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Abstract: The mixture of experts (ME) model is effective for multimodal data in statistics and machine
learning. To treat non-stationary probabilistic regression, the mixture of Gaussian processes (MGP)
model has been proposed, but it may not perform well in some cases due to the limited ability
of each Gaussian process (GP) expert. Although the mixture of Gaussian processes (MGP) and
warped Gaussian process (WGP) models are dominant and effective for non-stationary probabilistic
regression, they may not be able to handle general non-stationary probabilistic regression in practice.
In this paper, we first propose the mixture of warped Gaussian processes (MWGP) model as well as
its classification expectation–maximization (CEM) algorithm to address this problem. To overcome
the local optimum of the CEM algorithm, we then propose the split and merge CEM (SMC EM)
algorithm for MWGP. Experiments were done on synthetic and real-world datasets, which show
that our proposed MWGP is more effective than the models used for comparison, and the SMCEM
algorithm can solve the local optimum for MWGP.

Keywords: mixture of experts; warped Gaussian process; classification expectation–maximization
algorithm; local optimum; non-stationary probabilistic regression

MSC: 68T05

1. Introduction

The mixture of experts (ME) model is effective for multimodal data in statistics and
machine learning [1]. In ME, the input space is softly divided into multiple regions by
an input-dependent gating function, and each region is specified by an expert. Due to
the diversity of experts, such as Gaussian distribution [2] and the support vector machine
(SVM) [3], there are a variety of models based on the ME framework.

In the 2000s, Tresp constructed the mixture of Gaussian processes (MGP) model, a
special ME where each expert is a stationary Gaussian process (GP) probabilistic regres-
sion model, by mixing GPs along the input space to treat non-stationary probabilistic
regression [4–8]. Popular gating functions of the MGP include logistic distribution and
Gaussian distribution. For learning MGP, the main algorithms are Markov Chain Monte
Carlo (MCMC), variational Bayesian (VB), and expectation–maximization (EM). The MGP
cannot work correctly on non-stationary probabilistic regression in some situations since
the ability of each GP expert is limited.

In this paper, we propose the mixture of warped Gaussian processes (MWGP) model,
which has more flexible and attractive properties than MGP to handle non-stationary
probabilistic regression, by modeling each component of an MGP with a warped Gaussian
process (WGP); these WGPs are combined in the input space by the Gaussian distribution.
The WGP is capable of modeling non-stationary probabilistic regression by learning a
nonlinear distortion (also called warping) of the GP outputs. The MWGP can be viewed
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as a generalization of the MGP and WGP frameworks, and it allows for dealing with
non-stationary data in each multimodal mode. In MWGP, the mixture parameter, warping
function parameter, covariance function parameter, and indicator variable (regarded as the
latent variable) are considered simultaneously. To handle this, we designed the classification
expectation–maximization (CEM) algorithm for the training of MWGP. However, the CEM
algorithm may easily converge to a local optimum for MWGP in some cases. We propose
the split and merge CEM (SMCEM) algorithm of MWGP based on the SMCEM algorithm
of the MGP and the CEM algorithm of MWGP to solve this problem. Experiments were
conducted on synthetic and real-world datasets, and the results demonstrate the feasibility
and superior accuracy of our proposed MWGP model trained using the CEM algorithm
compared to other comparative models for probabilistic regression. Moreover, the SMCEM
algorithm of MWGP can overcome local optima in some datasets at a negligible time cost.

The remainder of this paper is organized as follows. In Section 2, we present related
works of GP, MGP, and WGP models. We describe GP, WGP, and our proposed MWGP in
Section 3. In Section 4, we present our proposed SMCEM algorithm of MWGP, the CEM
algorithm of MWGP, and the partial CEM algorithm of MWGP. The experimental results
are presented in Section 5, and the conclusions are drawn in Section 6.

2. Related Works

Related works of the GP. The GP is a versatile tool for probabilistic regression and
it has been successfully applied to practical fields such as time series prediction [9] and
signal processing [10]. The non-stationary probabilistic regression problem exists widely,
but it cannot be modeled effectively by the conventional GP model [11,12]. To solve this,
the non-stationary GP model was proposed by introducing a robust and flexible covariance
structure [13–16]. However, a single GP cannot handle the non-stationary probabilistic
regression well due to its inherent simplicity.

Related works of the MGP model. The structure of the MGP is shown in Figure 1. As
seen in this figure, the MGP is a more effective non-stationary model than the GP. However,
the parameter estimation of the MGP is a challenge due to the unknown indicator variable
(regarded as the latent variable) and the highly correlated sample [17–20]. The Markov
Chain Monte Carlo (MCMC) method employing Gibbs sampling and hybrid Monte Carlo
approximates the intractable integration and summation by the simulated sample of the
indicator variable and parameter [6,7,21–23], and it is commonly used in a system of partial
differential equations [24,25]. The MCMC generally obtains precise results, but it takes
a long time to generate the simulated sample. To improve the efficiency, the variational
Bayesian (VB) inference and the expectation–maximization (EM) algorithm were proposed.
Ross and Dy constructed the VB inference on the basis of the mean-field approximation,
where the indicator variable and the stochastic parameter are forced to be independent
of the probability distribution [26]. Yuan and Neubauer established a variational EM al-
gorithm by a similar mean-field method as the VB inference [8]. Then, the leave-one-out
cross-validation (LOOCV) EM algorithm was proposed based on the LOOCV approxima-
tion method, where the probability density of the GP is approximated by the production of
LOOCV probability densities [27]. To improve the accuracy, Chen et al. constructed the
CEM algorithm by replacing the expectation step (E step) of the conventional EM algorithm
with a classification–expectation step (CE step) [28,29]. For the CEM algorithm, samples
are classified into components by the maximum a posteriori (MAP) principle of indicator
variables in the CE step and the parameters of components are learned independently in the
maximization step (M step). Then, the MCMC EM algorithm was designed by approximat-
ing the Q-function of the EM algorithm with the Gibbs sampling; this algorithm is generally
accurate but slow [30–32]. The SMCEM algorithm was constructed by combining the split
and merge EM algorithm and the CEM algorithm to address the local optimum of the CEM
algorithm for MGP [33–36]. Regarding the model selection problem, i.e., selecting the num-
ber of components, the Dirichlet process as the gating function was developed [6,17,21,22];
moreover, Zhao and Ma proposed a synchronous balancing criterion [37]. Regarding the
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robustness problem, the robust MGP with the Laplace noise and the robust MGP with the
student-t noise were proposed to overcome this difficulty [38].

Figure 1. The diagram structure of the MGP model: the low-layer consists of two GPs and the
high-layer structure consists of an MGP. The curves are divided into two curve segments along the
input space marked in different colors, and curve segments of one color corresponding to a GP.

