
Poisson, A., and C.-T. A. Chen, Why is there so little an(PCODF), Transient. Tracers in the Ocean: Tropical At-
lantic Study, Shipboard Physical and Chemical Data Re(PCODF), Transient Tracers in the Ocean: Tropical AtRodriguez, J., 1993, Beiträge zur Verteiluny von ${ }^{39} \mathrm{Ar}$ im
Atlantik, Ph.D. thesis, Univ. of Bern, Bern, Switzerland.
Rooth, C., and H. Ostlund, Penetration of tritium into the The Sea, vol. 2, edited by M. N. ITill, pp. 26-77, Wiley-
Interscience, New York, 1963 . Redfield, A. C., B. H. Ketchum, and F. A. Richards, The
influence of organisms on the composition of sea-water, in uay, P. D., B. Tilbrook, and C. S. Wung, Oceanic uptake of
fossil fuel CO C_{2} : Carbon-13 evidence, Science, 256, $74-79$, thropogenic CO_{2} in the Antarctic Bottom Water?, Deep
Sea Res., $7,1255-1275,1987$. Sarmiento, J. L., C. G. H. Rooth, and W. Roether, The
North Atlantic tritium distribution in 1972 , J. Geophys.
Res., $87(\mathrm{C} 10), 8047-8056,1982$.
Sarmiento, J. L., J. C. Orr, and U. Siegenthaler, A perSarmiento, J. L., and E. T. Sundquist, Revised budget for
the oceanic uptake of anthropogenic carbon dioxide, $N a-$
ture, $356,589-593,1992$. Atlantic thermoclinc, Dccp Sca Rcs., 19, 481-492, 1972.
armiento, J. L., and E. T. Sundquist, Revised budget for
the oceanic uptake of anthropogenic carbou dioxide, ooth, C., and H. Östlund, Penetration of tritium into the
 Sarmiento, J. L., R. Murnane, and C. LeQuéré, Air-sea CO_{2}
transfer and the carbon budget of the North Atlantic,
Philos. Trans. R. Soc., London, B, $348,211-219,1995$.
chimel, D., I. Enting, M. Hcimann, T. Wigley, D. Raynaud, Schimel, D., I. Enting, M. Hcimann, T. Wigley, D. Raynaud,
D. Alves, and U. Siegenthaler, Chapter CO_{2} and the car-
bon cycle, in Climate Change 94, Radiative Forcing of Climate Change, pr. 38-71, Intergov. Panel on Clim. Change,
1994. (Available from Cambridge Univ. Press, New York.) Schlosser, P., G. Bönisch, B. Kromer, H. Loosli, R. Bühler,
R. Bayer, G. Bonani, and K. Koltermann, Mid-1980s
distribution of tritium, ${ }^{3} \mathrm{He},{ }^{14} \mathrm{C}$, and ${ }^{39} \mathrm{Ar}$ in the Green-
land/Norwegian seas and the Nansen Basin of the Arctic
Ocean, Progr. Oceanogr., $35,1-28,1995$. R. Bayer, G. Bonani, and K. Koltermann, Mid-1980s
distribution of tritium, ${ }^{3} \mathrm{He},{ }^{14} \mathrm{C}$, and ${ }^{39} \mathrm{Ar}$ in the Green-
land/Norwegian seas and the Nansen Basin of the Arctic
Ocean, Progr. Oceanogr., $35,1-28,1995$. 'I-H and W S Rroest C/P
(Received January 19, 1996; revised April 29, 1996;
accepted May 20, 1996.)
N. Gruber and T.F. Stocker, Climate and Environmental
Physics, Physics Institute, University of Bern, Sidlerstr. 5,
3012 Bern, Switzerlaud (e-mail: gruber@climate.unibe.ch;
stocker@climate.unibe.ch)
J.L. Sarmiento, Program in Atmospheric and Oceanic Sci-
ences, Princeton University, Princeton, NJ 08544 (email:
jls@splash.princeton.edu)

Weiss, R., J. Bullister, R. Gammon, and M. Warner, Atmo
spheric chlorofluoromethanes in the deep equatorial At
lantic, Nature, $314,608-610,1985$. graphion, vol. 5, U.S. Gov. Print. Off., Washington, D.C.
pedition.
1983 . Weiss, R., W. Broecker, H. Craig, and D. Spencer, Hydro-
graphic Data 1977-1978, in (íGOSFCS Indian. Ocean FA, Weiss, R., Carbon dioxide in water and seawater: The sol-
ubility of non-ideal gas, Mar. Chem., 2, 203-215, 1974 . ries, OOSDP Background Rep., 5, Ocean Obs. Syst. Dev.
Panel, Texas A\&M Univ., College Station, Texas, 1995. and W. S. Broecker, pp. 99-110, AGU, Washington, D.C.,
1985 . mosperic CO_{2} : Natural Variations Archean to Present,
Geophys. Monogr. Ser., vol. 32, edited by E. T. Sundquist
and W. S. Broecker, pp. $99-110$, AGU, Washington, D.C., ysis of relative strengths and efficiencies in ocean-driven
atmospheric CO_{2} changes, in The Carbon Cycle and AtVolk, T., and M. I. Hoffert, Ocean carbon pumps: Analical Models of the Ocean Circulation, pp. 133-146, Nat. pothesis on the missing 1993.

 Toggweiler, J. R., K. Dixon, and K. Bryan, Simulations of
radiocarbon in a coarse-resolution world ocean model, 2,

 Thiele, G., and J. L. Sarmiento, Tracer dating and ocean
ventilation, J. Geophys. Res., $95(\mathrm{C6}), 9377-9391,1990$. constraints on the global atmospheric CO_{2} budget, Sck-
ence, $247,1431-1438,1990$.

[^0]: Table 3. Mean Values of Temperature, Salinity, Preformed $A l k, \Delta C_{t}^{*}$, and calculated $\Delta f \mathrm{CO}_{2}$ on Potential
 Density Surfaces in the North Atlantic

