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AN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIMPROVED METHOD OF COLLOCATION FOR THE STRESS ANALYSIS 

OF CRACKED PLATES WITH VARIOUS SHAPED BOUNDARIES" 

By J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC .  Newman, Jr. 

Langley Research Center 

SUMMARY 

An improved method of boundary collocation was developed and applied to the two-

dimensional s t r e s s  analysis of cracks emanating from, or in the vicinity of, holes or  

boundaries of various shapes. The solutions, presented in t e rms  of the stress-intensity 

factor, were based on the complex variable method of Muskhelishvili and a modified 

boundary-collocation method. The complex-series s t r e s s  functions developed for  simply 

and multiply connected regions containing cracks were constructed so that the boundary 

conditions on the crack surfaces are satisfied exactly. The conditions on the other 

boundaries were satisfied approximately by the modified collocation method. This 

improved method gave more rapid numerical convergence than other collocation tech­

niques investigated. 

INTRODUCTION 

In the life of a structure subjected to cyclic loads, cracks may initiate a t  and propa­

gate from geometric discontinuities (holes, cut-outs, edges, o r  flaws). In designing 

structures for  fatigue and fracture resistance the s t resses  around these s i tes  must be 

calculated if  unexpected failures a r e  to be avoided. In recent years  the use of high-

strength (crack sensitive) materials for greater structural efficiency has resulted in a 

series of aircraft  service failures due to the presence of small  cracks.  The rates at 

which these cracks propagate and the size of the crack that causes failure are strongly 

influenced by the shape of the discontinuity and the type of loads applied near it.  

The crack-tip stress-intensity factor (restricted to  small-scale yielding) can 

account for  the influence of component configuration and loading on fatigue-crack growth 

* 
The information presented herein is based in part  upon a thesis entitled "Stress 

Analysis of Simply and Multiply Connected Regions Containing Cracks by the Method of 
Boundary Collocation," offered in partial fulfillment of the requirements for  the degree of 
Master of Science, Virginia Polytechnic Institute, Blacksburg, Virginia, May 1969. 



and static strength (refs. 1 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4). Many investigators (refs. 5 to 12) have obtained theo­

retical stress-intensity factors for  cracks growing near s t r e s s  concentrations or  

boundaries. However, for cracks in  complicated structures,  stress-intensity factors can­

not always be obtained by closed-form analytical methods. They a r e  often obtained by a 

ser ies  solution (such as boundary collocation) which, to be useful, should converge rapidly 

to the proper answer. 

The objective of this paper is to present an improved method of collocation for 

calculating the influence of various boundary shapes on the stress-intensity factor in two-

dimensional linear elastic bodies and to apply this method to a number of boundary-value 

problems involving cracks.  

Stress-intensity factors were calculated for  cracks emanating from a circular hole 

in an infinite plate and cracks emanating from a circular hole in a finite plate, a crack 

near two circular holes in an infinite plate, a crack emanating from an elliptical hole in 

an infinite plate, and a crack in a finite plate. These configurations were subjected to 

either internally or externally applied loads. 

SYMBOLS 

An,%,Cn,Dn coefficients in the complex s t r e s s  functions 

a half crack length 

b half axis of the elliptical hole perpendicular to the plane of the crack 

C. D.
In' In 

coefficients for jth pole in the complex s t ress  functions 

C half axis of the elliptical hole, in the plane of the crack 

d distance from the centerline of the crack to the center of the circular hole 

F stress-intensity correction factor 

F X , F Y  resultant force per unit thickness acting in the x and y directions, 

r espectively 

Fsn ,Gsn sth influence function for nth coefficients 

f,g resultant forces and displacements 
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specified resultant forces  or displacements on the boundary 

height of rectangular plate 

s t r e s s-intensity factor 

s t r e s s  -concentration factor 

number of points at which the e r r o r  in the boundary conditions was 

evaluated 

number of coefficients in each ser ies  s t r e s s  function 

concentrated force per unit thickness acting in the y direction 

pressure 

radius of the circular hole 

minimum radius of curvature for the ellipse 

s t ress  on the external boundary 

displacement in the x and y direction, respectively 

width of rectangular plate 

complex variable, z = x + iy  

location of pole in x-y plane, z.
J 

= x.
J 

+ iy.
J 

angle between the x-axis and the normal to a boundary 

constant in equation (1) 

coordinate along the contour of a boundary 
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material constant 

ratio of applied s t resses  on separate portions of a boundary 

Lam6's constant (shear modulus) 

Poisson's ratio 

normal s t r e s s  a t  a boundary 

normal s t r e s s  in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx direction 

normal s t r e s s  in y direction 

shear s t r e s s  a t  a boundary 

shear s t r e s s  

complex s t r e s s  functions 

indices 

METHOD OF BOUNDARY COLLOCATION 

Boundary collocation is a numerical method used to evaluate the unknown coeffi­

cients in a ser ies  s t r e s s  function, such as those developed in appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. The method 

begins with a general se r ies  solution to the governing linear partial differential equation. 