Related works of the WGP model. The WGP trained by the maximum likelihood
estimation (MLE) method can handle non-stationary probabilistic regression effectively by
transforming the GP output in a latent space to the real output in the observation space with
a learnable nonlinear monotonic function [39], as seen in Figure 2. From this figure, it is
clear that the WGP is much better than the GP, and the performance of the GP degenerates
dramatically. In WGP, such a preprocessing transformation can be considered as an integral
part of non-stationary probabilistic modeling. The improved WGP models involve a large
number of parameters and hyperparameters, which limits the applicability of the WGP.
The Hamiltonian MCMC method [40] and the VB inference [41] were proposed to improve
the training of the WGP in some situations. To make the WGP structure flexible, Rios et
al. constructed the WGP with a deep compositional architecture warping function [42],
and the multi-task WGP was proposed [43]. For the optimization of the WGP, a spatial
branching strategy was designed [44]. The WGP (being a useful generalization of the GP)
has also been widely used in practical applications [45–48].
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Figure 2. An example of a non-stationary data regression task. The one-dimensional data are
generated by adding Gaussian noise to a sine function. The dataset contains 300 training samples
and 600 test samples. These samples are then warped by the function w = y3. The mean and two
standard deviation (SD) bounds are represented by triplets of lines.

3. Model Construction

In this section, we first introduce the GP and WGP models and then describe our
proposed MWGP model.
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3.1. The GP

The GP is a non-parametric statistical model, which is described briefly as follows. For
a dataset {xn ∈ RE, yn ∈ R}N

n=1, the standard Gaussian process (GP) model for probabilistic
regression is defined by

yn = f (xn) + εn and εn ∼ N
(
0, σ2), (1)

where f (•), yn, xn, εn, and σ are the random latent function described, the n-th output, the
n-th E× 1 input, the n-th Gaussian noise, and the SD of the Gaussian noise, respectively.
The random latent function f (•) on {xn}N

n=1 is subject to a Gaussian distribution

p(f|X) = N(µ, K),

where X = [x1, x2, · · · , xN ] is the E × N input matrix, f = [ fn]N×1 is the latent vector,
fn = f (xn), µ = [µn]N×1 is the mean vector, µn = µ(xn) is the mean function, K = [Knñ]N×N
is the covariance matrix, and Knñ = K(xn, xñ;γ) is the covariance function (In this paper,
we use the squared exponential covariance function

K(xn, xñ;γ) = (γ(1))2exp
[
− (xn − xñ)

TΛ(xn − xñ)/2
]
,

where Λ = diag
(
1/(γ(2))2, 1/(γ(3))2, · · · , 1/(γ(E+1))2) is the E× E diagonal matrix) pa-

rameterized by γ = [γ(1), γ(2), · · · , γ(E+1)]
The likelihood function of the GP is obtained by integrating p(y|f)p(f|X) with respect

to f, given by
p(y|X) = N(µ, K + σ2IN), (2)

where p(y|f) is the independent identically distributed Gaussian distribution obtained by
Equation (1), y = [yn]N×1 is the output vector, and IN is the N × N unit matrix.

3.2. The WGP Model

In the non-stationary probabilistic regression problem, the WGP model describes the
real output in the observation space as a parametric nonlinear transformation of the GP.
For the dataset D = {xn ∈ RE, wn ∈ R}N

n=1, the WGP is constructed by introducing a latent
variable set {yn ∈ R}N

n=1, where wn and xn are the n-th output in the observation space
and the n-th E× 1 input, respectively. The latent vector y = [yn]N×1 is subject to a GP with
a zero-mean function (i.e., µ(xn) = 0), defined by Equation (2)

p(y|X) = N(0N×1, K + σ2IN).

The latent variable yn is transformed to wn by a monotonic warping function (In this
paper, we assume the warping function to be a feedforward neural network g(wn; Ω) =

wn + ∑J
j=1 aj tanh

(
hj(wn + lj)

)
, where aj and hj are non-negative for any j to ensure mono-

tonicity, J is the number of neurons, and Ω = [a1, a2, · · · , aJ , h1, h2, · · · , hJ , l1, l2, · · · , lJ ]
T).

g(•; Ω)
yn = g(wn; Ω),

where g(wn; Ω) maps wn to the entire real line, and Ω is the parameter vector composed of
J neurons. As stated above, the established WGP is fully incorporated into the probabilistic
framework of the GP.

For convenience, the WGP is denoted as

w ∼WGP(X;θ, Ω), (3)

where w = [wn]N×1 is the output vector and θ = {σ, γ(1), γ(2), · · · , γ(E+1)}. For WGP,
the information flow direction is xn → yn → wn, and the relationships between the main
variables are shown in Figure 3. From this figure, outputs {wn ∈ R}N

n=1 are conditionally
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independent when the strongly correlated { fn}N
n=1 are given. The parameters θ and Ω are

learned jointly using a conjugate gradient method for WGP.

Figure 3. A diagram showing the relations among the main variables in the WGP model.

3.3. The MWGP Model

To process multimodal data while modeling the non-stationary nature of each mode,
we describe our proposed MWGP model mathematically next, where C-different WGP
components are mixed in the input region. The structure of MWGP is similar to that of the
MGP, as illustrated in Figure 1. Compared to the MGP, the two-layer structure of MWGP
can address non-stationary probabilistic regression in different ways.

A subscript c is inserted in the preceding notation for the number of components.
The n-th sample (xn, wn) is allocated to the c-th WGP component by an indicator variable
znc (regarded as a latent variable), where c = 1, 2, · · · , C. If (xn, wn) is in the c-th com-
ponent, then znc = 1; otherwise, znc = 0. The distribution of the indicator variable vector
zn = [zn1, zn2, · · · , znC]

T is given by

P(zn = ec) = ηc, (4)

where ec is the c-th column of the C× C unit matrix IC and ∑C
c=1 ηc = 1.

The distribution of the input vector xn is given by

p(xn|zn = ec) = N(αc, Σc), (5)

where αc and Σc are the E × 1 mean vector and the E × E covariance matrix of the
Gaussian distribution, respectively. Equation (5) is commonly used in most generative
mixture models.

After the distributions of Equations (4) and (5) are given, the distribution of the output
vector wc is given based on Equation (3) by

wc ∼WGP(Xc;θc, Ωc), (6)

where Xc is the E × Nc input matrix composed of {xn|zn = ec; n = 1, 2, · · · , N} in
which Nc = ∑N

n=1 znc is the sample number, wc is the Nc × 1 output vector composed of
{wn|zn = ec; n = 1, 2, · · · , N}, Ωc parameterizes the warping function of the c-th compo-
nent, and θc = {σc, γ

(1)
c , γ

(2)
c , · · · , γ

(E+1)
c }. For MWGP, C WGP components are indepen-

dent, and each component is defined by Equation (6). MWGP is generally more flexible
than the MGP and WGP; its information flow direction is zn → xn → yn → wn, as shown
in Figure 4. If C = 1, then the MWGP degenerates to WGP; if g(wn; Ωc) = wn, then the
MWGP degenerates to MGP.