Certain te rms  a r e  eliminated from the ser ies  by conditions of symmetry. The ser ies  is 

then truncated to a specified number of te rms .  The coefficients a r e  determined through 

satisfaction of prescribed boundary conditions. The ser ies  solution finally obtained 

satisfies the governing equation in the interior of the region exactly and one o r  more of 

the boundary conditions approximately. 

Various techniques have been used to satisfy boundary conditions. Conway (ref. 13) 

determined the coefficients from the criterion that the boundary conditions be satisfied 

exactly a t  a specified number of points on the boundary. Hulbert (ref. 14) and Hooke 

(ref. 15) selected the coefficients so that the sum of the squares of the s t ress  residuals 

was a minimum for  a specified number of points on the boundary. These two techniques 
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have been used to analyze the s t r e s s  state around a crack in a rectangular plate (refs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 

and 14). Bowie (ref. 12) used a modified mapping-collocation technique to calculate the 

stress-intensity factors for a crack in a circular disk. 

The present approach combines the complex variable method of Muskhelishvili 

(ref. 16) with a modified boundary-collocation method. The modification requires that 

the resultant forces on the boundary be specified (in a least-square sense) in contrast to 

previous work in which the boundary s t resses  were specified. (See appendix B.) 

The resultant forces and displacements are expressed in te rms  of the complex 

stress functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@(z) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ(z) (see appendix A) as 

f(X,Y) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ ig(x,y) (1) 

The bars  denote the complex conjugates. For resultant forces (/3 = 1) acting over the 

a r c  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 - c0  on the boundary 

For  convenience, the location of 5, was selected as the intersection of the boundary 

with either the x- or  y-axis. For displacements ( p  = - K )  at a point 5 on the boundary 

3 - v
For  the case of plane strain K = 3 -zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4v and for plane s t r e s s  K = ­

1 + v' 

In general, the truncated complex s t r e s s  functions can be expressed as 

. 

where 7, and Gn are power-series functions of z. From equations (1) and (4) the 

expressions for f and g are 
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J 
Y N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

where Fsn and Gsn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s = 1,2) a r e  influence functions derived from qn and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA52, 

for the nth coefficients. 

Having developed the expressions for  f and g in te rms  of the unknown coeffi­

cients An and &, it is necessary to select a method for evaluating the coefficients 

from the specified boundary conditions. The two methods developed for this purpose 

were (1)direct specification of boundary forces and/or displacements and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) least-

squares specification of boundary forces and/or displacements. 

Direct Specification of Boundary Forces  and/or Displacements 

In specifying the resultant forces and/or displacements on the boundary, equa­

tions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5) were evaluated at  N equally spaced points on the boundary and the resulting 

equations were solved on a computer for the unknown coefficients. Further details on 

the computer and matrix solutions a r e  given in the section entitled "Application of the 

Boundary -Collocation Method ." 

Least-Squares Specification of Boundary Forces  and/or Displacements 

In general, the computed boundary values a r e  in e r r o r  a t  any given point 5, 
because the ser ies  s t r e s s  functions were truncated. The square of this e r ro r  is 

where fo and go a r e  specified boundary values at point Sm. The coefficients a r e  

then evaluated by minimizing the squares zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the e r r o r s  at a specified number of 

points M on the boundary: 
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M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAem 

2 

m = l  = o  i 
where q = 1,2,. . .,N. Equations (7) result  in a set of 2N linear algebraic equations 

for the unknown coefficients An and Bn 

where 
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M 

m = l  

and 

M 

m=l  m 

The second partial derivative of the square of the e r r o r  with respect to the unknown 

coefficients was positive, indicating a definite minimum. 

APPLICATION OF THE BOUNDARY-COLLOCATION METHOD 

The improved collocation method was used to analyze a number of crack problems. 

The configurations investigated were grouped into four categories: (1)cracks emanating 

from a circular hole in an infinite plate, (2) a crack near two circular holes in an infinite 

plate, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) cracks emanating from an elliptical hole in an infinite plate, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) a crack in 

a finite plate. In each category several boundary conditions were investigated. 

In applying the method, i t  w a s  necessary to specify the points on the boundary at  

which the e r ro r  equation was to be evaluated. The locations on the circular and elliptic 

boundaries were specified by dividing the angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABo into M equal increments (Ae)  

(see fig. 1). This procedure was selected because more points a r e  concentrated on sec­

tions of the boundary which have smaller radii of curvature and, hence, larger  s t r e s s  

gradients. For simplicity, this procedure w a s  also employed on the external boundaries. 

In general, the value of M used in the solution of the various boundary-value problems 

w a s  twice the total number of unknown coefficients in the ser ies  s t r e s s  functions. For 

the case of cracks emanating from the elliptical hole in an infinite plate and from the 

circular hole in a finite plate, 160 coefficients were used in the s t r e s s  functions. In 

all other cases  90 coefficients were used (except where noted). 

A digital computer w a s  used to solve the resulting equations using either single 

precision zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(14 significant digits) or double precision (29 significant digits). The equations 

8  
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were solved by a routine which employed Jordan's method (ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17). Using single preci­

sion, the computer time w a s  1 and 4 minutes for solving 90 and 180 equations, respec­

tively. Double precision required approximately twice as much time as single precision. 

Double precision was used only in the cases  involving the finite plate. 

The results a r e  presented in terms of a correction factor F which accounts for 

the influence of the various boundaries on the stress-intensity factor for a crack in an 

infinite plate. The correction factor is defined as the ratio of the stress-intensity factor 

for the particular case to that for a crack in an infinite plate subjected to the same 

loading. A table of numericd values of F and the stress-intensity equation a r e  given 

in Tables I to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVII. 

Cracks Emanating from a Circular Hole in an Infinite Plate 

Remote biaxial s t ress . - For the case of cracks emanating from a circular hole, 
~~ 

four collocation techniques were used to obtain the unknown coefficients in the s t r e s s  

functions. (See eqs. ( A l l )  of appendix A.) The conditions a t  infinity were satisfied by 

adding to equations ( A l l )  the n = 0 t e rms  in equations (A10). The results of each of 

these techniques a r e  compared in figure 2. The curves were obtained by specifying 

either s t resses  at discrete points on the boundary (s t ress  equations) or  resultant forces 

along the boundary (force equations), o r  by using a least-squares procedure with the 

s t r e s s  equations or force equations. For the least-squares procedure employing resul­

tant forces, two convergence curves a r e  presented. One is for the case in which the 

number of points M w a s  twice the total number of coefficients in the s t r e s s  functions 

(2N is the total number of coefficients in the s t r e s s  functions); the other is for  the case 

in which the number of points considered w a s  five times the total number of coefficients. 

Convergence is seen to be rapid in both cases.  For the least-squares procedure 

employing s t r e s s  equations, the number of points considered was twice the total number 

of coefficients. All techniques seemed to converge to the same value as the number of 

coefficients increased. The value of F was approximately 2 percent higher than 

Bowie's approximate solution (ref. 5) f o r  the same configuration and loading. The 

boundary s t resses  also converged to  their specified values as the number of coefficients 

increased. However, the analysis using the least-squares procedure with the force 

equations converged more rapidly than the other techniques. 

The correction factors for three states of biaxial s t r e s s  a r e  shown in figure 3. 

The solid curves show the results obtained in the present investigation. The circles a r e  

Bowie's solution and were obtained from a table given in reference 18. The agreement is 

considered good. 
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsolution for other values of h was constructed by superposition of the two 

cases, h = 0 and h = 1. The stress-intensity equation is 

K = S-Fl - h)FO + AFd (9) 

where Fo and F1 a r e  the correction factors for X = 0 and h = 1,  respectively. 

The calculations for h = -1  confirmed equation (9) to greater than eight significant 

digits. However, equation (9) is only valid for positive values of s t r e s s  intensity. Nega­

tive s t r e s s  intensities would indicate crack closure and theproblem would become one of 

calculating contact s t resses  . 
Internal pressure.- In a configuration like that in the preceding section, internal 

pressure p w a s  applied to the hole boundary and Xp to the crack surfaces. The 

s t r e s s  €unctions fo r  this case a r e  given by equations ( A l l ) .  

The correction factors for X = 0 and h = 1 a r e  shown in figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. For the case 

in which no pressure is applied to the crack surfaces (A = 0) the correction factor 

modifies the stress-intensity factor for wedge-force loading on the crack surfaces 

(ref. 18). Here the wedge-force loading 2pR is that produced by the internal pressure.  

The other case modifies the solution for  a uniformly pressurized crack. A solution for  

other values was constructed by superposition of these two cases.  The stress-intensity 

equation is 

where Fo and F1 a r e  the correction factors for X = 0 and h = 1, respectively. 

Equation (10) is also valid only for  positive values of s t r e s s  intensity. The results indi­

cate that the influence of the hole on the stress-intensity equation may be neglected f o r  

values of a/R greater than 2.5. 

A Crack Near Two Circular Holes in  an Infinite Plate 

Crack located between the holes subjected- - ._to remote uniaxial stress.- In the case 
-

of two circular holes the s t r e s s  functions, equations (A13), were used with poles located 

at z.
3 

= *id (see appendix A). The conditions a t  infinity were satisfied by adding to 

equations (A13) the n = 0 t e rms  in equations (A10). 