With the above analysis, the mixture structure, the covariance function, and the warp-
ing function are incorporated simultaneously in the same probabilistic model framework.
The computational cost of MWGP is similar to MGP since the time complexity of the inverse
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covariance matrix operation in MWGP is the same as that in MGP, i.e., O(N3/C2). For
MWGP, there is an overfitting problem when too many extra parameters are added.

Figure 4. The probabilistic graphical model of the MWGP model: the elements inside the boxes are
main variables and the others are parameters.

4. Algorithm Design

To handle the large time complexity of calculating the Q-function in the conventional
EM algorithm of MWGP, we designed the CEM and partial CEM algorithms. In the CEM
algorithm of MWGP, a local optimum is generally generated when there is a large separation
between two parts of the MWGP component in practice. This separation is created by
having many components of MWGP in one region and few in another. To escape from
this separation, simultaneous split and merge operations were performed repeatedly by
merging two similar components in a region with many components and splitting one
component in another region with few components. As the CEM algorithm of MWGP can
sometimes get trapped in a local optimum, we developed the SMCEM algorithm of MWGP
to address this issue. The CEM algorithm of MWGP and the partial CEM algorithm of
MWGP are sub-algorithms of the SMCEM algorithm for MWGP.

4.1. Procedures of the Proposed Algorithms

Denote the C × N indicator variable matrix Z = [z1, z2, · · · , zN ] and the whole pa-
rameter set Φ = {Φc}C

c=1, where Φc = {ηc,αc, Σc,θc, Ωc}. For MWGP, procedures of the
SMCEM algorithm, the CEM algorithm, and the partial CEM algorithm are presented in
Algorithms 1–3.

The k-means clustering method is adopted in the first step of Algorithm 1 since it is
possible for some samples to belong to the same component if they are close in distance.
In the second and third steps of Algorithm 1, the split candidate set {t} and the merge
candidate set {u, s} are sorted by split and merge criteria, respectively. By renumbering
the merge and split candidate sets, we obtain the candidate set {u, s, t}. In the fifth step
of Algorithm 1, we perform the partial CEM algorithm to retrain the parameters of new
components and ensure that all other components are not affected by this retraining. The
CEM algorithm is performed as a full training procedure for all components in the sixth
step of Algorithm 1. In the seventh step of Algorithm 1, it is obvious that the accepted split
or merge operation attempts to increase the value of the approximated Q-function in each
iteration. We set hyperparameters C, J, and D according to the best RMSE (the root mean
square error (RMSE) is used to characterize the accuracy of the model, which is defined

mathematically by
√

∑N
n=1(yn − ŷn)2/N, where ŷn is the estimation of yn). In Algorithm 1,

components of MWGP with poor aggregation are divided in the split operation, and those
with high similarity are combined in the merge operation. Simultaneous split and merge
operations can perform a global search by crossing over low-likelihood positions.



Mathematics 2023, 11, 2251 7 of 19

Algorithm 1 The SMCEM algorithm for MWGP
Input: D, C, J.
Output: Φbest, Lbest.
1: Initialization: Initialize the indicator variable matrix Z(0) by the k-means clustering on

the input set {xn}N
n=1, and obtain the indicator variable matrix Z(1) and the parameter

set Φ(0) by performing the CEM algorithm described in Algorithm 2. Set the number of
current iterations as r = 1, and Lbest = −∞.

2: The merge operation: The component numbers of the merge operation u and s are
obtained by the merge criterion described in Appendix C, where u, s ∈ {1, 2, · · · , C}
and u 6= s. The new component after merging the old u-th component and the old s-th
component is called the u-th component.

3: The split operation: The component number of the split operation t is obtained by the
split criterion described in Appendix C, where t ∈ {1, 2, · · · , C}. New components after
splitting the old t-th component are called the s-th and t-th components.

4: For n ∈ {n|z(3r−2)
n = es}, set z(3r−1)

n = eu; {xn|z(3r−2)
n = et; n = 1, 2, · · · , N} is clustered

into two clusters by the k-means clustering, and set z(3r−1)
n = es for samples of the first

cluster; otherwise, set z(3r−1)
n = z(3r−2)

n .
5: Obtain Z(3r) by performing the partial CEM algorithm described in Algorithm 3.
6: Obtain Φ(3r) and Z(3r+1) by performing the the CEM algorithm described in Algorithm 2.
7: Convergence criterion: If the value of the approximated Q-function L(Φ(3r), Z(3r+1)) > Lbest,

then set Lbest = L(Φ(3r), Z(3r+1)), Φbest = Φ(3r), r = r + 1 and return to the second step;
otherwise, stop.

Algorithm 2 The CEM algorithm for MWGP
Input: D, C, J.
Output: Φ(r′), Z(r′).
1: Initialization: Set the initialized indicator variable matrix Z(0) = Z(3r) (or Z(0)) and

r′ = 1.
2: M step: Update Φ(r′) by maximizing L(Φ, Z(r′−1)) described in Appendix A.2.
3: CE step: Update Z(r′) by the approximated MAP principle described in Appendix A.1.
4: Convergence criterion: If r′ > 9 and(

∑r′

i=r′−4 L(Φ(i), Z(i))−∑r′−5
i=r′−9 L(Φ(i), Z(i))

)/∣∣∑r′−5
i=r′−9 L(Φ(i), Z(i))

∣∣ < ε,

or r′ ≥ rmax, stop; otherwise, r′ = r′ + 1 and return to the second step.

Algorithm 3 The partial CEM algorithm for MWGP.
Input: D, u, s, t, J.
Output: Z(r′′).
1: Initialization: Set the initialized indicator variable matrix Z(0) = Z(3r−1) and r′′ = 1.
2: Partial M step: Update Φ(r′′)

c=u,s,t by partially maximizing L(Φ, Z(r′′−1)), as described in
Appendix B.1.

3: Partial CE step: Obtain z(r
′′)

n for n ∈ {n|z(r
′′−1)

n = ec=u,s,t} by the approximated MAP

principle described in Appendix B.2; otherwise, set z(r
′′)

n = z(r
′′−1)

n .
4: Convergence criterion: If r′′ >9 and(

∑r′′

i=r′′−4 L(Φ(i), Z(i))−∑r′′−5
i=r′′−9 L(Φ(i), Z(i))

)/∣∣∑r′′−5
i=r′′−9 L(Φ(i), Z(i))

∣∣ < ε,

or r′′ ≥ rmax, stop; otherwise, r′′ = r′′ + 1 and return to the second step.