The correction factors a r e  shown in figure 5 for several  values of d/R. At small 

d/R values the holes had a pronounced effect on the correction factors. However, for 

d/R values greater  than 10 o r  a/R values greater  than 3 the influence of the holes may 

be neglected. 

10 
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In the limit as the crack length approaches zero, the correction factor is equivalent 

to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlocal-stress-concentration factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc
Y/ 

S at the origin. In te rms  of the remote 

s t r e s s  and the local s t r e s s  the stress-intensity factors are 

from which the correction factor is given as the ratio of oy to S. The circle plotted 

on the ordinate axis is the local-stress-concentration factor at the origin as given in 

reference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA19 for a value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-d = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. The agreement is considered good.
R 

Cracks approaching the holes subjected to remote uniaxial stress.- In this case the 

s t r e s s  functions, equations (A13), were used with poles located at z.
J 

= A. Again, the 

conditions at infinity were satisfied by adding to equations (A13) the n = 0 t e rms  in 

equations (A10). 

The correction factors a r e  shown in figure 6 for several values of d/R. The 

factors a r e  plotted against the nondimensional crack length -
d 

a
- R' 

The correction 

factors increase from their initial value a t  a = 0 to large values as the crack 

approaches the edge of the hole. Again, the correction factor a t  a = 0 is equal to the 

local-stress-concentration factor a t  the point midway between the two holes. 

As the crack intersects the boundary of the holes, the concept of the s t ress -

intensity factor K no longer exists. However, the stress-concentration factor KT at 

the edge of the hole (x = R + d) does describe the severity of tile notch. The s t ress -

concentration factors a r e  shown in figure 7 as a function of R/d ratios. The s t ress -

concentration factors were compared with those calculated from an "equivalent" 

elliptical-hole solution as shown by the dashed line. The elliptical hole had a minimum 

radius of curvature equal to the radius of the circular holes and had an overall length 

equal to 2(R + d). The stress-concentration factors for the elliptical hole were only 

slightly lower than those calculated for  the case of two circular holes connected by a 

crack. Thus, the elliptical-hole solution may be used to approximate this configuration. 

Cracks Emanating from an Elliptical Hole in an Infinite Plate 

Remote uniaxial s t ress . - For the case of cracks emanating from an elliptical hole 

(see fig. 8) the s t r e s s  functions, equations (A13), contained multiple poles z
j 

on either 

the x- o r  y-axis. The n = 0 t e rms  in equations (A10) were added to equations (A13) in 

order to satisfy the boundary conditions at infinity. For the case of = 0.5 and 2, the 
b

value of J in equations (A13) was 4 and for  c = 0.25 and 4 the value was 16. These 
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values were determined by trial and er ror .  The poles were always located on the major 

axis of the ellipse at the origin, at the center zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the minimum curvature, and equally 

spaced between these points. 

The correction factors a r e  given in figure 8 for several values of b/c. The dashed 

curves show the theoretical l imits expressed in t e rms  of the correction factor F as the 

value of b approaches either zero or  infinity. The stress-intensity factor in the 

limiting case (b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= m) was obtained from reference 18 for  the case of an edge crack in a 

semi-infinite plate. The other limit is where the elliptical hole reduces to a crack. The 

correction factors approached unity for all finite values of b/c as the crack length 

approached infinity. The edge-crack solution approached 1.12. For  b/c ratios greater 

than 2 and large values of a/c the results indicated that the influence of the elliptical ~ 

hole may not be negligible. However, for  small b/c ratios the correction factor 

approached unity very rapidly. 

Crack in a Finite Plate 

In the following section the s t r e s s  intensity solutions for  two cases  of a crack in a 

rectangular plate a r e  presented,. Double precision was used in the computer solution of 

the resulting equations primarily because the least-squares procedure generated matrix 

elements whose values ranged over many orders  of magnitude and the unknown coeffi­

cients may have been susceptible to round-off e r ror .  Tn fact, for some choices of the 

pertinent parameters the single-precision routine did not appear to converge. However, 

fo r  the same parameters the double-precision routine did appear to converge as the 

number of coefficients increased. 

-- - - wedge-force .-Crack subjected to__ .- - . . loading.- For the case of a crack in a rectangular 

plate subjected to wedge-force loading on the crack surfaces (see fig. 9) the s t r e s s  func­

tions were taken to be 

s2(z) = s2,(z) + 
27Tz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJx7JPa 

where Go and -4l0 a r e  given by equations (A10). The additional te rms  in equations (12) 

were added in order  to account for the concentrated forces on the crack surfaces (ref. 9). 

The unknown coefficients f rom equations (A10) in equations (12) were evaluated by 
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satisfying the conditions on the external boundary. TO show convergence, an example 

problem with  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.9 was solved for several values of 2N (see fig. 9). This examplezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W

problem was selected because the close proximity of the crack tip to the boundary was 

expected to pose difficulties in  achieving convergence. However, the convergence was 

rapid. 

The correction factors for several values of H/W a r e  shown in figure 10. For a 

given value of H/W the correction factors ranged from unity, a t  small crack length to 

plate width ratios, to very large values at large ratios. 

In figure 11, a comparison is made between experimental and theoretical s t ress -

intensity correction factors for  a wedge-force loaded panel. The material was 
7075-T6 aluminum alloy cycled at constant amplitude with a load ratio (minimum load to 

maximum load) of 0.05. The experimental stress-intensity factors were obtained from 

measured crack growth rates  used together with a curve of s t r e s s  intensity as a function 

of crack growth rate  (ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4). The agreement between the calculated and the experimental 

correction factors is considered good. 

Cracks emanating from a circular hole subjected to uniaxial s t ress . - For the case 

of cracks growing from a circular hole in a rectangular plate subjected to a uniaxial 

s t ress  (see fig. 12) the s t r e s s  functions were taken to be the sum of equations (A10) and 

(All)  since both internal and external boundaries must be considered. The unknown coef­

ficients were evaluated by satisfying the conditions on both boundaries. 

The correction factors for several values of 2R/W and a plate aspect ratio 

(H/W) of 2 a r e  shown in figure 12. As the hole radius approacnes zero, the boundary-

value problem reduces to that of a single crack in a rectangular plate. In this case all 

coefficients in equation ( A l l )  a r e  se t  equal to  zero. The correction factors shown 

€or 
2R 

= 0 agree almost identically with Isida's solution (ref. 20) for  the case of a 

central crack in a finite width strip. The solid curve was slightly higher than Isida's 
2asolution for values of -> 0.7. However, the difference may be due to the influence of
W 

the finite height. 

CONCLUDING REMARKS 

An improved method of boundary collocation w a s  presented and applied to  the s t r e s s  

analysis of cracked plates having various boundary shapes and subjected to  inplane 

loading. The solutions were  based on the complex variable method of Muskhelishvili and 

a modification of the numerical method of boundary collocation. The complex ser ies  

stress functions formulated for cracked plates automatically satisfy the boundary condi­

tions on the crack surfaces. The conditions on the other boundaries were satisfied 

approximately by the series solution. Stress-intensity correction factors were presented 

13  



for  several configurations involving cracks in the presence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof s t r e s s  concentrations or 

boundaries. The least-squares boundary-collocation method used to minimize the 

resultant-force residuals on the boundary gave better numerical convergence in the 

boundary conditions than the other three collocation methods investigated. The other 

methods were (1)direct specification of boundary forces,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) direct specification zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 
boundary s t resses  at discrete points, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) least-squares specification of boundary 

s t resses .  The improved method was able to analyze more  complex boundary-value 

problems than the other methods because of the more rapid convergence in the ser ies  

solution. 

The stress-intensity factors presented in this paper cover a moderate range of 

configurations and loadings. Most of the boundary-value problems solved do occur f re­

quently in aircraft  s t ructures  such as cracks growing from or near cutouts (windows, 

rivet holes, etc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.) or f rom other structural discontinuities. Thus, the solutions presented 

here may be used to  design a structure more efficient against fatigue and fracture or to 

help monitor structural damage due to fatigue loading. 

Langley Research Center,-
National Aeronautics and Space Administration, 

Hampton, Va., June 15, 1971. 
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APPENDIX A 

FORMULATION OF THE COMPLEX SERIES STRESS FUNCTIONS 

FOR CRACKED BODIES 

One of the major advances in the field of two-dimensional linear elasticity has been 

the complex-variable approach of Muskhelishvili (ref. 16). The representation of bihar­

monic functions by analytic functions has led to a general method of solving plane-strain 

and generalized plane-stress problems. 

The following formulation for two-dimensional cracked bodies is based on the work 

of Muskhelishvili for an infinite plane region containing cracks and subjected to inplane 

loading (see fig. 13). The known surface tractions a r e  applied to the boundaries of this 

region. The body forces a r e  assumed to be zero and the material is assumed to be linear 

elastic, isotropic, and homogeneous. The equilibrium and compatibility equations a r e  

combined to form the biharmonic equation 

where U(x,y) is the Airy s t r e s s  function. 

The biharmonic function U(x,y) can be expressed as 

U(x,y) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 Re zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I (z)dz + I @(z)dz+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z - z) @(z]
2 

where @'(z) = +(z) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW ( z )= Q(z). The primes and bars  denote differentiation and 

complex conjugates, respectively. Therefore, the generalized plane-stress and plane-

strain problems a r e  reduced to the determination of these functions subject to specified 

boundary conditions. 