In the second and third steps of Algorithm 2, Φ and Z are updated alternately. Samples
are classified into C components to overcome the time complexity of the conventional EM
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algorithm in the third step of Algorithm 2. In the fourth step of Algorithm 2, we apply a
relatively long-term convergence criterion.(

∑r′

i=r′−4 L(Φ(i), Z(i))−∑r′−5
i=r′−9 L(Φ(i), Z(i))

)/∣∣∑r′−5
i=r′−9 L(Φ(i), Z(i))

∣∣ < ε

since L(Φ(r′), Z(r′)) may fluctuate during iterations, we present the largest number of it-
erations, i.e., rmax = 30 and ε = 0.002. Regarding the annealing mechanism, Algorithm 2
can be viewed as a deterministic annealing EM algorithm with the annealing parameter
tending to positive infinity, while the conventional EM algorithm can be viewed as a deter-
ministic annealing EM algorithm with the annealing parameter being one. Theoretically,
Algorithm 2 is more likely to fall into a local optimum than the conventional EM algorithm.
The details of the CEM algorithm are described in Appendix A.

Algorithm 3 was performed on new components generated by the simultaneous split

and merge operations. In the second and third steps of Algorithm 3, Φ(r′′)
c=u,s,t and z(r

′′)
n are

updated alternately, where n ∈ {n|z(r
′′−1)

n = ec=u,s,t}. In the third step of Algorithm 3,

z(r
′′)

n for n ∈ {n|z(r
′′−1)

n = ec=u,s,t} is obtained by using the initialized Z(3r−1), while

z(r
′′)

n = z(r
′′−1)

n is set for the other components. The details of the partial CEM algorithm
are described in Appendix B.

4.2. Prediction Strategy

For MWGP, the time complexity of the conventional prediction method is generally
high. We adopted the classification approximation method for MWGP to improve the
predictive efficiency. In this prediction, the mean predictive output is used since the
RMSE is measurable. In this paper, we used a predictive strategy similar to the MGP
(or ME), i.e., the weighted prediction. A test sample was put into each WGP expert to
calculate the predictive distribution individually, and then these predictive distributions
were weighted and averaged according to the posterior probability to obtain the overall
predictive distribution.

For the test sample xN+1 in the c-th component, the predictive distribution in the latent
space of the WGP is a standard GP

p(yN+1,c|xN+1,c,D,θc) = N(ỹN+1,c, σ2
N+1,c). (7)

By a nonlinear transformation in Equation (7), the predictive distribution in the obser-
vation space is calculated by

p(wN+1,c|xN+1,c,D,θc, Ωc)

=
(
∂g(wN+1,c; Ωc)/∂(wN+1,c)

)
/
√

2πσ2
N+1,c

• exp
[
−
(

g(wN+1,c; Ωc)− ỹN+1,c
)2/2σ2

N+1,c
]
.

(8)

Compared to the shape of the predictive distribution in Equation (7), the shape of
the predictive distribution in Equation (8) is generally asymmetric and multimodal. By
integrating wN+1,c in Equation (8), the mean predictive output in the latent space of the
WGP is obtained by

E(wN+1,c) =
∫

wN+1,c p(wN+1,c|xN+1,c,D,θc, Ωc)dwN+1,c

=
∫

g−1(yN+1,c; Ωc)N(ỹN+1,c, σ2
N+1,c)dyN+1,c,

(9)

where g−1(•; Ωc) is the inverse of g(•; Ωc). The closed-form solution of g−1(•; Ωc) is
generally difficult to obtain, so we used the Newton–Raphson method to calculate it. Since
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Equation (9) is the one-dimensional integral of wN+1,c in the Gaussian density function, it
can be solved accurately by the Gauss–Hermite quadrature method.

Finally, the overall mean predictive output for MWGP is given based on Equation (9):

ŵN+1 = ∑C
c=1 ẑN+1,cE(wN+1,c),

where ẑN+1 = arg maxzN+1
P(zN+1|Φ)p(xN+1|zN+1, Φ).

5. Experimental Results

In this section, we show the experimental results of MWGP on synthetic datasets and
three types of real-world datasets. The experiments were conducted on a personal computer
equipped with a 2.9GHz Intel Core i7 CPU and 16.00 GB of RAM, using Matlab R2019b.

5.1. Comparative Models

Models and related algorithms are described in Table 1, where GP, support vector
machine (SVM), and feedforward neural network (FNN) are comparative models. The
GPML toolbox in Matlab R2019b, the SVM toolbox in Matlab R2019b, and the FNN toolbox
in Matlab R2019b were adopted in our experiments. For MWGP II, MWGP I, and WGP, we
chose an optimal value of J to avoid overfitting while balancing accuracy and efficiency.
RMSE and MAE (note that the mean absolute error (MAE) is used to describe the sensitivity
of the model to outliers, which is defined mathematically by ∑N

n=1 |yn − ŷn|/N, where ŷn
is the estimation of yn) are used to assess the performance of real-world datasets.

Table 1. The symbols represent the models and related algorithms; the bold font is used for our
proposed models.

Symbol Model Algorithm

MWGP II MWGP SMCEM
MWGP I CEM
MGP [28] MGP CEM

WGP [39] WGP MLEGP [49] GP

FNN [50] FNN Levenberg–Marquardt
SVM [51] SVM Sequential minimal optimization

5.2. Synthetic Datasets of MWGP I

To test the consistency of MWGP I, we generated 10 typical synthetic datasets by
the MGP model with the component number C = 2 and the input dimension number
E = 1, denoted by S1,S2, · · · ,S10, respectively. S1 is the original dataset, where there
are 300 training samples and 600 test samples. In each dataset, samples are warped by
a monotonic function g(•; Ωc). The number of neurons J is set as 2, and Ωc is randomly
generated from a Gaussian distribution. The main parameters of MWGP I on S1 are shown
in Table 2. The other datasets that differ from S1 are listed as follows.

1. S2 (a low noise dataset): σ1 = σ2 = 0.0200.
2. S3 (a high noise dataset): σ1 = σ2 = 0.5000.

3. S4 : γ
(1)
1 = 0.0707, γ

(1)
2 = 0.5000.

4. S5 : γ
(1)
1 = 0.2828, γ

(1)
2 = 2.0000.

5. S6 (a short length-scale dataset): γ
(2)
1 = 0.8165, γ

(2)
2 = 6.3246.

6. S7 (a long length-scale dataset): γ
(2)
1 = 0.2041, γ

(2)
2 = 1.5811.

7. S8 (a medium overlapping dataset): Σ1/2
1 = 2.1213, Σ1/2

2 = 3.1820.
8. S9 (a large overlapping dataset): Σ1/2

1 = 3.0000, Σ1/2
2 = 4.5000.

9. S10 (an unbalanced dataset): η1 = 0.2500, η2 = 0.7500.
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The real parameters (RPs), average estimated parameters (AEPs), and standard devi-
ations of estimated parameters (SDEPs) obtained by MWGP I on S1 are listed in Table 2,
where the AEPs obtained by MWGP I are similar to the related RPs and the related SDEPs
are generally small. As a result, the parameter estimate of MWGP I is practically unbiased
and effective.

Table 2. RPs and AEPs with SDEPs were obtained through 150 trials using MWGP I on S1.

ηc αc Σ1/2
c σc γ

(1)
c γ

(2)
c

c = 1
RP 0.5000 3.0000 1.8974 0.1414 0.1414 0.2887

AEP 0.4944 3.1380 1.9185 0.1449 0.1584 0.2708
SDEP 0.0059 0.0347 0.0588 0.0143 0.1389 0.2761

c = 2
RP 0.5000 10.500 2.8460 0.1414 1.0000 2.2361

AEP 0.5056 10.688 2.9122 0.1477 1.2247 2.0492
SDEP 0.0059 0.0380 0.0545 0.0138 0.1427 0.2658

The predictive results of MWGP I and MGP on S1 are presented in Figure 5a. The figure
suggests that MWGP I outperforms MGP in the flat zone, specifically in the intervals (10.8,
11.7). In Figure 5b, the predictive probability density of MWGP I is asymmetrical across the
whole distribution, but the predictive probability density of the MGP is symmetrical even
when it is calculated by using the warped samples. Warping functions learned by MWGP
I on S1 are shown in Figure 6. The warping function learned for the first component in
Figure 6a is linear-like, while the warping function learned for the second component in
Figure 6b is power-like, with an order between 0 and 1. It can be seen that MWGP I is
flexible enough to handle non-stationary among different regions on a multimodal dataset.

In Table 3, the average predicted RMSEs, SDs of predicted RMSEs, p-values [52]
of predicted RMSEs, and average running times for MWGP I and the other models on
S1,S2, · · · ,S10 are illustrated, where p-values are obtained by MWGP I and the other
comparative models, respectively. The prediction accuracies of MWGP I and MGP are
better than the other models due to the mixture structure, and the prediction accuracy of
MWGP I is the best of all. MWGP I is superior to MGP in accuracy because of the warping
function. Although the SDEPs of γ

(1)
c and γ

(2)
c are larger than the other parameters, the

predicted results of MWGP I are accurate in S1. Thus, MWGP I is robust for the estimates
of γ

(1)
c and γ

(2)
c . The SDs of predicted RMSEs for MWGP I and the other models are small.

From the p-values, the predicted RMSE of MWGP I is different from the other models,
except for MGP on S3 and S5. Thus, our proposed MWGP I is effective, and it can optimize
all parameters jointly.
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Figure 5. Fitting results of MWGP I and MGP on S1: (a) Predictions of MWGP I and MGP. Line
triplets represent the mean and two standard deviation (SD) bounds; (b) predictive probability
densities of MWGP I and MGP at x = 11.3.



Mathematics 2023, 11, 2251 11 of 19

(a) (b)

Figure 6. Warping functions obtained by MWGP I on S1: (a) The warping function learned in the
first component; (b) the warping function learned in the second component.

Table 3. The average predicted RMSEs, SDs of predicted RMSEs, p-values of predicted RMSEs, and
average running times (seconds) for MWGP I and the other models from over one hundred trials on
synthetic datasets; the bold font represents the best results.

Model

S1 S2 S3 S4 S5

RMSE Time RMSE Time RMSE Time RMSE Time RMSE
Time

Average SD p-Value Average SD p-Value Average SD p-Value Average SD p-Value Average SD p-Value

MWGP I 0.1024 0.0312 − 2.5916 0.0891 0.0641 − 2.6589 0.3751 0.0543 − 2.8216 0.0901 0.0394 − 2.5175 0.5077 0.0346 − 2.5261
MGP 0.1442 0.0217 0.0000 1.9620 0.1142 0.0638 0.0000 2.5429 0.3792 0.0473 0.1319 2.5187 0.1331 0.0418 0.0000 1.9213 0.5178 0.0415 0.0571 2.0896
WGP 0.2507 0.0242 0.0000 0.2250 0.1694 0.0505 0.0000 0.2019 0.4168 0.0096 0.0000 0.2133 0.1417 0.0437 0.0000 0.2041 0.5569 0.0310 0.0000 0.1940

GP 0.4083 0.0605 0.0000 0.1637 0.2867 0.0471 0.0000 0.1581 0.5434 0.0261 0.0000 0.1661 0.2146 0.0624 0.0000 0.1590 0.6676 0.0113 0.0000 0.1714
FNN 0.3715 0.1330 0.0000 1.9095 0.2695 0.0143 0.0000 1.6244 0.7014 0.1307 0.0000 1.7249 0.2928 0.0514 0.0000 2.4233 0.6749 0.1753 0.0000 2.1344
SVM 0.4605 0.1942 0.0000 45.236 0.3561 0.0139 0.0000 52.126 0.7901 0.1889 0.0000 39.451 0.3051 0.0539 0.0000 52.089 0.7295 0.2657 0.0000 58.141

Model

S6 S7 S8 S9 S10

RMSE Time RMSE Time RMSE Time RMSE Time RMSE
Time

average SD p-value average SD p-value average SD p-value average SD p-value average SD p-value

MWGP I 0.0807 0.0196 − 2.5135 0.2869 0.0318 − 2.5388 0.2582 0.0316 − 2.8099 0.4858 0.0296 − 2.7052 0.1816 0.0273 − 2.3483
MGP 0.1248 0.0197 0.0000 2.4189 0.3028 0.0528 0.0000 1.9746 0.2719 0.0372 0.0000 2.2128 0.5105 0.0343 0.0000 2.1638 0.2090 0.0337 0.0000 1.8251
WGP 0.1702 0.0527 0.0000 0.2609 0.3250 0.0492 0.0000 0.2269 0.3069 0.1058 0.0000 0.2342 0.5492 0.1279 0.0000 0.2958 0.2709 0.0581 0.0000 0.2382