From reference 16, the s t r e s s  functions in the neighborhood of a crack (z = *a) 

can be expressed as 
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APPENDIX A - Continued 

where 

In the present investigation, the formulation of the complex ser ies  s t r e s s  functions 

for  simply and multiply connected regions containing cracks was restricted to the situa­

tion where the configuration and loading a r e  symmetric about the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx- and y-axis. The 

boundary conditions satisfied by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACp and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS2 for a st ress-free crack surface a r e  

(I) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACJ
Y 

= T X y = o  

(11) TXsT = v = 0 (1x1 2 a; y = 0) (A51i 
(111) T X y  = U = 0 ( l y ~P 0 ;  x = o)J 

where the coordinate system used is shown in figure 13. The s t resses  expressed in terms 

of the s t r e s s  functions a r e  

\

I 

The displacements are given by equation (1). 

The boundary conditions in equations (A5) define a unique relationship between the 

two analytic functions Cp and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. The relationship for the ser ies  which contains the 

square-root term is Ql(z)  = &3(z) and for the ser ies  which contains no square-root 

term, Q2(z) = -Q4(z). These conditions insure the satisfaction of the boundary conditions 

(stress free) on the crack surfaces. 

For a multiply connected region, in addition to the boundary conditions stated in 

equations (A5), the single-valuedness of displacements must be insured. This condition 

is stated as 

K fA +(z)dz - fAj S2(z)dz = 0 

j 

where Aj is the contour around each separate hole boundary Lj (see fig. 13). 

The s t r e s s  intensity factor K is obtained from the s t r e s s  functions as 
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APPENDIXA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Continued 

As an example, consider a crack located along the x-axis in an infinite plate as 

shown in figure 14. The dashed lines Lo and L1 define the boundaries of the region 

(shaded area). The internal boundary L1 has cracks growing from the edge of the hole 

to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = +a. The boundaries Lo and L1 may have any simple shape which is symmetric 

about the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx- and y-axis and be subjected to any symmetric boundary conditions. The 

complex-series s t r e s s  functions must be single-valued and analytic in the region between 

Lo and L1. This region does not include the crack which is represented by a branch 

cut. The s t r e s s  functions are 

The subscripts denote the functions which a r e  used to satisfy the boundary conditions on 

boundaries LO and L1, respectively. The s t r e s s  functions used to satisfy the condi­

tions on the external boundary Lo a r e  

where the coefficients An and Bn a r e  real. In the situation where the boundary Lo 
S Sis located a t  infinity A0 = -, Bo = -(A - 1) and the remaining coefficients for n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1
2 4 

a r e  zero. For the internal boundary L1 the s t ress  functions a r e  

where the coefficients Cn and Dn are real. The s t r e s s  functions, equations (A10) and 

(A1l),automatically satisfy the boundary conditions on the crack surfaces. The conditions 

on the other boundaries (Lo and L1) were approximated by the ser ies  solution. The 

stress-intensity factor K calculated from equations (A8), (AlO), and (All)  is 

L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ 



I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I1111111 I 11111.11.11111111 111 .I1 I I 1  1 . 1 1 1 1 1 1 1  1 , 1 1 1  , 1 1 1  

APPENDIXA -zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConcluded 

In the case of multiple circular holes or  elliptical holes, the complex-series s t r e s s  

functions require the use of poles at various stations along the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx- o r  y-axis. The s t r e s s  

functions are given by 

where the coefficients Cjn and Djn are real. In these stress functions the poles fz 

must lie on either the x- o r  y-axis and be symmetrically placed about the other axis. 
j 
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APPENDIX B 

OTHER COLLOCATION METHODS INVESTIGATED 

Direct Specification of Boundary Stresses 

The boundary- collocation method treated in this section involves the specification of 

the normal- and shear-s t ress  components at discrete points on the boundary. The 

boundary-value problem considered had cracks emanating from the edges of a circular 

hole in an infinite plate subjected to a biaxial stress (see fig. 15). The complex equation 

for  the two s t r e s s  components on the boundary is 

where the s t r e s s  functions a r e  

Y 

The coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACo and Do were determined from the s t r e s s  conditions at infinity. 

The remaining coefficients were determined from the conditions that an = 0 and Tnt = 0 

at N equally spaced points on the boundary. The resulting equations were solved on a 

computer using single precision. The stress-intensity factor w a s  calculated from 

equation (A8) as 

N 

n=l 

where the term in the brackets is the correction factor F. 

Leas t-Squares Specification of Boundary Stresse s 

The boundary-collocation method described in  this section is similar to the one in 

the preceding section, except that here more equations are written in terms of the s t r e s s  

boundary conditions than there are unknown coefficients. The coefficients are then chosen 

so as to minimize the sum of the stress residuals on the boundary at a specified number 

of points M. The normal stress and shear s t r e s s  components expressed in  te rms  of the 

stress functions (eqs. (B2)) are 
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I I I, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,111 .111.1.1.1..1. .. II ,.,- . - . . ..-- ... 