GP 0.3456 0.0828 0.0000 0.1688 0.4787 0.0836 0.0000 0.1654 0.4352 0.1304 0.0000 0.1680 0.5596 0.1336 0.0000 0.2086 0.4416 0.0977 0.0000 0.1601
FNN 0.3230 0.0907 0.0000 2.0654 0.3720 0.1551 0.0000 1.8096 0.4527 0.1316 0.0000 2.2110 0.5496 0.1561 0.0000 2.1758 0.3768 0.1409 0.0000 1.6346
SVM 0.4915 0.1544 0.0000 51.590 0.5443 0.2024 0.0000 43.145 0.4958 0.1672 0.0000 55.062 0.5578 0.1736 0.0000 55.242 0.4675 0.1632 0.0000 48.347

5.3. Synthetic Datasets of MWGP II

For MWGP I, there is a local optimum in some cases. We propose MWGP II as a
solution to this issue. To verify the consistency of MWGP II, we generated 6 typical synthetic
datasets S11,S12, · · · ,S16 by MGP with C = 5 and E = 2. In S11, there are 750 training
samples and 1500 test samples. In each dataset, samples are warped by g(•; Ωc). We set
J = 3 and generated Ωc at random using a Gaussian distribution for these synthetic datasets.
The main parameters of MWGP II on S11 are shown in Table 4. The other datasets that
differ from S11 are listed as follows.

1. S12 (a noise dataset): σ1 = σ3 = σ5 = 0.5000, and σ2 = σ4 = 0.1000.

2. S13 : γ
(1)
1 = 0.2828, γ

(1)
2 = 2.0000, γ

(1)
3 = 0.8944, γ

(1)
4 = 0.7071, and γ

(1)
5 = 0.5477.

3. S14 (a length-scale dataset): γ
(2)
1 = 0.2041, γ

(2)
2 = 1.5811, γ

(2)
3 = 1.2910, γ

(2)
4 = 0.5000,

and γ
(2)
5 = 1.5811.

4. S15 (an overlapping dataset):

Σ1/2
1 = [3.0000, 2.4000; 2.4000, 3.0000],

Σ1/2
2 = [4.5000,−3.8730;−3.8730, 4.5000],

Σ1/2
3 = [3.0000, 0.0000; 3.0000, 0.0000],

Σ1/2
4 = [4.5000,−3.8730;−3.8730, 4.5000],

Σ1/2
5 = [3.0000, 2.4000; 2.4000, 3.0000].
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5. S16 (an unbalanced dataset): η1 = 1/9, η2 = 3/9, η3 = 1/9, and η4 = 3/9, η5 = 1/9.

Table 4. The main parameters of MWGP II on S11.

ηc α
(1)
c α

(2)
c (Σ

(11)
c )1/2 (Σ

(12)
c )1/2 (Σ

(21)
c )1/2 (Σ

(22)
c )1/2 σc γ

(1)
c γ

(2)
c γ

(3)
c

c = 1 0.2000 3.0000 3.0000 1.8974 1.5000 1.5000 1.8974 0.1414 0.1414 0.2887 1.2910
c = 2 0.2000 10.500 10.500 2.8460 −2.1000 −2.1000 2.8460 0.0200 1.0000 2.2361 0.5000
c = 3 0.2000 18.000 18.000 1.8974 0.0000 0.0000 1.8974 0.1414 0.4472 1.8257 1.5811
c = 4 0.2000 25.500 25.500 2.8460 −2.1000 −2.1000 2.8460 0.0200 0.5000 0.7071 0.7071
c = 5 0.2000 33.000 33.000 1.8974 1.5000 1.5000 1.8974 0.1414 0.2739 2.2361 1.2910

The average ALLFs (approximated log-likelihood functions, i.e., values of the approxi-
mated Q-function after convergence of the SMCEM algorithm) and average running times
of MWGP II and MWGP I on S11,S12, · · · ,S16 are shown in Table 5. In these synthetic
datasets, the average ALLF of MWGP II is larger than MWGP I, so MWGP II overcomes the
local optimum of MWGP I. The average running time of MWGP II is longer than MWGP I
since the partial CEM algorithm and the CEM algorithm are performed several times for
the training of MWGP II. It can be concluded from the above discussion that our proposed
MWGP II is effective.

Table 5. The average ALLFs and running times (seconds) of MWGP II and MWGP I from over one
hundred trials on the synthetic datasets; the bold font represents the best results.

Model S11 S12 S13

ALLF Time ALLF Time ALLF Time

MWGP II −1.0867× 103 11.438 −1.6752× 103 10.584 −1.7330× 103 11.478
MWGP I −1.1678× 103 5.4443 −1.7388× 103 3.9803 −1.8351× 103 5.4065

Model S14 S15 S16

ALLF Time ALLF Time ALLF Time

MWGP II −1.4240× 103 10.315 −1.5961× 103 11.527 −1.1597× 103 12.130
MWGP I −1.5726× 103 3.9889 −1.6786× 103 5.5424 −1.2283× 103 5.7286

5.4. Toy and Motorcycle Datasets

Toy data [7,27] and motorcycle data [6,8,27] were used to test the performance of the
MGP. We tested the consistency of our proposed MWGP II and MWGP I on the toy dataset
S17 and the motorcycle dataset S18. S17 consisted of four components generated by four
continuous functions, i.e.,

y1 = 0.25x2
1 − 40 +

√
7ε,

y2 = −0.0625(x2 − 18)2 + 0.5x2 + 20 +
√

7ε,

y3 = 0.008(x3 − 60)2 − 70 + 2ε,

y4 = − sin(x4)− 6 +
√

2ε,

where x1 ∈ (0, 15), x2 ∈ (35, 60), x3 ∈ (45, 80), x4 ∈ (80, 100) and ε ∼ N(0, 1), as shown in
Figure 7a. In each component, there are 50 training samples and 50 test samples. We set
J = 2 and C = 4 for S17.
S18 presents the accelerometer readings recorded at 133 moments during an experi-

ment evaluating the effectiveness of crash helmets. In S18, samples belong to three com-
ponents along the time axis (millisecond), i.e., (2.4, 11.4], (11.4, 40.4], and (40.4, 57.6], as
shown in Figure 7b. We performed 7-fold cross-validation on this dataset, with the k-th
fold consisting of the dataset {(xn, yn) : n = 7i + k, i = 0, 1, · · · , 18}. We used 19 samples
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as the test set and the remaining samples as the training set. For this dataset, we set J = 2
and C = 3 for S18.
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Figure 7. (a) Predictions of MWGP II, MWGP I, and MGP on S17; (b) predictions of MWGP II, MWGP
I, and MGP on S18.

We compare the MWGP II, MWGP I, MGP, WGP, GP, FNN, and SVM models on S17
and S18, respectively. The average predicted RMSEs, average predicted MAEs, and average
running times of these models are listed in Table 6. With these datasets, MWGP II and
MWGP I are more accurate than the other models, and MWGP II is more accurate than
MWGP I. The average predicted RMSE and average predicted MAE of the MGP are larger
than those of a single GP and the WGP since the data in S17 and S18 are highly multimodal
and non-stationary. The FNN and SVM can hardly fit S17 and S18 accurately. In Figure 7a,
MWGP II and MWGP I are better than the MGP, for example on the interval (80, 100); in
Figure 7b, MWGP II and MWGP I are better than the MGP, for example on the interval
(2.4, 11.4]. Consequently, both MWGP II and MWGP I are effective for these tasks, and
MWGP II can overcome the local optimum of MWGP I at the expense of only a little time
on these datasets. In summary, the preprocessing transformation is critical for MGP in the
toy and motorcycle datasets.

5.5. River-flow Datasets

We conducted experiments on ten river-flow datasets S19,S20, · · · ,S28 to verify the
consistency of our proposed MWGP II and MWGP I [53]. In each dataset, about 40 years
(i.e., from 1920 to 1960) of monthly river flow for rivers in the USA (such as the Current
River, the Mad River, the Madison River, and the Mackenzie River) were recorded. There
are approximately 155 training samples and 313 test samples in each dataset. For river-flow
datasets, there is minimal correlation between prediction accuracy and the value of C. We
set J = 2 and C = 4 for these datasets.

For comparison, MWGP II, MWGP I, MGP, WGP, GP, FNN, and SVM are considered
in S19,S20, · · · ,S28, respectively. The average predicted RMSEs (cubic meters/second),
average predicted MAEs, and average running times of these models are recorded in Table 6.
From this table, MWGP II and MWGP I are smaller than the other models in terms of the
average predicted RMSE and average predicted MAE, and the average predicted RMSE
and average predicted MAE of MWGP II are smaller than those of MWGP I. Although
MWGP I has the same accuracy as MWGP II in S25,S26, · · · ,S28, it is more efficient than
MWGP II. Based on the analysis above, our proposed MWGP II and MWGP I are effective
for processing the river-flow datasets, and demonstrate that the nonlinear transformation
is useful for this type of data. Additionally, MWGP II can overcome the local optimum of
MWGP I at a minimal computational cost on some datasets.
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Table 6. The average predicted RMSEs, average predicted MAEs, and average running times (seconds)
of different models from over thirty trials on the toy dataset, the motorcycle dataset, and the river-flow
datasets; the bold font represents the best results.

Model
S17 S18 S19 S20

RMSE MAE Time RMSE MAE Time RMSE MAE Time RMSE MAE Time

MWGP II 13.481 7.7561 6.9812 24.153 13.297 15.671 47.896 29.157 2.3341 10.425 5.5228 2.2285
MWGP I 14.312 8.1550 2.3733 25.987 14.309 6.8800 48.171 29.316 1.0935 10.668 5.7159 1.0824

MGP 14.714 8.4912 1.6331 26.370 14.351 4.4129 49.060 30.075 0.7358 11.071 6.0772 0.6139

WGP 14.772 8.4834 0.1231 29.277 16.579 0.4211 49.411 30.391 0.0824 11.654 6.5137 0.0806
GP 20.387 13.322 0.1070 26.700 14.725 0.3186 55.466 35.323 0.0703 14.174 8.7933 0.0645

FNN 18.004 11.974 1.6293 30.359 17.213 16.433 49.588 30.514 1.2033 11.669 6.5154 1.1592
SVM 17.267 11.445 46.223 29.782 16.885 182.67 54.627 34.917 25.333 12.780 7.4816 23.858

Model
S21 S22 S23 S24

RMSE MAE Time RMSE MAE Time RMSE MAE Time RMSE MAE Time

MWGP II 4.5938 3.7556 2.2943 14.266 8.6631 2.4118 16.617 10.885 2.2389 31.171 22.483 2.2581
MWGP I 4.6721 3.8321 1.0644 14.570 8.9534 1.1831 16.727 10.988 1.1016 31.536 22.814 1.1268

MGP 5.1759 4.3327 0.5734 14.924 9.2859 0.5911 16.814 11.067 0.7345 34.575 26.257 0.7646

WGP 4.7084 3.8626 0.0673 15.318 9.6578 0.0939 16.728 10.990 0.0886 32.428 23.877 0.0819
GP 5.6274 4.6852 0.0587 16.161 10.527 0.0718 17.043 11.302 0.0711 34.813 26.416 0.0755

FNN 4.7079 3.8629 1.1525 15.599 9.9261 1.3947 16.738 10.996 1.1650 32.666 24.093 1.1725
SVM 4.8446 3.9841 19.240 16.353 10.673 26.039 17.415 11.579 23.659 33.163 24.552 23.745

Model
S25 S26 S27 S28

RMSE MAE Time RMSE MAE Time RMSE MAE Time RMSE MAE Time

MWGP II 27.736 19.675 2.4640 30.696 22.095 2.4040 50.497 31.265 2.2823 33.789 24.613 2.2461
MWGP I 27.776 19.702 1.2057 30.708 22.121 1.1113 50.502 31.283 1.1090 33.792 24.624 1.0795

MGP 28.053 20.015 0.7480 32.061 23.216 0.7923 52.317 32.837 0.7065 34.529 25.277 0.7084

WGP 27.785 19.719 0.0991 30.712 22.128 0.0909 50.712 31.415 0.0857 34.004 24.858 0.0826
GP 28.310 20.263 0.0762 32.803 23.871 0.0756 52.994 33.478 0.0745 35.276 26.064 0.0738

FNN 27.921 19.998 1.1907 30.727 22.141 1.1980 50.603 31.357 1.1813 34.163 25.040 1.1099
SVM 28.098 20.068 24.062 31.812 22.844 27.023 52.920 33.432 26.387 35.072 25.821 20.228

6. Conclusions and Discussion

In this paper, we demonstrate that the MWGP model is a valuable generalization of
the MGP and WGP models, and it is well suited for solving non-stationary probabilistic
regression. From another point of view, the standard preprocessing transformation in
MWGP can be learned adaptively and improved upon. We show that simultaneous split
and merge operations are able to eliminate the component differences between the two
regions to avoid the local optimum of the CEM algorithm for MWGP. Experimental results
on synthetic and real-world datasets show that our proposed MWGP trained by the CEM
algorithm as well as MWGP trained by the SMCEM algorithm are effective.