APPENDIX B - Concluded 

where Fsn and Gsn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( s  = 1,2) are the influence functions derived from the s t r e s s  func­

tions for the respective coefficient. Again, the coefficients CO and DO are deter­

mined from the stress conditions at infinity. Since the circular boundary is stress free, 

the square of the e r r o r  in the boundary condition at point 5, is 

The coefficients were then selected s o  that the sum of the squares of the e r ro r s  a t  a num­

ber  of points M on the boundary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwas a minimum 

M 

m=l  

where q = 1,2,. . . ,N. Equation (B6) results in a se t  of 2N linear algebraic equations 

for C, and Dn 
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where 

and 

These equations were solved on a computer using single precision. The resulting coeffi­

cients were used in equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(B3) to calculate the stress-intensity factor. 
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TABLE I.- CRACKS EMANATING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFROM A CIRCULAR HOLE IN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAN 

INFINITE PLATE SUBJECTED TO BIAXIAL STRESS 

K = S  F F  

2 N  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 120  

-

a/R F (A=-l) Fo (X=l) 
F1 (X=O) 

~ _ _  

1.01 0.3325 0.3256 0.2188  

1.02 .5971 .4514 .3058  

1.04 .7981 .6082 .4183  

1.06 .9250 .7104 .4958  

1.08 1.0135 .7843 .5551  

1.10 1.0775 .8400 .6025  

1.15 1.1746 .9322 .6898  

1.20 1.2208 .9851 .7494  

1.25 1.2405 1.0168 .7929  

1.30 1.2457 1.0358 .8259  

1.40 1.2350 1.0536 .8723  

1.50 1.2134 1.0582 .9029  

1.60 1.1899 1.0571 .9242  

1.80 1.1476 1.0495 .9513  

2.00 1.1149 1.0409 .9670  

2.20 1.0904 1.0336 .9768  

2.50 1.0649 1.0252 .9855  

3.00 1.0395 1.0161 .9927  

4.00 1.0178 1.0077 .9976  
_ _  .- ­~ 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII.- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACRACKS EMANATING FROM AN INTERNALLY 

PRESSURIZED HOLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIN AN INFINITE PLATE 

For  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX = 1, K = p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i  F1 

a m  

1.01  

1.02  

1.04  

1.06  

1.08  

1.10  

1.15  

1.20  

1.25  

1.30  

1.40  

1.50  

1.60  

1.80  

2.00  

2.20  

2.50  

3.00  

4.00  

F1 (h=l) 

0.2188 

.3058 

.4183 

.4958 

.5551 

.6025 

.6898 

.7494 

.7929 

.8259 

.8723 

.9029 

.9242 

.9513 

.9670 

.9768 

.9855 

.9927 

.9976 

2N = 120  

Fo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(X=O) 

0.1725 

.2319 

.3334 

.3979 

.4485 

.4897 

.5688 

.6262 

.6701 

.7053 

.7585 

.7971 

.8264 

.8677 

.8957 

.9154 

.9358 

.9566 

.9764 
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------ 

------ 

TABLE LI1.- CRACK LOCATED BETWEEN TWO CIRCULAR HOLES 

IN AN INFINITE PLATE SUBJECTED TO UNIAXIAL STRESS 

S  

I 

. ...  

F (:=3) F (:=4) F ($=6) F ($=lo)  
- .   

0.01 0.1390 0.5234 0.7127 0.8661 0.9506  

.25 .1728 .5355 .7172 .8671  

.50 .2683 .5698 .7303 .zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa700 .9512  

.75 .404 5 .62 06 .7505 .8748  

1.00 .5502 .6799 .7758 .8810 .9528  

1.50 .7809 .7958 .8324 .8969 .9553  

2.00 .9058 .8819 .8847 .9150 .9585  

2.50 .9640 .9351 .9250 .9328 .9622  

3.00 .9902 .9654 .9527 .9486 .9663  
... 
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----- 

TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIV.- CRACK APPROACHING TWO CIRCULAR HOLES IN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAN 