For MWGP, the actual number of WGP components is generally difficult to learn due
to the correlation among outputs. In future work, we will focus on learning C for MWGP.
Moreover, for probabilistic regression models, there are likely outliers in the observations
that deviate significantly from the other samples. We will consider the robustness for
MWGP based on the robustness of the MGP.
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Nomenclature

AEP Average estimated parameter
ALLF Approximated log-likelihood function

CEM
Classification expectation–maximization (also called hard-cut
expectation–maximization or hard expectation–maximization)

EM Expectation–maximization
FNN Feedforward neural network
GP Gaussian process
LOOCV Leave-one-out cross-validation
MAE Mean absolute error
MAP Maximum a posteriori
MCMC Markov chain Monte Carlo
ME Mixture of experts
MGP Mixture of Gaussian processes
MLE Maximum likelihood estimation
MWGP Mixture of warped Gaussian processes
RMSE Root mean square error
RP Real parameter
SDEP Standard deviation of the estimated parameter
SD Standard deviation
SMCEM Split and merge classification expectation–maximization
SVM Support vector machine
VB Variational Bayesian
WGP Warped Gaussian process

Appendix A. Details of the CEM Algorithm

Appendix A.1. The Derivation of the Q-Function and Details of the Approximated
MAP Principle

Denote g(wc; Ωc) =
[
g(wn; Ωc)|zn = ec; n = 1, 2, · · · , N

]
as the Nc × 1 function vector

of the c-th component, Kc = [K(xn, xñ;γc)|zn = zñ = ec; n, ñ = 1, 2, · · · , N] as the Nc × Nc

covariance matrix of the c-th component, and ∑Nc
n=1 ln ∂g(wn; Ωc)/∂wn as a Jacobian term.

The total log-likelihood function of MWGP is given by

L(Φ, Z) = ln p(D, Z|Φ) = ∑C
c=1 Lc(Φc, Z)

=∑C
c=1

{
∑N

n=1 znc
[

ln ηc + ln p(xn|zn = ec)
]
+ ln p(wc|Xc,θc, Ωc)

}
,

(A1)

where ln p(wc|Xc,θc, Ωc) is the log-likelihood function of the c-th WGP given by

ln p(wc|Xc,θc, Ωc) =−
[

Nc ln 2π + g(wc; Ωc)
T(Kc + σ2

c INc

)−1g(wc; Ωc)

+ ln |Kc + σ2
c INc |

]/
2 + ∑Nc

n=1 ln ∂g(wn; Ωc)/∂wn.

The Q-function of the conventional EM algorithm of MWGP is obtained by the expec-
tation of Equation (A1) with respect to Z :

Q(Φ|Φ(r−1)) = EZ
[
L(Φ, Z)|D, Φ(r−1)] = ∑Z P(Z|D, Φ(r−1))L(Φ, Z). (A2)
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The posterior probability P(zn|xn, wn, Φ(r)) is calculated by

P(zn|xn, wn, Φ(r)) ∝p(xn, wn, zn|Φ(r))

=P(zn|Φ(r))p(xn|zn, Φ(r))p(wn|xn, zn, Φ(r))

=P(zn|Φ(r))p(xn|zn, Φ(r))p(yn|xn, zn, Φ(r))

=P(zn|Φ(r))p(xn|zn, Φ(r))

• p(g(wn; Ω(r))|xn, zn, Φ(r))∂g(wn; Ω(r))/∂wn,

(A3)

where ∂g(wn; Ω(r))/∂wn is the Jacobian term. Since the number of Z is CN , the time
complexity of calculating Equation (A2) is O(CN). Thus, the classification approximation is
adopted for calculating Equation (A2), and then we obtain the approximated Q-function
for the CEM algorithm:

L(Φ, Z(r)) = ∑C
c=1 Lc(Φc, Z(r)), (A4)

where Z(r) is calculated byan approximation of the MAPmethod, i.e., Z(r) = arg maxZ P(Z|D, Φ(r)):

z(r)n = arg maxzn
P(zn|xn, wn, Φ(r))

= arg maxzn
P(zn|Φ(r))p(xn|zn, Φ(r))

• p(g(wn; Ω(r))|xn, zn, Φ(r))∂g(wn; Ω(r))/∂wn.

(A5)

In Equation (A5), P(zn|xn, wn, Φ(r)) is derived by Equation (A3).

Appendix A.2. Details for Maximizing the Approximated Q-Function

Parameters θc and Ωc are updated jointly by the conjugated gradient method inherited
by training the WGP.

Parameters ηc, αc, and Σc are solved analytically as follows. By adopting the Lagrange
multiplier method when ∑C

c=1 ηc = 1, we have

ηc = Nc

/
∑C

c=1 Nc .

Let ∂L(Φ, Z(r−1))/∂αc = 0 and ∂L(Φ, Z(r−1))/∂Σc = 0. Then, we have

αc = ∑N
n=1 zncxn/Nc,

Σc = ∑N
n=1 znc(xn −αc)(xn −αc)

T/Nc.

Appendix B. Details of the Partial CEM Algorithm

Appendix B.1. Details of Maximizing the Approximated Q-Function of the Partial
CEM Algorithm

The approximated Q-function Equation (A4) is equal to

L(Φ, Z(r)) =∑c=u,s,t Lc(Φc, Z(r)) + ∑c 6=u,s,t Lc(Φc, Z(r)),

where the first three terms, i.e., ∑c=u,s,t Lc(Φc, Z(r)), are only maximized for the partial CEM
algorithm. The details for maximizing ∑c=u,s,t Lc(Φc, Z(r)) are described in Appendix A.2.
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Appendix B.2. Details of the Approximated MAP Principle of the Partial CEM Algorithm

When z(r−1)
n = ec=u,s,t, z(r)n is obtained by the approximated MAP method:

z(r)n = arg maxzn∈{ec=u,s,t} P(zn|xn, wn, Φ(r)
c )

= arg maxzn∈{ec=u,s,t} P(zn = ec|Φ(r)
c )p(xn|zn = ec, Φ(r)

c )

• p(g(wn; Ω
(r)
c )|xn, zn = ec, Φ(r)

c )∂g(wn; Ω
(r)
c )/∂wn,

where P(zn|xn, wn, Φ(r)
c ) is derived by Equation (A3).

Appendix C. Split and Merge Criteria

Since there are too many candidate sets, it is necessary to propose specific reasonable
criteria to speed up the SMCEM algorithm.

The merge criterion is defined by

Fmerge(u, s) = cos < pu, ps >=pT
ups/ ‖ pu ‖‖ ps ‖,

where ‖ · ‖ is the Euclidean norm, and pc represents the following N × 1 vectors [P(z1 =

ec|x1, w1, Φ(r)
c ), P(z2 = ec|x2, w2, Φ(r)

c ), · · · , P(zN = ec|xN , wN , Φ(r)
c )]T, in which P(zn =

ec|xn, wn, Φ(r)
c ) are derived by Equation (A3). Components with the largest Fmerge(u, s) are

used for merging, where u 6= s.
The split criterion is defined by

Fsplit(t) =Lt(Φt, Z(r))/Nt.

The component with the smallest Fsplit(t) is used for splitting.
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