INFINITE PLATE SUBJECTED TO UNIAXIAL STRESS 

a-
d - R  
-

0.01 4.3975 

.1 4.4160 

.2 4.4751 

.3 4.5853 

.4 4.7308 

.5 4.9593 

.6 5.2890 

.7 5.7816 

.8 

I I 

~~ 

3.2630 2.1530 

3.2739 2.1612 

3.3143 2.1875 

3.3856 2.2338 

3.4946 2.3045 

3.6538 2.4076 

3.8850 2.5575 

4.2271 2.7824 

4.7825 3.1504 

- _ _ _ _  5.8028 3.8661 
~~~ 

K = S  F F 

F ($=2) F (:=4> 

1.4687 1.0761 

1.4738 1.0774 

1.4898 1.0816 

1.5183 1.0892 

1.5624 1.1017 

1.6279 1.1215 

1.7249 1.1538 

1.8740 1.2101 

2.1230 1.3202 

2.6350 1.5927 
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----- 

----- 

----- 

----- 

----- 

----- 

----- 

----- 

----- 

TABLE V.- CRACKS EMANATING FROM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAN ELLIPTICAL HOLE 

IN AN INFINITE PLATE SUBJECTED TO UNIAXIAL STRESS 

s 

I t 

, ~ 

a/c  F (:=0.25) F (+=0.5) F (;=1) F (:=2) 

1.02 0.4514 0.3068 

1.03 

1.04 .6082 .4297 

1.05 

1.06 .7104 .5 164 

1.08 .7843 .5843 

1.10 .8400 .6401 

1.15 .9322 .7475 

1.20 .9851 .8241 

1.25 

1.30 1.0358 ,9255 

1.40 1.0536 .9866 

1.50 1.0582 1.0246 

1.55 

1.60 1.0571 1.0483 

1.80 1.0495 1.0714 

2.00 1.0409 1.0777 

2.10 

2.20 1.0336 1.0766 

2.40 1.0251 1.0722 
-~ 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV1.- WEDGE-FORCE LOADED CRACK 

IN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA RECTANGULAR PLATE 

W  

E * )  F (5=1 .0 )2a/W F - = 0 5  

0 1.0000 1.0000 1.0000 1.0000 

.1 1.0921 1.0467 1.0279 1.0121 

.2 1.3572 1.1863 1.1115 1.0497 

.3 1.7721 1.4185 1.2499 1.1163 

.4 2.3269 1.7431 1.4418 1.2191 

.5 3.0554 2.1589 1.6866 1.3710 

.6 4.0464 2.6587 1.9894 1.5958 

.7 5.3985 3.2275 2.3772 1.9421 

.8 7.0162 3.8858 2.9523 2.5309 

.9 8.4078 4.9791 4.1665 3.7810 
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 I I 1-11... 11.11 I 11111.1111111 

TABLE VI1.- CRACKS EMeATING FROM A CIRCULAR HOLE IN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA RECTANGULAR 

PLATE SUBJECTED TO UNIAXIAL STRESS 

S 

H 

iL 

("w" > F - = 0 5  

0 1.0000 0.25 0 0.50 0 

.1 1.0061 .26 .6593 .51 .6527 

.2 1.0249 .27 .8510 .52 .8817 

.3 1.0583 .28 .9605 .525 .9630 

.4 1.1102 .29 1.0304 .53 1.0315 

.5 1.1876 .30 1.OW6 .54 1.1426 

.6 1.3043 .35 1.1783 .55 1.2301 

.7 1.4891 .40 1.2156 .60 1.5026 

.8 1.8161 .50 1.2853 .70 1.8247 

.9 2.5482 .60 1.3965 .78 2.1070 

.70 1.5797 .85 2.4775 

.80 1.9044 .90 2.9077 

F -=O e - >  

-. 

.85 2.1806 

.90 2.6248 
-
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.- Coordinate system used for describing the location of the 

collocation points on the circular and elliptic boundaries. 
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Stress eqs. 

Bowie Least-square 
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Figure 2.- Convergence curves for the problem of cracks emanating from a circular 

hole in an infinite plate subjected to uniaxial stress. 
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Figure 3. - Stress-intensity correction factors for cracks emanating from a circular 

hole in an infinite plate subjected to biaxial stress.  
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Figure 4. - Stress-intensity correction factors for cracks emanating from a circular 

hole in an infinite plate subjected to internal pressure. 
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Figure 5.- Stress-intensity correction factors for a crack located between two 

circular holes in an infinite plate subjected to uniaxial stress.  
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Figure 6. - Stress-intensity correction factors for a crack approaching two 

circular holes in an infinite plate subjected to uniaxial stress. 
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Figure 7. - Stress-concentration factor for two circular holes connected 

by a crack in an infinite plate subjected to uniaxial s t ress .  
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Figure 8.- Stress-intensity correction factors for cracks emanating from 

an elliptical hole in an infinite plate subjected to uniaxial stress. 
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Figure 9.- Convergence curve for the problem of a wedge-force 

loaded crack in a rectangular plate. 
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Figure 10.- Stress-intensity correction factors for a wedge-force 

loaded crack in a rectangular plate 
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Figure 11.- Experimental and theoretical stress-intensity correction 

factors for a wedge-force loaded crack in a rectangular plate. 
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Figure 12. - Stress-intensity correction factors for cracks emanating from a 

circular hole in a rectangular plate subjected to uniaxial stress. 
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Figure 13.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Two-dimensional multiply-connected body containing 

a crack and subjected to surface tractions on the boundaries. 
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Figure 14.- Crack in an infinite plate subjected to biaxial s t ress .  
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15 . - Coordinate system used for the case of cracks 

emanating from a circular hole. 
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